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Abstract: The object of visual odometry is the computation of the path of a rover from onboard passive vision data
only. The approach presented here relies on the accumulation of ego-motion estimates obtained by stereo vision
and bundle adjustment of tracked feature points. We also propose a new feature detector/descriptor, which is a
simplified and faster form of other well known descriptors (SURF). For cyclic paths, a déjà vu mechanism allows
further control over the accumulated error. Tests on real-world data show that our descriptors are effective for
accurate path estimation, while being fast enough for use in tasks such as autonomous planetary exploration.
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1 Introduction
Research in autonomous sensor-based navigation has
received considerable attention in recent years, partic-
ularly in connection with planetary exploration tasks
[1]. A mobile platform (rover) on, say, Mars must be
capable of truly autonomous navigation in a mostly
unknown environment, as its continuous teleopera-
tion from an Earth station is clearly out of question.
This requires that the rover be able to build, based on
sensor measurements, a metric and topological model
of its environment, while simultaneously estimating
its position relative to the environment itself. This
is the task of Simultaneous Localisation and Map-
ping (SLAM) studies [2]. SLAM algorithms have
been proposed, using various kinds of sensors; among
these the vision sensor, being the one that provides the
largest amount of information, has been extensively
studied both in single-camera [3, 4, 5] and in multi-
camera setups [6, 7, 8].

Reliable navigation, however, requires accurate
localization, i.e. accurate estimation of the rover path.
Indeed, pure dead reckoning (wheel odometry) usu-
ally yields quite poor estimates (due e.g. to wheel slip-
page); also, wheel odometry alone can at most yield a
2D path estimate, so it is not even sufficient in princi-
ple when navigating on a non-planar surface, and must
be complemented by other independent inputs (e.g. an
absolute orientation sensor as in [1]).

On the other hand, vision-based path estimation
(Visual Odometry) is able to yield accurate results
while being intrinsically 3D. In this regard, it is im-
portant to note the following points:

• Any path estimate from onboard visual measure-

ments is necessarily incremental, i.e. resulting
from the sum of smaller motion estimates. It is
therefore of utmost importance that each individ-
ual step be as accurate as possible, to reduce error
accumulation.

• Monocular vision is subject to scale uncertainty,
so, in absence of landmarks of known size (as is
the case in planetary exploration), stereo or other
multi-camera setups are needed.

• As error accumulation in the long run is unavoid-
able, it is important that the rover be able to rec-
ognize places where it has been before, and to
use such information to correct its pose estimate.

In this context, our group at INRIM has developed
a visual odometry algorithm [9, 10, 11, 12] which
relies on the tracking of pointwise image features
extracted from the images acquired by an onboard
binocular stereo head. At intervals along the rover
trajectory, its motion is estimated by robust bundle
adjustment of the tracked features in the four images
(two before and two after the motion). Several kinds
of point features have been tested to this end, and
a new Fast-Hessian based feature detector/descriptor,
similar to SURF [13] has been developed.

A déjà vu mechanism for exploiting cyclic paths
has also been devised, by periodically storing ob-
served features and pose estimates, and comparing
currently observed features to stored ones when near
a saved position.

This work describes in some detail the above ap-
proach, and presents the results of several real-world
tests performed in our laboratories. The paper is or-
ganized as follows: Sec. 2 formalizes the algorithm;
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Sec.3 describes the feature detection and matching
steps; Sec. 4 discusses the motion estimation algo-
rithm and the déjà vu mechanism. Sec. 5 illustrates
implementation issues, and finally Sec. 6 presents and
discusses test results.

2 The visual odometry algorithm
The algorithm relies on accumulating relative mo-
tions, estimated from corresponding features in the
images acquired while the rover is moving. Such es-
timates are computed at key frames, whose spacing
is a compromise between larger intervals, desirable
both for numerical accuracy and for reducing compu-
tations, and the need for a sufficiently large number of
features, which naturally tend to be lost because going
out of view.

The algorithm can be so summarized:
Feature extraction. Point features are extracted

at each key frame and left-right matched.
Feature tracking. Matched features are tracked

in subsequent frames, where stereo matching is per-
formed again.

Motion estimation. The relative motion of the
rover between the current frame and the last key frame
is estimated by bundle adjustment of matched feature
points.

Déjà vu correction. Features and pose estimates
are periodically saved. When the rover believes to be
near a saved position, observed features are compared
to the stored ones, and a pose correction is possibly
computed by bundle adjustment.

The following paragraphs describe the above
steps in greater detail.

3 Features
As said in Sec. 1, several kinds of point features have
been tested, namely:

• Shi-Tomasi-Kanade features [14], which how-
ever require small image displacements for reli-
able tracking, and a stereo disparity cue for stereo
matching;

• SURF descriptors [13], which instead allow di-
rect stereo matching and tracking with longer
inter-frame steps, though still imposing a non
negligible load;

• new simplified Fast-Hessian based descriptors
[12], similar to SURFs but faster to compute.

The next sections describe the latter new descriptors
in some detail.

3.1 Detection
Detection of point features is accomplished by a fast
approximate Hessian blob detector. Feature points are
sought for as the maxima of the normalized Hessian

H(σ) = σ2(Ixx(σ)Iyy(σ) − D(σ)I2
xy(σ)) (1)

where Ixx(σ), Iyy(σ) and Ixy(σ) are the second
derivatives of the image intensity I filtered with a
Gaussian of scale σ (the factor D(σ) shall be ex-
plained later). Following the approach in [13], the
smoothed derivatives are approximated by box fil-
ters like those depicted in Fig. 1, which represent the
derivatives at scale σ = 1.2 (filter size 9×9).

The use of box filters has the advantage that such
filters can be implemented very efficiently by using
the so-called integral image [15], requiring only four
memory accesses and three add/subtract operations
per box, irrespective of filter size. So, Ixy needs 16
accesses and 12 operations, while Ixx and Iyy are even
cheaper - they can be computed as differences of two
boxes, requiring only 8 accesses, 6 adds and one mul-
tiply each.

The box filter approximation is the reason for the
factor D(σ) in (1), which takes into account the differ-
ent norms of the filter masks - it would be 1 in the ab-
sence of approximations, while with masks like those
in Fig. 1 D(σ) ranges from ∼0.913 (9×9 mask) to
∼0.996 (195×195 mask).

This Hessian detector is applied at various filter
sizes, corresponding to a scale range of up to four oc-
taves (σ = 1.2 to σ = 26). Feature points are then
found by non-maximum suppression over pixel space
and scale space. A threshold on the value of H is
also applied, in order to limit the detected points to
the strongest ones. Maximum locations are further re-
fined to sub-pixel and sub-scale accuracy by fitting a
quadratic function to the 27 values of H in the 3×3×3
neighborhood of each maximum point. Note that we,
as [13], use the same criterion, i.e. the Hessian, for
both spatial localisation and scale estimation, in con-
trast to other mixed approaches as e.g. the Hessian-
Laplace favored by [16].

3.2 Description
The image information around each detected point
is encoded into a descriptor as follows. For a point
(x, y, s) detected at scale σ = s, a square image area
of side 10s centered at (x, y) is processed and reduced
to a size of 8×8 pixels, by block averaging and bilin-
ear interpolation. The resulting gray values are then
reduced to zero mean, weighted by a Gaussian of scale
2s and the resulting vector of 64 floats is finally nor-
malised to unit length. These 64 values, together with
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Figure 1: The discretised and cropped Gaussian (σ = 1.2) second derivative filter masks in yy and xy.(left), and
their box approximations (right) (reproduced from Bay et al. [13])

x, y and s constitute the feature descriptor. Note that
choosing an 8×8 size is just in order to have the same
number of descriptors as standard SURFs - a different
(perhaps larger) size can be easily accommodated.

This kind of descriptor is similar to the one named
cross correlation descriptor in [16], the main dif-
ference being the Gaussian weighting and the zero-
mean and unit normalisations, which tend to make
the descriptor more robust against affine illumination
changes. In fact, this descriptor has the drawback of
being neither affine- nor even rotation-invariant (it is
scale- and lighting-invariant, though). However, it is
extremely fast to compute (also thanks to the use of
the integral image for block averaging), and our expe-
rience has shown it to be quite adequate for moderate
baseline matching tasks, like the stereo and motion
matching needed by our visual odometry algorithm
for accurate path estimation.

Table 1 compares our method to the SURF
method. For the latter, we have used the author’s im-
plementation available on the ETH site [13]. Both
the full SURF descriptors and the upright-SURF (U-
SURF) variant have been tested, the latter not being
rotation-invariant and therefore more directly compa-
rable to our method. These tests have been performed
on a HP DC7700, equipped with a Pentium D at 2.6
GHz and running Linux Debian 4 (Sid). Note that the
DC7700 has a dual-core processor, but this is largely
irrelevant as both our method and the SURF one have
been implemented as single-thread tasks.

points time pts/ good
(ms) frame pts

SURF 1474 1605 2451 155
U-SURF 1474 808 2451 204
New method 1448 391 2401 151

Table 1: Comparison of new method and SURF (see
text for explanations).

The first two columns compare average execu-
tion times on a small subset of typical images taken

from the sequences discussed in Sec. 6; the param-
eters (Hessian threshold) have been adjusted to have
more or less the same number of points detected by
the two methods. Timings include the building of the
integral image, the detection of features and the com-
putation of descriptors.

The last two columns of the table compare the av-
erage output of the two algorithms on the outdoor test
of Sec. 6 in terms of number of total detected points at
each frame and points “good” for path estimation, i.e.
left-right and forward matched, as explained in Sec-
tions 3.3 and 4.1. As the table shows, SURF and the
new method show comparable performances. Rather
surprisingly, U-SURF yields a slightly higher number
of good matches, yet our method is about twice faster
than U-SURF and almost four times faster than full
SURF.

3.3 Matching
Both left-right and temporal matching relies on a sim-
ilarity measure defined in terms of the Euclidean dis-
tance between feature descriptors. The well-known
Nearest-Neighbour-Ratio method [17] is used for
matching: a given feature point F1 in image 1 matches
a point F2 in image 2 if F2 is the nearest neighbour
of F1 (in feature space), and the ratio of the distance
of F1 to F2 to that of F1 to its second nearest neigh-
bour does not exceed a threshold r. In our tests, we
have used r = 0.5, which may seem a rather restric-
tive value (Lowe suggests 0.8 in the cited paper), but
in fact has been found able to reject most of the false
matches.

Matching reliability is further improved by re-
quiring bidirectional matching: correspondences are
computed in both directions (i.e. from image 1 to im-
age 2 and viceversa), and only those returning back to
the same point are kept.

The matching algorithm can be improved by ex-
ploiting specific matching constraints (e.g. positive
disparity for the stereo case). In our implementation,
only stereo constraints are imposed, i.e. positive dis-
parity and vertical distance under some preset thresh-
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old. No constraint is imposed instead on temporal
matching.

Stereo matched point pairs are then backprojected
to a 3D point estimate, in the camera reference. This
3D estimate is used as a starting point for the bundle
adjustment step. The features detected in the left im-
age at a key frame are then tracked along the sequence
to the next key frame.

4 Path estimation

4.1 Interframe motion estimation
This issue has been discussed elsewhere [11], but
is summarized here for the sake of completeness.
Given two consecutive keyframes, say 1 and 2, let
Xi = [xi, yi, 1, ti]> be the unknown 3D projective
coordinates of some feature Fi, i = 1 . . . N12, in
the left camera reference at keyframe 1. Let uiq =
[uiq, viq]> be the 2D coordinates of Fi in image q ∈
{1L, 1R, 2L, 2R}, and xiq = [suiq, sviq, s]> its pro-
jective representation. Then

xi,1L = PLXi xi,2L = PLM12Xi

xi,1R = PRMSXi xi,2R = PRMSM12Xi

(2)
where the intrinsic camera matrices PL and PR are
known from calibration, as is the 4 × 4 stereo trans-
form matrix MS . The only unknown (apart from Xi)
is the motion matrix M12, which can be parametrized
in terms of a 3-rotation r12 and 3-translation t12.

Now, with N12 observed features u∗
iq tracked

from keyframe 1 to 2, we can define an error measure

J(p) =
∑

i

∑
q f(‖eiq(p)‖2)

=
∑

i

∑
q f(‖uiq(p) − u∗

iq‖2)
(3)

parametrized as a function of the 6 + 3N unknowns

p = [r12, t12, x1, y1, t1, ...xN , yN , tN ]> (4)

Then, p̂ = arg min J yields the visual odometry es-
timate (r̂12, t̂12) of the inter-keyframe motion. This
problem can be efficiently solved by a standard sparse
Levenberg-Marquardt algorithm (see e.g. [18, A4.3]).
For a robust estimate, we take as f(·) a Lorentzian
cost function f(e2) = log(1 + e2/σ2) with σ cho-
sen as a function of the expected image-plane error.
For better accuracy, the residuals eiq are compared
against a threshold (proportional to the Lorentz σ),
and those exceeding that threshold are marked as out-
liers. The bundle adjustment is then run again on the
inliers only.

4.2 Adaptive keyframe determination
The optimal inter-keyframe step must be a compro-
mise between longer steps (less computations and bet-
ter accuracy), and the need for a sufficient number
of tracked features. In our tests, which have only
involved batch processing of pre-acquired image se-
quences, we have adopted the following strategy:

• start with a predefined maximum inter-frame
step, say 20 frames;

• if the number of tracked points is enough, go on;
else halve the step and retry.

This strategy can also be used in a realtime, non-batch
application, provided that a sufficiently large memory
buffer be available to store the incoming max number
of images between two keyframes. It must be noticed,
however, that small steps are only needed in the pres-
ence of large image-plane motions, i.e. when the rover
turns; in fact, a rough estimate of the expected number
of lost features can be easily obtained from the known
programmed rover motion, so that the keyframe step
can be predicted.

4.3 Déjà vu correction
To implement déjà vu correction, the rover keeps an
archive of scene descriptions. Each description con-
sists of the set of stereo matched features, together
with the estimated rover pose. The description of the
current scene is added to the top of the archive when:

• enough time is elapsed since the last entry in the
archive (the top entry);

• the number of matched features between the
frame to be added and the top entry is near zero.

This strategy is aimed to ensure that the scenes corre-
sponding to the archive entries are all different.

When a new key frame is processed, the estimated
pose is checked against the stored ones, starting from
the bottom (oldest) entry. If an entry with similar pose
is found, the current features and those stored in the
entry are compared, and if enough matches are found
a correction between the archived pose and the cur-
rent one is computed by bundle adjustment. The cor-
rections computed while the rover remains near the
archived position are saved. When the rover leaves the
archived position, the saved correction corresponding
to the frame with the highest number of matches is
picked and actually applied. The pose corrected this
way is expected to be more accurate, as the error accu-
mulated along the intervening path is exchanged with
that from a single keyframe pair.
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Note that the above discussion implicitly assumes
that the features used for implementing the déjà vu
mechanism are the same as those used for visual
odometry, but this is not compulsory. In fact, this
mechanism requires matching of scenes seen from
much more different points of view than is the case
for odometry, and in this case both SURF and the
new features may not be enough reliable (too few
matches). However, descriptions for the déjà vu
mechanism are only needed at a much lower rate,
and this may justify additional computations for other
kinds of features (e.g. Maximally Stable Extremal Re-
gions [19]).

5 Implementation issues
The proposed method has been implemented in C
and MATLAB, with the feature detection/description,
matching and bundle adjustment in C for reasons of
speed. The algorithm has been tested on sequences
of real images acquired by a stereo head mounted on
a small commercial rover. Indoor and outdoor tests
have been carried out, using either of the two rovers
at our disposal, namely the 3-wheel ActivMedia Pio-
neer 3-DX, and the slightly more rugged 4-wheel 2-
AT model (see Fig. 2).

Figure 2: The Pioneer 3DX (left) and 2AT (right)
rovers, equipped with stereo head and controlling PC.

As shown in the photos, both rovers are equipped
with a support for carrying a laptop PC. The latter is
used both for sending motion commands to the rover,
as well as for providing control signals to the cameras,
acquiring and storing the resulting images.

Note that in these tests no image processing was
done by the PC, which was used only for storing im-
age sequences - this choice allowed to have some
constant data sets for testing different algorithms and
different values of algorithm parameters. Also, the
rover path was not pre-programmed; in fact, the rover
was actually driven “by hand”, by sending appropri-

ate commands (start, stop, turn left/right etc.) to the
laptop via a standard RF remote control.

5.1 The stereo head

The stereo head consists in a pair of Basler A312f dig-
ital cameras, equipped with 6mm lenses. The cam-
eras are mounted on an aluminum slab, as shown in
Fig. 3. Each camera provides a stream of CCIR-size
(720×576) 8-bit graylevel images on a IEEE1394 bus.
The two cameras can be accurately synchronized by
an external trigger signal, provided in our case by the
controlling PC through the parallel port.

Figure 3: Detail of the stereo head.

The cameras were mounted at a nominal center-
to-center distance (stereo baseline) of 236 mm, and
the head was calibrated using Bouguet’s method [20],
with a 0.6×0.6 m checkerboard pattern.

As can be seen from the photos, the two cam-
eras are mounted with parallel axes, but the head is
slightly tilted (about 13◦) towards the ground. In fact,
a good estimate of robot motion requires both dis-
tant features, providing reliable hints about direction,
as well as near ones, which yield more reliable hints
about the distance traveled between keyframes. The
arrangement used allows to increment the number of
usable near features, while cutting off most of the sky
area, which does not provide any useful information.

5.2 Ground truth determination

Assessing the accuracy of a path estimation algorithm
requires that such path be independently measured
by some means. Two problems arise in this context,
namely:

a) the rover position (and, where possible, orienta-
tion) must be actually measured with respect to
some fixed World reference Frame (WF), and

b) the rototranslation (RL, tL) linking the above
reference and the Rover reference Frame (RF)
has to be determined.
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As concerns item a), we have used the following
setup. As seen in Fig. 3, a standard tennis ball was
rigidly attached to the stereo head, to serve as vi-
sual target for defining the rover position. Four ten-
nis balls were laid on the test field (see Fig. 4), three
roughly at the corners of an equilateral triangle, and
a fourth in the middle to be used as check. Their dis-
tances were measured to within ±2 mm, so defining
a metric world reference frame. Two hand-held com-
pact digital cameras, after intrinsic calibration again
by Bouguet’s algorithm, were used to frame the scene
at about 90◦ with respect to the center of the reference
frame. At several times the rover was stopped and im-
ages of the scene were taken by the two cameras; the
ball centers, manually extracted from each image pair,
allowed then to estimate a ground-truth position of the
rover in the chosen reference, to within an accuracy
better than the ball diameter (order of 0.06m).

Figure 4: The Pioneer 2AT rover on the test field. Red
arrows indicate the measurement base targets.

As concerns item b), note that the output of the
visual odometry algorithm is a series of poses rela-
tive to the starting one, and expressed in the frame of
reference RF of the stereo head at the starting posi-
tion. Linking RF to WF requires an exterior calibra-
tion of the stereo head when the rover is at the starting
position, which in turn requires arranging some tar-
gets visible by the cameras and accurately measured
in WF. For the purpose of the tests here reported, how-
ever, we have not used any of the standard calibration
methods available; in fact, assuming a measurement
of the starting head position in WF be available, the
translation part tL of the linking transform can be eas-
ily obtained by identifying the origin of the path with
such position (and neglecting the measurement error).
There remains the rotation part RL to be determined,
and to this extent we have used different ad hoc meth-
ods that shall be discussed with the tests in Sec. 6.

5.3 Image preprocessing

The use of point features that can be directly matched
allows to avoid some costly preprocessing such as
stereo rectification at the image level, as was done e.g.
in [10] for the purpose of computing a dense depth
map. Indeed, except for very high values of lens dis-
tortion (which is not the case with “normal” lenses),
the lens distortion and stereo rectification transform
can be applied directly to the feature point coordi-
nates.

However, in the case of a relatively featureless
ground like the one observed in our outdoor tests, we
have found that applying the detection algorithm to a
LOG filtered version of the images significantly in-
creases the number of usable near features. The scale
of the LOG filter has been empirically set to σ = 3,
while its gain was adaptively chosen among three val-
ues (30,60,90) so as to keep the number of detected
features more or less constant (see Fig. 5 for an exam-
ple, referring to the data of Sec. 6.3).
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Figure 5: Top: Extracted left (blue) and right (red)
features vs. frame number. Bottom: LOG gain
(green), number of matched features (blue) and num-
ber of features with z < 20m (red).

6 Test results
6.1 Indoor test

The following figures show the outcomes of the in-
door test, conducted in our laboratories (Fig. 6). This
test was performed using a constant inter-keyframe
step of 10. The new features, as well as SURF and
U-SURF features were tested, with similar results;
for clarity, the drawing only shows the path estimated
with the new simplified features. To assess the estima-
tion accuracy, the rover was stopped and its position
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Figure 6: Indoor test. The estimated rover path, ap-
proximately superimposed to the floor plan. Coordi-
nates in m.
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Figure 7: Indoor test. Raw estimated rover path error
versus path length. Coordinates in m.
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Figure 8: Indoor test. Corrected rover path error ver-
sus path length. Coordinates in m.

measured when passing near some predefined points,
marked with red circles in the figure. Note that in this
case we did not use the setup discussed in Sec. 5.2,
which would have been impractical. The rover po-
sition was instead determined by measuring the head
target distance from the walls. Two DOFs of RL were

fixed by using a single target, marked by the green
dot in the Figure; the remaining DOF was arbitrar-
ily fixed by aligning the estimated path to the ground
using a graphical tool. Note that the latter arbitrarity
has little effect on the error figures reported next, as
the measurement positions are almost aligned vith the
(measured) direction of the target.

Figs. 7 and 8 plot the position error (distance of
the estimated robot position from the measured one) at
the measurement stops, respectively without and with
the déjà vu correction. As can be seen from these
plots, using either SURF-based features or the new
ones does not yield significantly different results as
concerns path accuracy. Also, the déjà vu mechanism
appears to be effective in reducing the accumulated
error.

6.2 Outdoor test 1

A first outdoor test was done on a paved area within
the INRIM campus. Ground-truth rover position data
were collected by using the arrangement explained in
Sec. 5.2. In order to have more data to compare with
the outcome of our algorithm, the rover was driven to
perform several turns without going too far from the
reference base, as shown in Fig. 9.
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Figure 9: Outdoor test 1. Estimated rover path without
(light gray) and with (red) corrections. Dots are the
reference targets. Stars and squares are the measured
and estimated stop positions. Coordinates in m.

The latter figure plots the estimated rover path;
for the sake of graph clarity, only the estimate using
the new features is drawn. Figs. 10 and 11 show
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the measured position error vs. path length, respec-
tively without and with déjà vu corrections, either us-
ing SURF features or our simplified ones.

In this case, the rotation RL linking the rover ref-
erence RF to the base WF was estimated as follows.
Let xMi be the head target coordinates measured, at
the stop positions i = 0 . . . N , in WF, and xOi the
corresponding ones in the RF as estimated by the vi-
sual odometry algorithm. The rotation was estimated
by fitting the directions of the vectors xOi − xO0 and
xMi − xM0 in some initial subset i = 1..N ′ with
2 ≤ N ′ ≤ N (N ′ = 4 for the reported plots). While
this approach may be expected to introduce some bias
in the estimated errors (since the estimated rotation
depends upon the outcome of the visual algorithm it-
self), in fact this bias is only relevant for the first few
measurements - we have verified that the plots re-
ported in Figs. 10 and 11 do not change substantially
for other values of N ′ (e.g. from 2 to 5).
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Figure 10: Outdoor test 1. Raw estimated rover path
error versus path length. Coordinates in m.
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Figure 11: Outdoor test 1. Déjà vu corrected rover
path error versus path length. Coordinates in m.

With regard to these plots, it is worth noting
(though this may be accidental) that in this case our
features perform slightly better than SURFs - and with

a lower computational cost. Anyway, also in this case
the déjà vu mechanism appears effective in keeping
the accumulated error low.

6.3 Outdoor test 2

This other outdoor test was performed on a paved road
near one of INRIM buildings (see Fig. 4). Ground-
truth data of rover position were collected, as in the
previous case, using the setup described in Sec. 5.2.
In this test, in order to get a much longer path, the
rover was driven quite far from the measurement base,
which however implied having quite fewer ground-
truth data.

The results from the latter test are reported in the
following. Both full SURF features and the new sim-
plified ones were tested, using the adaptive keyframe
strategy of Sec. 4.2 with a maximum keyframe step of
20 frames, corresponding to a path length of about 1
m. Fig. 12 plots the estimated path (again, for clarity
only the result using the new features and no cyclic
correction is shown).

Figures 13 and 14 plot the position error without
and with the déjà vu correction, respectively (note that
the déjà vu mechanism in this test was triggered only
once, after about 220m of path). Due to the small
number of measurements, the method described in
Sec. 6.2 for determining RL was not used. Instead,
the rotation was estimated by fitting the directions of
two points on the building visible in the background
of Fig. 4. A graphical tool was then used to check
that the error plots reported in Figs. 13 and 14 did
not change substantially for rotations as large as ±5◦
around either of the 3 axes of RL.

In this case, the result using the simplified fea-
tures clearly outperforms the one with SURFs. It is
also worth noting that, even without corrections, the
position error remains under 0.9 m over a total path
length of more than 300 m.

7 Concluding remarks
In this paper we have presented a visual odometry al-
gorithm using a new, fast Hessian-based feature de-
tector/descriptor, which has proven effective for use
in moderate baseline matching tasks like the ones re-
quired by our algorithm. The main advantage of the
new features is greater speed, without sacrificing ac-
curacy. For example, in the test of Sec. 6.3 the features
were extracted from 363 pairs over a total of 6428,
taken at an average rate of 4.3 pairs/s (not counting
stops). As feature extraction took less than 0.5 s aver-
age per image - i.e. 1 s per pair, this implies a comput-
ing load less than 25% at a rover speed of 0.22 m/s.
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Figure 12: Outdoor test 2. The estimated rover path (new method, no correction). Dots are the reference targets,
circles the measured positions. Coordinates in m.
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Figure 13: Outdoor test 2. Raw estimated rover path
error versus path length. Coordinates in m.

The proposed déjà vu mechanism has also proven
effective in reducing the accumulated error over
cyclic paths, although there is still much space for
improvement. Indeed, in our tests the use of both
the original SURF features, and, to an even greater
extent, of the new ones has been found not too
reliable for triggering the déjà vu mechanism, as
a sufficient number of matched features was only
found when the rover passed quite near, and with a

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300  350

SURF

new method

Figure 14: Outdoor test 2. Corrected rover path error
versus path length. Coordinates in m.

very similar heading, to a stored position. Therefore,
in order to implement a reliable, fully autonomous
landmark-based navigation system more research is
needed for finding a fast and reliable representation
of scene contents useful for landmark recognition.
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