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Abstract: In this paper, MIMO U-model based IMC is used for the tracking control of multivariable nonlinear
systems. The algorithm is implemented in real-time on a 2DoF robot arm. The stability and convergence issues
for the control-oriented U-model are also discussed. In order to guarantee stability and faster convergence speeds,
bounds are suggested for the learning rate of adaptation algorithm that estimate the parameters of U-model. The
adaptation algorithm is first associated with a feedback structure and then its stability is investigated usingl2
stability and small gain theorem. The paper also discusses about the robustness of adaptation algorithm in the
presence of noise and suggests optimal choices for faster convergence speeds.
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1 Introduction
U-model is a recently proposed [1] modelling frame-
work for adaptive control and tracking of nonlinear
systems. U-model is a control oriented model which
comes up with an explicit controller design method-
ology on approximate inverse concept. U-model has
a more general appeal as compared to the polynomial
NARMAX model [2] and the Hammerstein model [3],
[4]. U-model is a polynomial in the control inputu(t−
1) and the parameters of this polynomial are function
of u(t − 2), . . . u(t − m) andy(t − 1), . . . u(t − n),
whereu(t) and y(t) represent the plant inputs and
outputs, respectively. Inverse finding of polynomi-
als is straight forward in numerical techniques such as
Newton-Raphson method, while finding the inverses
of other nonlinear models for dynamic system leads to
theoretical and implementation difficulties in this re-
gards [20]. It has been used in several nonlinear adap-
tive control scheme for both SISO and MIMO systems
such as pole placement control [1], learning feedfor-
ward control [6, 7], adaptive inverse control [8], etc.

Practically all control schemes require the model
to be stable and converging to the actual plant. U-

model methodology engage an online recursive pa-
rameter estimation loop to model the unknown non-
linear plant in different control schemes. An appropri-
ate adaptation gain called learning rate is often needed
for the recursive procedure. The learning rate should
be within an optimum range. It should neither be too
large which would drive the algorithm unstable, nor
too small, that it slows down the training. In general
practice, a suitable learning rate is selected after few
experimental runs.

Generally a small learning rate is chosen to avoid
instability in learning, that evidently slows down the
learning procedure. Especially, for MIMO systems
with many parameters to estimate and a large data, a
small learning rate may require substantial amount of
time and machine power.

Therefore, it should be analyzed to find an opti-
mal learning rate to speed up the convergence and yet
keeping the algorithm stable. In the robustness analy-
sis of adaptive schemes [9] and [10], the authors have
addressed the methods of selecting the learning rate,
that guarantees robustness under noisy conditions and
faster convergence [9] and [10].
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The formulation in [9] and [10] accentuates a
feedback structure for many of the adaptive algo-
rithms and it depends on tools from system theory,
signal processing and control such as feedback analy-
sis, state-space description, small gain theorem, H∞

design and lossless systems [9]. The authors have
stated that the feedback configuration can be provoked
via energy arguments and is shown to consist of two
major blocks: a time-variantlossless (i.e., energy
preserving) feedforward path and a time-variant feed-
back path [9, 10].

We make use of the feedback structure to analyze
robustness of U-model and find optimal choices for
learning rate. We will associate the learning algorithm
with the feedback structure of [9] and [10]. As an ar-
gument, choices for learning rate that guarantee ro-
bust performance, stability and yet faster convergence
speeds for the adaptation of U-model parameters.

This paper is organized in eight sections. The
structure of U-model, MIMO U-model and the the
Newton Raphson based controller are presented in
section 2. The preliminaries for the analysis are pre-
sented in section 3. Robustness issues are discussed
in section 54while the optimal learning rate using the
feedback structure is presented in section 5. The real-
time and simulation results are presented in section 6
and the paper is concluded in section 7.

2 The U-model Structure

The SISO U-model used for internal model control of
a SISO plant in [11] and [12], based on the basic U-
model developed by Zhuet.al [1], models a plant of
NARMAX representation given by,

y(t) = f
(

y(t − 1), . . . , y(t − n), u(t − 1), . . . ,

u(t − n), e(t − 1), . . . , e(t − n)
)

, (1)

The U-model is obtained by expanding the non-linear
function of the above equation as a polynomial with
respect tou(t − 1) as follows:

ym(t) =
M
∑

j=0

αj(t)u
j(t − 1) + e(t), (2)

where M is the degree of model inputu(t − 1),
αj is a function of past inputs and outputsu(t −
2), . . . , u(t−n), y(t−1), . . . , y(t−n) and errors
e(t), . . . , e(t − n). The sampled data representation
of many non-linear continuous time systems may also
be represented by the above form.

In order to establish the controlleri.e. the inverse
of the model, the model output is set equal to the con-
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Figure 1: U-model based IMC scheme

troller input as,

y(t) = E(t) =

M
∑

j=0

αj(t)u
j(t − 1) + e(t). (3)

Now the design of the control law transforms to a
root solving problem that finds a control inputu(t−1),
such that the controller-plant cascade produces a unity
transfer function.

The control law presented in [12] using the
Newton-Raphson method is given by,

ui+1(t − 1) = ui(t − 1) −
∑M

j=0
α̂j(t)u

j
i (t − 1) − E(t)

d
∑M

j=0
α̂j(t)u

j
i (t − 1)/dui(t − 1)

2.1 The MIMO U-Model and The Newton-
Raphson Based Controller

The proposed U-model based IMC for multivariable
nonlinear system is shown in Fig. 1. The model struc-
ture is given by,

Ym(t) = A0+A1

1

U (t−1)+A2

2

U (t−1)+. . . , (4)

or

Ym(t) =
M
∑

j=0

Aj

j

U (t − 1) = F
(

U(t − 1)
)

. (5)

The model outputYm(t) is a function of the current
control signalU(t−1), whereU(t−1) andYm(t) are

the input and output vectors.
j

U is the vector withjth

power of the control inputsui(t − 1) as,

j

U (t−1) = [uj
1
(t−1) uj

2
(t−1) . . . uj

p(t−1)]T . (6)

Aj are matrices instead of simple scalars. The
problem in the proposed adaptive control structure is
solved by first estimating the model in terms of the
parametersAj to obtain the MIMO U-model, and then
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establishing the controlleri.e. the inverse using the
Newton-Raphson.

To obtain a controller that acts as an inverse of
the plant, it is required that the input to the controller
E(t) to be set equal to the model outputYm(t) [13]. In
this way, the output of the controllerU(t − 1), which
when fed to the plant and the plant model, generates
Y (t) andYm(t). Therefore, setting,

E(t) = Ym(t) (7)

Eq. 7 is system of multivariable nonlinear equations.
This system of equations can be solved by any recur-
sive nonlinear equations solver, such as the Newton-
Raphson method [14]. Starting from an initial approx-
imate solution, for instanceUk(t − 1), a better solu-
tion Uk+1(t − 1) is sought with the correction vector
H = [h1 . . . hn] such that,

Uk+1(t − 1) = Uk(t − 1) + H, (8)

and

F
(

Uk+1(t − 1)
)

= F
(

Uk(t − 1) + H
)

= E(t) (9)

is satisfied.
Now having the Taylor series expansion of

F
(

Uk(t − 1) + H
)

with only the linear terms,

F
(

Uk(t−1)+H
)

≈ F
(

Uk(t−1)
)

+F ′
(

Uk(t−1)
)

H.
(10)

The termF ′
(

Uk(t− 1)
)

is thep× p Jacobian matrix
with elements∂fi/∂ukj

(t − 1).
Using Eq. 9 in Eq. 10, the value of the correction

vectorH can be obtained as,

H = F ′
(

Uk(t− 1)
)−1(

E(t)−F
(

Uk(t− 1)
))

(11)

Hence, the Newton-Raphson solution for the con-
troller will be,

Uk+1(t − 1) = (12)

Uk(t − 1) + F ′
(

Uk(t − 1)
)−1(

E(t) − F
(

Uk(t − 1)
))

Remarks:The Newton-Raphson solution is con-
ditioned with the existence of the inverse of the
Jacobian in Eq. 12. It is possible during the update
process to have a singularJacobian matrix. This sit-
uation can be avoided using one of the following tech-
niques:

1. Employing Pseudoinverse,

2. or using the inverse ofJacobian matrix from the
previous instant,

3. or adding a small number to theJacobian matrix
to avoid singularity.

3 Analysis Preliminaries
U-model is shown to be capable of modelling any dy-
namic system that can be represented as the NAR-
MAX representation [1],[11]. The NARMAX repre-
sentation is given by [15],

y(t) = f
(

y(t − 1), . . . , y(t − n), u(t − 1), . . . ,

u(t − n), v(t − 1), . . . , v(t − n)
)

,(13)

wherev(t) represents the error due to measurement
noise, model mismatch, uncertain dynamics and plant
variation. The model of the plant is obtained by ex-
panding the non-linear function of the above equation
as a polynomial with respect tou(t − 1) as already
expressed in Eq. 15

The polynomial in Eq. 15 is defined as the SISO
U-model, whereM is the degree of model inputu(t−
1). The parametersαj(t) are functions of past inputs
given by [1],

αj(t) = fj

(

y(t−1), . . . , y(t−n), u(t−2), . . . , u(t−n)
)

(14)
For convenience in future analysis we express the U-
model in vector notation as,

y(t) = A(t)U(t − 1) + v(t), (15)

whereA(t) = [α0(t) α1(t) . . . αM (t)] andU(t −
1) = [ 1 u(t − 1) u2(t − 1) . . . uM (t − 1)]T .

3.1 Adaptation Algorithm and Error Quan-
tities

Now consider the plant having a set of input vectors
{u(t)} with the corresponding desired set of output
vectors{y(t)} and assuming the plant can be mod-
elled as a U-model of form given by Eq. 15. The noisy
perturbationsv(t) can be contributed from noisy mea-
surements or model uncertainties. This converts the
problem of identifying the plant into finding the esti-
mates of the U-model parametersαj(t), for 0 ≤ j ≤
M , such that

ym(t) = Â(t)U(t − 1), (16)

where the vector̂A(t) is an estimate ofA(t) at time in-
stantt. Starting with an initial guesŝA(0), the param-
eters are updated recursively based on the least mean
square (LMS) principle as [17],

Â(t + 1) = Â(t) + µ(t)e(t)UT (t − 1) (17)

whereµ(t) is the learning and the errore(t) is defined
as,

e(t) = y(t) − ym(t) + v(t)

e(t) = A(t)U(t − 1) − Â(t)U(t − 1) + v(t)(18)
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Defininga priori anda posteriori error quantities as

ea(t) = Ã(t)U(t − 1) (19)

ep(t) = Ã(t + 1)U(t − 1) (20)

whereÃ(t) is the parameter error vector symbolizing
the difference between the actual parameter and its es-
timate asÃ(t) = A(t) − Â(t). Therefore,

ea(t) =
(

A(t) − Â(t)
)

U(t − 1),

= A(t)U(t − 1) − Â(t)U(t − 1)

= A(t)U(t − 1) − ym(t).

and the parameter error update equation satisfies the
following recursion,

Ã(t + 1) = Ã(t) + µ(t)e(t)UT (t − 1) (21)

4 Robustness
It is imperative to bring up that a robust algorithm has
consistent estimation errors independent of the distur-
bance type and may lead to minor estimation errors in
the presence of minor disturbances [9]. Usually, this
is not true for a particular adaptive algorithm. In an
adaptive algorithm, even for small disturbances, the
estimation errors can be large [16].

The robustness of U-model adaptation is analyzed
deterministically without any information about the
signal or noise. This approach is similar to [9] and
[10] and is very useful for conditions where no prior
information about the signal is known. The learning
rate obtained as a result of this analysis would ensure
an appropriate robustness level which is independent
of the noise characteristics. In general, this implies
that the disturbance energy will be upper bounded by
the level of estimation energy level, or can be specifi-
cally stated as [9],

estimation error energy
disturbance energy

≤ 1 (22)

In the following section, the robustness methodology
will be adopted to select a learning rate that ensures
robustness behavior in the presence of noisy perturba-
tions.

4.1 Optimal Learning Rate for Robustness
In this continuation, we will develop a contractive
mapping from thetth instant tot + 1th instant of the
recursion.
Definition: A linear map that transformsx to y, as
y = T [x], is said to be contractive mapping, if∀ x we
have‖T [x]‖2 ≤ ‖x‖2 [18].

This depicts that the output energy is always lesser
than the input energy [9, 10]. The contractive mapping
will relate the energies in such a way that the ratio in
Eq. 22 is satisfied. More specifically, the Euclidean
norm of theÃ(t + 1) andea at thet + 1th instant is
compared with the Euclidean norms ofÃ(t + 1) and
ṽ(t) [9, 10].

ṽ(t) = e(t) − ea(t) (23)

Now consider the parameter error recursion given by
Eq. 21,

Ã(t + 1) = Ã(t) − µ(t)e(t)UT (t − 1)(t).

The squared norm (the energies), of the parameter er-
ror recursion equation can be computed as follows,

‖Ã(t + 1)‖2 = ‖Ã(t)‖2 − 2µ(t)e(t)Ã(t)U(t − 1)

+µ(t)2e2(t)‖U(t − 1)‖2,

= ‖Ã(t)‖2 − 2µ(t)Ã(t)U(t − 1)(ea(t) + ṽ(t)) +

µ(t)2‖U(t − 1)‖2(ea(t) + ṽ(t))2,

= ‖Ã(t)‖2 − 2µ(t)(e2
a(t) + ea(t)ṽ(t)) +

µ(t)2‖U(t − 1)‖2(e2
a(t) + 2ea(t)ṽ(t) + ṽ2(t)),

= ‖Ã(t)‖2 − 2µ(t)e2
a(t) − 2µ(t)ea(t)ṽ(t) +

µ(t)2‖U(t − 1)‖2e2
a(t)

+ 2µ(t)2‖U(t − 1)‖2ea(t)ṽ(t)

+ µ(t)2‖U(t − 1)‖2ṽ2(t),

Rearranging terms we get,

‖Ã(t + 1)‖2 + 2µ(t)e2
a(t) − µ(t)2‖U(t − 1)‖2e2

a(t) =

‖Ã(t)‖2 − 2µ(t)ea(t)ṽ(t) +

2µ(t)2‖U(t − 1)‖2ea(t)ṽ(t) +

µ(t)2‖U(t − 1)‖2ṽ2(t). (24)

Introducing a parameterη(t) as

η(t) =
1

‖U(t − 1)‖2
(25)

‖Ã(t + 1)‖2 + 2µ(t)e2
a(t) −

µ(t)2

η(t)
e2
a(t) =

‖Ã(t)‖2 − 2µ(t)ea(t)ṽ(t) + 2
µ(t)2

η(t)
ea(t)ṽ(t)

+
µ(t)2

η(t)
ṽ2(t). (26)

If we setµ(t) = η(t), we come up to the fol-
lowing equality, where the energy bounds are always
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satisfied as estimation energy= disturbance energy.

‖Ã(t + 1)‖2 + 2µ(t)e2
a(t) − µ(t)e2

a(t) =

‖Ã(t)‖2 − 2µ(t)ea(t)ṽ(t) +

2µ(t)ea(t)ṽ(t) + µ(t)ṽ2(t),

‖Ã(t)‖2 + µ(t)e2
a(t) = ‖Ã(t)‖2 + µ(t)ṽ2(t). (27)

Therefore, we can conclude to the results for the en-
ergy bounds depending upon the learning rate [9, 10].

‖Ã(t + 1)‖2 + µ(t)e2
a(t)

‖Ã(t)‖2 + µ(t)ṽ2(t)







≤ 1 if 0 < µ(t) < η(t)
= 1 if µ(t) = η(t)
≥ 1 if µ(t) > η(t)







(28)
Remarks

1. The first two inequalities in the statement of
Eq. 28 ascertain that if the learning rate is se-
lected such thatµ(t) ≤ η(t), then a con-
tractive mapping is achieved from the sig-
nals {Ã(t),

√

η(t)ep(t)} to the signals{Ã(t +

1),
√

η(t)ea(t)} [9, 10]. Therefore, a local en-
ergy bound is deduced that highlights robustness
of the update recursion.

2. The energy bound is independent of the noise
signal ṽ(t) and the parameter error vector̃A(t).
The sum of energies‖Ã(t + 1)‖2 + µ(t)e2

a(t)
will always be lesser than or equal to the sum
of energies‖Ã(t)‖2 + µ(t)ṽ2(t) and the algo-
rithm will show robust behavior in the presence
of noisy perturbations and load variations [9, 10].

3. Moreover, the adaptation algorithm looses its ro-
bustness properties if the the learning rate obeys
the third condition in the Eq. 28.

5 Feedback Structure

The bounds of the statement given by Eq. 28 can
be illustrated in an alternative form that establishes
the feedback structure. Initially, the recursive pa-
rameter update equation has to be written as a func-
tion of a priori error anda posteriori error. The
a posteriori error s defined in Eq. 20 as,

ep(t) = Ã(t + 1)U(t − 1)

= [Ã(t) − µ(t)UT (t − 1)e(t)]U(t − 1)

= ea(t) − µ(t)‖U(t − 1)‖2e(t)

= ea(t) −
µ(t)

η(t)
e(t) (29)

η(t)ep(t) = η(t)ea(t) − µ(t)e(t)

η(t)
(

ea(t) − ep(t)
)

= µ(t)e(t). (30)

Hence, the recursive parameter update Eq. 17 can be
written as

Â(t + 1) = Â(t) + η(t)
(

ea(t) − ep(t)
)

UT (t − 1).

Similarly, the parameter error recursion Eq. 21 can be
reformulated as,

Ã(t) = Ã(t) − η(t)UT (t − 1)
(

ea(t) − ep(t)
)

(31)

The squared norm of Eq. 31 leads to the same state-
ment as 28, except that the disturbance errorṽ(t) is re-
placed by the negative ofa posteriori error −ep(t)
and the learning rate is set toη(t) as follows,

‖Ã(t + 1)‖2 =

‖Ã(t)‖2 − 2η(t)Ã(t)U(t − 1)
(

ea(t) − ep(t)
)

+η(t)2‖U(t − 1)‖2
(

ea(t) − ep(t)
)2

= ‖Ã(t)‖2 − 2η(t)ea(t)
(

ea(t) − ep(t)
)

+

η(t)2
1

η(t)
e2
a(t) − 2η(t)2

1

η(t)
ea(t)ep(t) +

η(t)2
1

η(t)
e2
p(t)

= ‖Ã(t)‖2 − 2η(t)e2
a(t) + 2η(t)ea(t)ep(t) +

η(t)e2
a(t) − 2η(t)ea(t)ep(t) + η(t)e2

p(t)

Therefore,

‖Ã(t + 1)‖2 = ‖Ã(t)‖2 − 2η(t)e2
a(t) +

η(t)e2
a(t) + η(t)e2

p(t),

or

‖Ã(t + 1)‖2 + η(t)e2
a(t) = ‖Ã(t)‖2 + η(t)e2

p(t),

expressing in a ratio form as,

‖Ã(t + 1)‖2 + η(t)e2
a(t)

‖Ã(t)‖2 + η(t)e2
p(t)

= 1. (32)

Hence, the energy ratio given in Eq. 32 is true for all
possible learning rates. This implies that the mapping
T i from the signals{Ã(t),

√

η(t)ep(t)} to the signals
{Ã(t + 1),

√

η(t)ea(t)} is lossless [9] and [10].
Now if we apply the mean-value theorem to the

U-model outputy(t) , we can write

A(t)U(t − 1) − Â(t)U(t − 1) = y′(τ)ea(t) (33)
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for some point τ along the segment connecting
A(t)U(t−1) andÂ(t)U(t−1) during estimation pro-
cedure. Therefore, combining Eq. 18 and Eq. 29,

ep(t) = ea(t) −
µ(t)

η(t)
e(t)

ep(t) = ea(t) −

µ(t)

η(t)

(

A(t)U(t − 1) − Ã(t)U(t − 1) + v(t)
)

ep(t) = ea(t) −
µ(t)

η(t)

(

y′(τ)ea(t) + v(t)
)

ep(t) = [1 −
µ(t)

η(t)
y′(τ)]ea(t) −

µ(t)

η(t)
v(t)

−
√

η(t)ep(t) =
µ(t)

√

η(t)
v(t) −

[1 −
µ(t)

η(t)
y′(τ)]

√

η(t)ea(t) (34)

In [9] and [10], the authors have incorporated a
feedback structure to relate the overall mapping from
the disturbance errors to the estimation errors. The re-
lation in Eq.34 can also be shown as a feedback struc-
ture similar to the one presented in [9] and [10]. The
feedback structure depicting the overall mapping from
the

√

η(t)v(t) to
√

η(t)ea(t) is shown in Fig. 2. In
order to analyze the stability of the feedback struc-
ture the authors have utilized the small gain theorem
[9, 10]. We will also make use of the small gain the-
orem theorem to study the stability of the feedback
structure shown in Fig. 2 for the case of U-model
adaptation. Conditions on the learning rateµ(t) will
be derived that guarantee a robust, stable and yet faster
training algorithm.

q-1

-

( )A t% ( 1)A t +%

( ) ( )t v tη ( ) ( )at e tη

( )

( )

t

t

µ
η

( )
1 '( )

( )

t
y

t

µ τ
η

−

1iT =

Figure 2: A lossless mapping in feedback structure for
the learning algorithm of U-model

The conditions will be developed in such a way

that the feedback configuration shown in Fig. 2 re-
mainsl2 stable. This implies that a finite-energy input
noise sequence including the noiseless case as well)
{
√

η(t)v(t)} is mapped into a finite-energya priori

error sequence{
√

η(t)ea(t)} [9, 10].

5.1 Optimal Learning Rate for U-model via
Small Gain Theorem

Now to obtain the optimal learning rate using small
gain theorem, define the gain for the feedback loop in
Fig. 2 as∆(N),

∆(N) = max
0≤t≤N

|1 −
µ(t)

η(t)
y′(τ)| . (35)

According to the definition in Eq. 35,∆(N) is the
maximum absolute gain of the feedback loop over the
interval0 ≤ t ≤ N .

According to small gain theorem, the condition
for l2 stability of the feedback configuration shown in
Fig. 2 is that the product of norms of the feedforward
and feedback maps be strictly bounded by one [9, 10].

Since, we have already assumed a lossless case,
this implies that the norm of the feedforward map is
equal to one. The norm of the feedback map is defined
as∆(N). Therefore, to keep the product of the norms
to be less than one, it is required that∆(N) < 1.

Now the learning rate should be selected that re-
sults in∆(N) to be less than one and guarantees the
bound

0 < µ(t)y′(τ) < 2η(t) =
2

‖u(t)‖2
(36)

In [19], the authors have presented a number of
choices for learning rate. They based the selection of
learning rate on the availability of the derivative func-
tion y′(τ). For the case of U-model it is straight for-
ward to obtain the estimate of the derivative function
as,

y(τ) =
M
∑

j=0

αj(τ)uj(t − 1),

y′(τ) =
M
∑

j=1

jαj(τ)uj−1(t − 1). (37)

Hence, the derivative in Eq. 37 can be used to find
the optimal learning rate to speed up the convergence
as,

µ(t) < 2η(t)y′(τ),
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µ(t) < η(t)

M
∑

j=1

jαj(τ)uj−1(t − 1). (38)

Remarks
The inequality given by Eq. 38 not only en-

sures the stability of the update recursion of the U-
model parameters but also guarantees faster conver-
gence speeds.

6 Results

6.1 Real-Time Implementation on a 2-
Degree of Freedom Robot Manipulator

To test and verify the behavior and robustness of the
proposed algorithm, we have developed a 2-degree of
freedom robot manipulator shown in Fig. 3.

Figure 3: The Real-Time setup for the 2 link Robot

The first link (namedprimary) is 30cm and the
second link (namedsecondary) is 19cm long. For a
varying load, the link is connected by elastic strings
on both sides, such that the tension in the string is
variable according to the angular position of the link.
Tension in the string increases with increasing rotation
angle. The geometry of the 2 link robot is shown in
Fig. 4

The feedback signalsi.e. the angles of the links
are measured by two 0-50KΩ potentiometers. Due
to the physical limitations, the primary link is con-
strained to have a maximum rotation of±60o from
the central position. However, the secondary link can
manoeuver the whole± 180o rotation.

The objective of the 2 link robot manipulator is;
given any coordinates in the workspace, theend −
effector will be driven to those desired coordinates
in the robot workspace within finite time, practically
in shortest time. This is achieved by rotating the robot
links to corresponding angles. The problem of finding
the angles of the robot links given any coordinates in

Ø
Ø

x1

y2

x2

y1

θ 1

θ2

L1

L2

(xeff,yeff )

Figure 4: The 2 link Robot Geometry

the workspace is called inverse kinematics. The con-
trol algorithm treats the values of the angles in radians
as the setpoints and attempts to track the angles of the
links to those setpoints. The actual position of the end
effector can be obtained using the forward kinematics.

For the 2 link robot having lengthsL1 and L2,
the inverse kinematics problem is defined as, given the
desiredxd andyd coordinate of the end effector, find
the angles for the primary and secondary links. This
can be achieved by the following equations.

Defining B as the distance of the end effector
from the origin of the base frame.

B =
√

x2 + y2 (39)

The anglesθ1 andθ2 are calculated by,

θ1 = Atan2(yd/xd)+cos−1[(L2
1−L2

2+B2)/2L1B],
(40)

θ2 = cos−1[(L2
1 + L2

2 − B2)/2L1L2], (41)

The functionAtan2(Y/X) finds the proper quad-
rant for the angle (There could be more than one solu-
tion to even a single link as the inverse of cosine gen-
erates± angles, so it is necessary to find the correct
quadrant).

The position of the end effector is calculated us-
ing the forward kinematics of the 2 link robot. Given
the anglesθ1 andθ2, the end effector coordinatesxeff

andyeff are,

xeff = L1 cos(θ1) + L2 cos(θ1 + θ2), (42)

yeff = L1 sin(θ1) + L2 sin(θ1 + θ2). (43)

The real-time code is built in SIMULINK on Intel
Pentium III 933MHz Computer with 256MB RAM.
The interfacing is done using the Advantech PCI-1711
I/O card.
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The reference signal is set to be a uniformly dis-
tributed random signal with a step time of 4 seconds.
Using a tuned standard PID controller at no load; the
tracking behavior is shown in Fig. 5. The figure shows
an acceptable steady-state tracking even though there
are high overshoots at the transition and occasional
mismatch in the tracking. The proposed U-model
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Figure 5: Tracking using a PID controller at no load
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Tracking using MIMO U−model IMC scheme at no load
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Figure 6: Tracking using the proposed U-model
scheme at no load

based adaptive tracking scheme is applied to the 2 link
robot using a3rd order U-model and a 2 input 2 out-
put RBFNN with 2 neurons for theAo. The width
of the Gaussian basis functions is kept as 1 to cover
a large input range. The weights of the RBFNN and
the matrix parametersAj are updated using the LMS
principle with a learning rate of 0.05. The tracking

is shown in Fig. 6. Fine tracking performance can be
observed with no overshoot and mistracking as com-
pared to the standard PID controller.
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Figure 7: Tracking with variable load using a PID
controller tuned for no load
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Figure 8: Tracking with variable load using the pro-
posed U-model scheme

Using the same setup, with a varying load, the
performance of the standard PID controller tuned at
no load is shown in Fig. 7 and it is obvious that the
PID controller tuned at no load was not able to track
the reference signal. When the proposed scheme was
applied to the varying load setup, very similar track-
ing results were observed as depicted in Fig. 8. This
shows the robustness of the adaptive scheme that is
able to perform even with load variation. A possible
way to avoid the overshoots is to employ the three step
input shaping technique proposed in [20]
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6.2 Simulation for Adaptive Learning Rate

A hammerstein system is considered to verify the per-
formance of the U-model scheme with a constant and
with an adaptive learning rate obtained in Eq. 38. The
hammerstein system considered is a 2-input 2-output
heat exchanger. The two similar static nonlinearities
in heat exchanger are defined as [21].

x(t) = −31.549u(t) + 41.732u2(t)

+ 24.201u3(t) + 68.634u4(t).

The linear dynamic block is considered as,

y1(t) = −0.82y1(t − 1) − 0.75y1(t − 2)

+ 0.81x1(t) + 0.53x2(t),

y2(t) = −0.61y2(t − 1) − 0.53y2(t − 2)

+ 0.62x1(t) + 0.22x2(t).

The reference signal is set to be a random piece-wise
continuous signal with a step time of 3 seconds. A
third order U-model withM = 3 is used. The learn-
ing rate is set to 0.05 after few trial runs. The output
is made noisy with additive white gaussian noise of
20dB SNR. The tracking behavior is shown in Fig 9.
It can be seen that a constant learning behavior is ob-
served. However, The tracking behavior can be differ-
ent for a different learning rate. Now, the same system
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Figure 9: Tracking using a constant learning rate

is used and the learning is made adaptive using the cri-
teria in Eq. 38. The learning rateµ(t) is kept95% of
the right hand side. The tracking behavior is shown
in Fig. 10. It can be seen that although initially the
performance was not acceptable, the adaptive learn-
ing rate eventually set the learning process in stable
region and finer tracking behavior is followed after
some time.
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Figure 10: Tracking using an adaptive learning rate

7 Conclusions
In this paper a feedback analysis of the learning algo-
rithm of U-model is presented. The U-model adap-
tation is related to a feedback structure of [9]. The
stability of the adaptation is studied via small gain
theorem. Choices for suitable learning rates are sug-
gested that ensure robust behavior under noisy con-
ditions model uncertainties. In order to speed up the
convergence, bounds for the optimal learning rate are
presented.
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