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Abstract. New algorithm for estimation of parameters of communication channel in the circumstances of 
existence of intensive impulse noise within measurement  sequence is proposed in this paper. Proceeding from 
the theory of robust estimation, a simple, adaptive, practically applicable algorithm is derived that in the 
circumstances of contaminated normal distribution of measurement noise demonstrates high level of 
efficiency. QQ-plot technique is used as a framework for estimation of contaminated measurements 
distribution providing the algorithm adaptation. Application of proposed algorithm is broad, both in the field 
of wireless communications, equalization of transmitting channels, suppressing of noise and in modeling 
communication and control systems. 
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1. Introduction 
In wireless communication systems, the transmitted 
signals usually experience fading which either 
attenuates the received power or causes dispersion. 
Therefore, it is necessary to obtain the fading 
channel information, i.e. the channel gains of 
different resolvable paths. However, the channel 
state estimation is unknown to both the transmitter 
and the receiver in many practical applications, thus 
necessitating channel estimation at the front end of 
the coherent receiver [1]. A variety of channel 
estimation algorithms have been developed, based 
primarily on one of two aspects of random variables: 
the distribution and the moments. When the 
distribution of the received signal conditioned on the 
channel state information is known, the maximum 
likelihood (ML) criterion can be applied to yield 
asymptotically optimal performance [2]. Such ML 
channel estimation algorithms are suitable for 
training-symbol based systems, in which a subset of 
the transmitted symbols is known to both the 
transmitter and receiver [3].  The main concern with 
such a ML channel estimation is the necessary 
amount of training data [4]. When only the 
information symbols are available, this is usually 
called blind channel estimation. In the recent past, a 
large number of blind channel estimation algorithms 
have been developed using moment estimation, 
particularly the second-order statistics or SOS [5]. 
Usually, based on SOS estimation, the subspace 
method and moment matching are applied. 
However, the subspace technique is suitable only for 
stationary channels, since it requires the signal 
subspace to be time-invariant. However, in many 
practical code division multiple-access (CDMA) 

systems long codes are employed, thus making the 
overall channel nonstationary. On the other hand, 
SOS-based estimation techniques are commonly 
recognized as the natural tools to be used in the 
presence of Gaussian noise. Research efforts on 
higher-order statistics (HOS) have led to the 
development of improved estimation algorithms for 
non-Gaussian environments. Important non-
Gaussian impulsive processes are found in a variety 
of practical problems that include wireless 
communications and teletraffic. These processes can 
be efficiently modeled by heavy-tailed distributions 
with a huge variance, for which neither the classical 
SOS theory nor the theory of HOS are well-defined 
[6]. Additionally, in many applications one expects 
that channel estimation can be made adaptively so as 
to accommodate time-varying environments and 
system parameter variation. The recursive least-
squares (RLS) algorithms may be one of the most 
interesting and powerful techniques that implement 
adaptive parameter estimation [7]. However, when 
an impulsive noise in the system output exists, the 
RLS algorithm usually fails to yield an unbiased 
estimate of the system parameters, thereby causing 
the performance of adaptive filtering to be 
significantly degenerated. The robust estimation 
theory represents a suitable tool to cope with an 
impulsive noise environment. In this paper the 
problem of robustified adaptive parameter channel 
estimation in the min-max robust estimation context 
is considered. 
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2. Formulation of problem 
This paper deals with the problem of identification 
of communication channel by estimation of 
parameter on the basis of measurable input and 
output signal. Therefore, let us represent a channel 
by the abstract, linear, dynamic, stationary, discrete-
time system, which can be modeled by difference 
equation with constant parameters: 
 ( ) ( ) ( ) ( )ξ

= =
= − − + − +∑ ∑

1 1

n m

k k
k k

y i a y i k b u i k i  (1) 

whereas ( ) ( ) ( )ξ∈ ∈ ∈1 1 1, ,y i R u i R i R  are the 

sequences of system output, measurable input signal 
and stochastic input, respectively, while the 
constants =, 1,...,ia i n  and =, 1,...,jb j m  

represent system parameters. If backward operator is 
introduced ( ) ( )− = −kq y i y i k , relation (1) can be 
written in the following polynomial form 
 ( ) ( ) ( ) ( ) ( )ξ− −= +1 1A q y i B q u i i , (2) 
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are so called characteristic and control polynomials. 
Relation (1) can be also written in linear regression 
form 
 ( ) ( ) ( )ξ= Θ+Ty i Z i i  (4) 
where 

( ) ( ) ( ) ( ) ( )[ ]= − − − − − −1 ,..., , 1 , ...,TZ i y i y i n u i u i m

 represents  vector of input and output samples, and 
⎡ ⎤Θ = ⎢ ⎥⎣ ⎦" "1 1

T
n ma a b b  represents a vector of 

constant system parameters. The problem of 
recursive system identification described by relation 
(4) is actually the problem of estimation of unknown 
parameters included in vector Θ  in real time, and on 
the basis of measuring signals at input and output of 
the system. On the basis of incomplete a priori 
information about the nature of stochastic input 
(disturbance), a min-max optimal robust 
identification  algorithm can be constructed. It 
minimizes the adopted performance index ( ),V T p  
which represents the asymptotic estimation error 
covariance matrix whereas the form of estimator T  
comes from the class of possible estimators τ  and 
for some particular probability density function p 
from a prespecified class P. Therefore, we choose 
the estimator form τ∈T , while a particular 
probability density function (p.d.f) p P∈  is defined 
by the nature of the system and measuring, so that 

( ),V T p  represents a final result of a such strategy. 

A such selection has a saddle-point ( )0 0,T p  if 
estimator 0T  and p.d.f  0p  satisfy the following 

equation 

 
( ) ( )

( )
τ

τ

∈ ∈

∈ ∈

=

=

0 0min max , ,

max min ,
T p P

p P T

V T p V T p

V T p
 (5) 

Such  0T  estimator is denoted in the literature as the 
min-max optimal robust estimator, while 0p  is 
named the least favorable p.d.f [8,14]. In particular, 
if the class of τ  estimators was chosen in the set of 
stochastic gradient recursive estimators, then a 
recursive relation by which parameters of Θ  vector 
are estimated can be written in the form [9,14] 
 ( ) ( ) ( ) ( ) ( )( )( )ψ νΘ = Θ − + Γ Θ −ˆ ˆ ˆ1 , 1i i i Z i i i (6) 

where ( ) ( ) ( )ν Θ = −Θˆ ˆ, Ti y i Z i  is the predication 

error or the residual, while the min-max robust 
estimator 0T  is defined by the following relation 
 ( ) ( ) ( )[ ]ψ ψ⋅ = ⋅ = − ⋅0 0log 'p  (7) 

 ( ) ( ) ( ){ } ( ) ( ){ }ψ
−⎡ ⎤Γ = Γ = ⋅⎣ ⎦

1'
0 0

Ti i iE E Z i Z i  (8) 

The least favorable probability density function 
( )⋅0p  is the one which minimizes the Cramer-Rao 

bound within the considered distribution class P. 
Thus ( )ψ ⋅0  in relation (7) represents a maximum 
likelihood (ML) type function which corresponds to 
the specific p.d.f 0p , and the estimation procedure 
(6) is led down to the ML identification method. 
However, the problem is how to define the least 
favorable p.d.f ( )⋅0p , since for that purpose a 
nonclassical variation problem must be solved, 
mostly by numerical methods. This problem can be 
solved analytically only in a case of final memory 
system ( ( )⋅ = 1A  in relation (2)) where the problem 
is led down to the minimization of the Fisher 
information ( ) ( ){ }=

2
'/I p E p p  within the 

adopted distribution class P. A lot of different 
examples for P class and corresponding p.d.f ( )⋅0p  
which minimizes the Fisher information ( )I p  
within P class, can be found in the literature [9]. 
Moreover, practical selection of the weighted matrix 

( )Γ ⋅0  in relation (8) is not possible without the 
information about the real distribution of stochastic 
input. Therefore, the robust estimation practice 
requires a such  estimator that will be efficient in a 
case when the distribution of disturbance  is the 
normal one, but at the same time it should have good 
features even in a case when the disturbance 
distribution significantly deviates from the normal 
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one, possessing the so called „ heavy tails“ which 
result in extremely high values in the output 
sequence. This is the so-called efficiency robustness. 
For that reason, aiming to design a practically 
applicable recursive robust estimator, an additional 
effort must be made in approximation of the min-
max optimal solution. One of possible approaches is 
based on the method of weighted least squares, 
which can reduce the impact of extremely bad 
measurements [10, 15]. An alternative approach is 
stemmed on the stochastic gradient algorithm, and 
this method is presented in the paper. Recursive 
estimator assigned by the relation (6), which for the 
particular function ψ  does not use a ML type 
function assigned by the relation (7), is named an 
approximate maximum likelihood recursive 
estimator or  M-estimator in short. 

 
 
3. Robust stochastic gradient recursive 
algorithm 
In order to realize the min-max optimal robust 
recursive algorithm (6)-(8), it is necessary to make 
selection of nonlinear function ( )ψ ⋅  with the basic 
aim to recognize somehow irregular measurements, 
the so called outliers, and to belittle their influence 
to the identification quality of system parameters. 
As mentioned before, nonlinear ( )ψ ⋅  function, 
which is also named the influence function, must be 
selected so to provide the efficiency robustness 
property. In addition, it is suitable this function to be 
bounded and continuous [11]. Boundedness of 
function ( )ψ ⋅  provides that any individual 
observation or outlier cannot have unlimited 
influence to the quality of estimation, while the 
continuity of function enables that effects of 
rounding and quantization errors or patchy outliers 
are minor. This is the so-called resistant robustness. 
Thus, the function ( )ψ z  must be linear for low 
values of arguments, and to increases slower than 
the linear one for large absolute values of 
arguments, which corresponds, for example, to 
 ( ) ( ) ( )ψ σ σ= 2 2min / , / sgnz z k z  (9) 
where σ  denotes the standard deviation of 
measurement noise, and parameter  k represents a 
constant which should be selected with the aim to 
reach the wanted efficiency robustness. Since the 
value of variance σ2  is mostly unknown, it is 
indispensable to estimate it somehow. A popular and 
frequently used form of robust variance evaluation 
σ2  is the median [11]: 

 
( ) ( ){ }{ }

0.6745

median y i median y i
d

−
=  (10) 

The other, applicable types of nonlinear function 
( )ψ ⋅  can be found in literature [9,11]. The proposed 

recursive robust estimator has the following 
characteristics. Namely, if the following ML form is 
chosen for non-linear influence function: 

 
( ) ( ) ( )( )

( )

ψ ψ

∈

⎡ ⎤⋅ = ⋅ = − ⋅⎢ ⎥⎣ ⎦
=

* *

*

log ';

arg min
p P

p

p I p
 (11) 

such a selection does not satisfy optimum in regard 
to the min-max condition (5), but it minimizes the 
conditional estimation error covariance matrix 

( ) ( ) ( ) ( ){ }−
⎡ ⎤ ⎡ ⎤Θ −Θ − Θ −Θ −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ 1
ˆ ˆ ˆ ˆ1 1

T

iE i i i i F  for 

the worst case p.d.f *p  in (11).  Furthermore, the 
idea of introducing nonlinear influence function 
( )ψ ⋅  in the form of relation (9) corresponds to the 

function form ( )ψ ⋅*  from relation (11) in the case 
when P class defines the so called ε− contaminated 
p.d.f  family, defined as:  
 ( ) ( ){ }ε ε σ ε ε= = = − + ∈21 0, , [0,1)P P p p N h  

  (12) 
where ( )⋅h  is a symmetrical p.d.f with zero mean, 
while ( )σ20,N  represents the Gaussian distribution 
with zero mean and variance σ2 . The least favorable 
p.d.f *p  from this class is zero mean normal with 
exponential „heavy tails“, resulting in 

( ) ( ) ( )ε σ− = −1 * 22 1I p erf k , where  erf  denotes 
the error function.  
 
 
4. Adaptation of robust recursive 
algorithm 
The ε−contaminated p.d.f family is extremely 
important for the field of robust estimation, since it 
models a number of various applications in which 
there is a sporadic phenomenon of high intensity 
irregular measurements. Moreover, in a such 
situation it is appropriate for contaminant ( )⋅h  from 
relation (12) to adopt the Gaussian distribution of 
zero mean and variance which is considerably 
higher than the nominal one. In accordance to that, 
the model of p.d.f of measurement noise in the 
following form is adopted:  
 ( ) ( ) ( )ε σ ε σ= − +2 21 0, 0, op N N  (13) 
which is described with three unknown parameters: 
contamination intensity or degree [ )ε ∈ 0,1 , 
nominal variance of regular measurement noise σ2  
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and outlier variance σ σ�2 2
o . Due to no a priori 

knowledge on these parameters, a robust estimator 
defined by (6,8) is usually adopted  with influence 
function (9), where the unknown variance is 
replaced with median (10) and parameter k is 
selected so to be ×1.42 d  for the sake of providing 
95% of efficiency of estimator. Such a selection is 
reasonable in lack of a priori information on 
parameters of real measurement noise p.d.f, however 
it also has considerable shortcomings. The first one 
is that it is impossible to prove properties of 
estimator (10) and therefore the expected efficiency 
is jeopardized. The other important shortcoming is 
that it is intuitively clear that the influence function 
must be susceptible to intensity of contamination 
and variance of outlier changes, what is not provided 
with the selection of function (9). In order to 
illustrate the influence of parameters ε σ2, and σ2

o , 

in the noise model (13), to the selection of influence 
function, let’s look at Figures 1.a,b and c obtained 
by using the method of ML likelihood 
( ( )[ ]ψ = −

'
ln p , where p is given by (13)). 

These ideal ML influence functions are sketched in 
these figures, where in the Figure 1.a, 
ε σ= =25%, 10o  is adopted, while the variance of 

nominal model has different values { }σ ∈2 1,2, 3, 4 . 
In the Figure 1.b the variances of nominal model 
and outliers are constant σ σ= =2 21, 10o , while 

intensity of contamination alters 
[ ] { }ε ∈% 2.5, 5, 7.5,10 .In the Figure 1.c, variance of 

nominal model σ =2 1  and intensity of 
contamination ε = 5%  are constant, while outlier 
variance is changed { }σ ∈2 5,10,15,20o . 
The following conclusions may be derived on the 
basis of presented influence functions. Each of the 
presented function forms has three distinct regions. 
The first region is the field for low value of 
arguments (from both sides of the origin) in which 
the influence function is almost ideally linear. The 
variance of nominal model σ2  is exclusively 
responsible for the slope of linear segment in this 
region. Third region is in charge of presence of 
outliers in the structure of measuring signal (13) and 
it is also linear, but within the ranges of intensive 
residuals of big, positive or negative values.  
On the basis of presented figures, it is evident that 
the slope of linear segments in the third region 
comes as a consequence of outlier 
varianceσ2

o .Finally, there is also another region, 
transitional field between the first one and the third 

one, which mostly depends on the intensity of 
contamination  ε  and the variance of nominal model 
σ2 , while it is quite insensitive to the variance of 
outliers σ2

o .  
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z

( ) 2, 0.05, 10ozψ ε σ= =
2 1σ =
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2.5%ε = 5%ε =
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( ) 2, 1, 0.05zψ σ ε= =

z

2 5oσ =
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2 10oσ =

2 15oσ =

(c) 
Figure 1: ML influence functions for different 

parameter values 2,ε σ  and 2
oσ  in noise model (13): 

a) for different nominal variance 2σ , b) for different 
contamination intensity ε , c) for different outlier 

variance 2
oσ  
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This is a domain in which both regular 
measurements and bad measurements may occur 
with almost equal probability; so that the influence 
function in this domain has a negative gradient, 
since with the increase of the residual value  the 
probability of regular measurement is constantly 
decreased. 

Having in mind the aforesaid, it becomes clear that 
estimation of noise parameters σ ε2,  i σ2

o  help much 

in the right choice of influence function, what would 
ultimately result in an  estimator of system 
parameters with efficiency and resistant robustness 
properties. A suitable theoretical scope for 
estimation of these noise parameters is QQ-plot, 
which is usually used as a validity test that p.d.f of 
random variable corresponds to the adopted one 
[12,13]. If we assume to have at disposal the 
sequence of the last N residuals: 
 ( ) ( ) ( )ν Θ = −Θ = − +ˆ ˆ, , 1,...,Tk y k Z k k i N i (14) 

where i denotes the current instant, ( )y k  represents 
measuring in the k-th instant, while Θ̂  and ( )Z k  are 
defined by (4) and (7).  

-3 -2 -1 0 1 2 3

-10

0

10

QQ-plot

( )1
n jF ρ−

js

nominal residuals

outliers

 
Figure 2: An example of QQ-plot for residual 

sequence belonging to contaminated normal p.d.f of 
measurement noise (13) 

 
If for the residual sequence obtained in that way, we 
form QQ-plot ( typical illustration of QQ-plot is 
given in the Figure 2) where values ( )ρ−1 ,n jF  
= 1,...,j N are put on the horizontal axis with 
( )− ⋅1

nF  being the inversed distribution function for 
the Gaussian distribution with zero mean and unit 
variance and  
 ( ) ( )ρ = − −1 / 1j j N , 
 and on the vertical axis values =, 1,...,js j N  

which represent sorted non-decreasing residuals 

( )ν Θ̂, ,k  = − + 1,...,k i N i  we will get a graphic 

design with information about all three required and 
unknown noise parameters ( )ε σ σ2 2, , o .  

It can be seen in the Figure 2 that the most of 
residual samples (theoretically ( )ε−1 N  of them) 
will be concentrated along the linear segment, while 
the rare outliers (theoretically Nε  of them ) will 
considerably deviate from this linear segment. 

The upper and lower limit of QQ-plot, within which 
measurements can be considered regular can be 
found by minimizing an additional criteria, as is 
suggested below: 

 

( )

( ) ( )( )
( )( )

β
β β

β β β

α β

−

−

=

= − − +

= − =

1

1

arg min ;

/ ;

/ / ; 1,...,

i i

i n n

i n n i

J

J F p F i

F F i p i i N

 (15) 

where parameter p is taken in the range [ ]0.7, 0.8 . A 
suitable value of this free parameter in the proposed 
optimization procedure is determined by 
simulations. In this procedure iα  and iβ  are chosen 
so that the probability mass in the region ( ),i iα β  is 
equal to a prespecified limit p: 
 ( ) ( ) ( )/ / /i

i
i ip f y i dy F i F iβ

α
β α= = −∫  

The value of p  determines the desired efficiency 
under the nominal Gaussian model. However, this 
does not define two parameters uniquely, so we need 
additional requirement. A reasonable choice is to 
find a such solution for which the distance  
 , 1,...,i i id i Nβ α= − =  
is minimal. In this way, it is found that the most 
probable observations, i.e. the observations which 
are not outliers, propagate unchanged through the 
parameter estimation algorithm. The posed 
minimization problem (15) is nonlinear and iterative 
methods are required to solve it. The minimization 
of the adopted criterion iJ  in (15) can be done by 
using the Newton-Raphson type method: 

 
( ) ( ) ( )

( ) ( )( ) ( )( )
1

'' '

ˆ ˆ ˆ1

ˆ ˆ ˆ ; 0,1,2,...

i i i

i i i i i

k k k

k J k J k k

β β β

β β β
−

+ = −∆

⎡ ⎤ ⎡ ⎤∆ = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

starting from some initial value ( )ˆ 0iβ . 
Counting the number of points oN  on QQ-plot 
which do not satisfy the condition 
 α β< <i i is , = 1,...,i N  (16) 

and dividing by overall number of data N, we get the 
estimate of the contamination intensity ε : 
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 ε =ˆ /oN N  (17) 
According to that, the set of all sorted residuals 

=, 1,...,js j N  can be divided into two subsets. The 

first one is = −, 1,...,r
j os j N N , which includes the 

regular samples satisfying the condition (16). The 
second one is =, 1,...,o

j os j N  which covers the 

samples under the influence of  outliers and do not 
satisfy the condition (16). It can be shown that the 
slope of linear segment modeling the most of the 
points of QQ-plot is an estimation of the standard 
deviation of nominal noise model. This estimate can 
be reached by using the method of least squares 
[12]: 

 

( )

( ) ( ) ( )

σ

ρ ρ ρ

−

−

− − −
−

⎡ ⎤
⎢ ⎥ = Σ Σ Σ⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

"

"

"

1

1 2

1 1 1
1 2

ˆ
;

ˆ

1 1 1

o

o

T T

T r r r
N N

T

n n n N N

m
S

S s s s

F F F

 (18) 

where m̂  denotes the estimation of mean of the 
nominal noise model, and it should be 
approximately equal to zero, while σ̂  denotes the 
estimation of standard deviation of the nominal 
noise model. 
Moreover, it can be demonstrated that such an 
estimation of standard deviation of the nominal 
noise mode is biased, whereas the relative bias 
depends on the sequence size N, and that for 

> 100N  a relative bias is less than few percents. 
Finally, separating those residuals which are under 
undoubted influence of outliers, and with estimation 
of their variance by the arithmetic mean 

 σ
= =

⎛ ⎞⎟⎜ ⎟= −∑ ∑⎜ ⎟⎜ ⎟⎜⎝ ⎠

2

2

1 1

1 1
ˆ

o oN N
o o

o j k
j k

o o

s s
N N

 (19) 

we get the required estimate of parameter 2
oσ . 

With periodical estimation of these three noise 
parameters and their substitution into the ML 
influence function  

 
( ) ( )( )[ ]

( ) ( ) ( )

ψ

ε σ ε σ

⋅ = − ⋅

= − +2 2

log ';

1 0, 0, o

p

p N N
 (20) 

the robust recursive identification algorithm (6-9) 
becomes adaptive, thus increasing significantly the 
quality of system parameters identification, what 
will be illustrated by the following numerical 
example.  
 
 

5. Results of simulation  
Aiming to analyze practical robustness of the 
proposed algorithm, the following experiment was 
carried out. Let us consider the fourth-order system 
model which is presented in the form of relation (4): 
 ( ) ( ) ( ) ( )⎡ ⎤= − − − − −⎢ ⎥⎣ ⎦1 ... 4 1TZ i y i y i u i , 

with  

 [ ]Θ = -1.48 1.28 -1.09  0.37 2T  

vector of parameters. Sequence ( ){ }u i  is generated 
as a white noise sequence with Gaussian p.d.f  of 
zero mean and unit variance, while disturbance ( )iξ  
is generated as the ε - contaminated p.d.f in (13), 
with intensity ε = 10% , nominal variance σ =2 1  
and  outlier variance σ =2 10o . The following 
algorithms are tested: 1) recursive least-squares 
algorithm denoted as RLS; 2) recursive robust 
algorithm defined by relations (6)-(9) denoted as 
RRA. 3) adaptive robust recursive algorithm defined 
by relations (6)-(8) and adaptation mechanism on 
the basis of relations (14)-(20), denoted as ARA. A 
cumulative relative error of parameters estimation is 
introduced as a measure of algorithms goodness:  

 ( ) ( )( )
= =

= Θ −Θ Θ∑∑
5

1 1

1 ˆ /
i

l l l
k l

CPEE i k
i

 (21) 

where Θ =, 1,..., 5l l  denotes the l-th element in the 

vector of unknown parameters Θ , while ( )Θ̂l k  
denotes the estimate of this parameter in the k-th 
iteration. Typical value trajectories of these criteria 
for the proposed algorithms are presented in the 
Figure 3.  
This figure illustrates the efficiency of the suggested 
ARA algorithm when an impulsive noise in the 
measurement signal is present. It is noticeable that 
this algorithm is less susceptible to sporadic 
phenomena of outliers, what results in minor 
cumulative error in total. It is also noticeable that 
RRA algorithm is less susceptible to such kind of 
measurement noise, in comparison to classical RLS 
algorithm. However, since RRA does not have the 
corresponding information about the statistics of 
contaminated p.d.f of measurement noise, parameter 
k in the relation (9) is the fixed one and ,therefore, 
RRA is less efficient in comparison to ARA. 
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Figure 3: Values of cumulative criterion CPEE for 
different algorithms 

 
Suggested ARA algorithm demonstrates high 
efficiency for the values of contamination intensity 
ε < 20% , disregarding the variance of  outlier σ2

o . 
In case when this parameters is higher than 0.2, the 
assumption on sporadic phenomenon of outliers is 
not tenable anymore, and for that reason the 
estimations of parameters are degraded. 
 
 

6. Conclusion 
New algorithm for estimation of communication 
channel parameters in the presence of intensive 
impulse noise within measurements is proposed in 
this paper. Proceeding from the robust estimation 
theory, an adaptive, practically applicable algorithm 
is derived, that in the cases of contaminated normal 
distribution of measurement noise demonstrates high 
efficiency. Characteristics of adaptation are derived 
on the basis of estimation of intensity of 
contamination and variances of both nominal and 
contaminated noise. Estimations of these parameters 
are generated using QQ-plot, which when applied to 
the sequence of residual gives the form that directly 
depends on the unknown noise parameters. In order 
to analyze the performances of the algorithm, its 
simulation is carried out and comparison with the 
classical method of least squares and Huber robust 
estimator is performed. Results of simulation have 
shown that the proposed algorithms is more efficient 
for typical values of contamination level, regardless 
the variance of contaminated distribution. 
Application of proposed algorithm is broad, both in 
the field of wireless communications, transmitting 
channels equalization, noise suppressing and in 
communication and control systems modeling.  
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Appendix A: 

Review of QQ-plot procedure 
Let us consider the case of the random samples 
{ }, 1,...,iz i n=  from a distribution ( )F z  having the 
corresponding probability density function (p.d.f.) 
( )f z . By ranking the samples { }iz  we obtain the 

non-decreasing sequence { }iy , 1,...,i n=  such that 

i jy y<  for i j< . The probability that some 
observation y will have rank i in the ordered 
sequence { }iy  follows directly from the Bernoulli 
experiment [7,8] 

 ( ) ( ) ( )( )11
/ 1

1
n iin

P i y F y F y
i

−−
⎛ ⎞− ⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎜ −⎝ ⎠

 (A1) 

Starting from relation (A1), the mathematical 
expectation of the random variable i, assuming the 
observation y, is given by 
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By introducing the notation 
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one obtains 
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Starting from (A2) and (A3), one obtains, after 
differentiation, the following expression for the 
conditional expectation of the random variable i 
assuming the observation y: 
 { } ( ) ( )/ / 1 1i ym E i y n F y= = + −  (A5) 
The a posteriori conditional variance of the r.v. i  
assuming y is defined by 
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Under (A1) and (A3), one further concludes 
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Starting directly from (A5), (A3) and (A7), one 
obtains the expression for the conditional variance 
of the random variable i assuming the observation y 
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n F y F y
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 (A8) 

It is worthwhile noting that 2
/i yσ  is rather small for 

such a data point y generated from the tails of the 
distribution ( )F y , since either ( )F y  or ( )( )1 F y−  

is small. On the other hand, the maximum of 2
/i yσ  in 

(A8) corresponds to the value ( ) 0.5F y =  and is 
equal to ( )1 / 4n− . Thus, one concludes that 2

/i yσ  
can be bounded from the above by a corresponding 
choice of the sample size, or the so-called data 
window size, n. Moreover, a small value of 2

/i yσ   
denotes that the rank i of the random variable y in 
the ordered sequence { }iy  is in the vicinity of the 
mean-value /i ym , i.e. /i yi m∼ , and it follows from 

(A5) that the relation between i and ( )F y  is 
approximately linear. Of course, this approximation 
is better for smaller n and for the values of ( )F y  far 
away from 0.5. A plot of the ordered data iy  versus 
the quantity  
  ( ) ( ) ( )( )1 1 1 / 1iF F i nρ− −= − −  
 s named the QQ-plot. By taking /i ym i∼  in (A5) 
one obtains the QQ-plot expressions 
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where ( )1F− ⋅  is the inverse of the distribution 
function ( )F ⋅ . It is more convenient to use ir  than 

iρ  since it assigns the finite values ( )1
iF r−  to the 

first and the last sample 1y  and ny , respectively, in 
the case of commonly used Gaussian, Cauchy or 
Laplace distribution ( )F ⋅ . Thus, if the QQ-plot in 
(A9) is fairly linear, then it indicates that the 
observations have the same distribution function 

( )F ⋅ , even in the tails. Moreover, if the observations 

iy  are in a strict sense white noise, i.e. they are 
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independent and identically distributed (i.i.d.) with 
the distribution function ( )F ⋅ , the relation (A9) can 
be expressed in the linear regression form 
 ( )1

i n i iy m F r m rσ σ−= + = + �  (A10) 
Here ( )nF ⋅  is the standard distribution function 
generating the random variables ( )/i ir y m σ= −�  
with zero-mean and unit variance, while { }m E y=  
and { }2 var yσ = . Starting from (A10) one can 
estimate the unknown parameters m  and σ  by 
using the least-squares (LSQ) algorithm 

 ( ) 1ˆ
ˆ

T Tm
Y

σ
−⎡ ⎤

⎢ ⎥ = Σ Σ Σ⎢ ⎥⎣ ⎦
 (A11) 

where the 2 n×  matrix TΣ  and 1n×  vector Y are 
defined by 
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Appendix B: 

 The performance analysis of the mean value 
and variance least-squares estimates based 

on QQ-plot data 
Starting from (A11) and A(12), one obtains the 
mean value estimate in the form  
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so that the estimate bias is given by 
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where { }m E y= , while /y im  denotes the 
conditional expectation of an observation y 
assuming its rank i. In addition, by using (A9) and 
(A10), one obtains 
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However, since 
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where [ ]⋅  is the integer part, and for a symmetric 

distribution ( )F ⋅  
 ( ) ( )1 1 1F x m m F x− −− = − −  (B5) 
one concludes from (B3)-(B5) 
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Here, the fact that the last term on the right-hand 
side in (B4) is equal either to zero (for even n) or to 
m (for odd n) is used. Taking into account (B2) and 
(B6), it follows further that ( )ˆ 0b m = , i.e. the 
estimator (B1) is unbiased. In addition, from (B1) 
and (B6), one obtains 
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so that the variance of the mean value estimate (B1) 
is given by 

 ( ){ }
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n
σ

σ = − =  (B8) 

where ( ){ }22 E y mσ = − , from which one 

concludes that the estimator (B1) is consistent. 
Furthermore, by using (A11) and (A12), one obtains 
for the standard deviation estimate 
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By applying the expectation to (B9), it follows 
further that 
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(B10) 
Here, the notation { } /i y iE y m= , and the fact that 

/
1

n

y i
i

m nm
=

=∑ , are used. Taking into account (A9), 

(A10), (B6) and (B10) one obtains: 
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On the other hand, the relation (A5) is valid for each 
y, so that it is satisfied for the particular value 

/y iy m= , yielding 

 ( ) ( )
// /1 1

y ji m y jm n F m= + −  (B12) 
Taking into account (B12), one obtains further 
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Finally, if for a large data size n 
 

// y ji mm j≈  (B14) 

one concludes from (B12)-(B14) that { }ˆE σ σ≈ , 
i.e. the estimator bias is negligible.  
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