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Abstract: - The paper presents a new algorithm for optimal control law’s synthesis in rapport with state vector
of the aircraft’s move. Starting from state equation of the movement, the system is brought to Jordan canonic
form and Riccati algebraic matricidal equation (whose solution is the gain matrix of the control law) is brought
to an equivalent form with transformation relation. The new gain matrix is partitioned conform to equations
(35)+(40). Using ALGLX algorithm, one studies elastic no deformed (no dimensional description)
longitudinal and lateral move of an aircraft and dimensional elastic deformed move. One obtained
Matlab/Simulink models and numerical programs and with them time characteristics expressing state variables’
dynamic are obtained.
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1 Introduction is controllable and observable.

To project optimal control systems one must take The performance indicator determines the
into account to minimize physic variables’ deviation system’s configuration. A system that is optimal
from their imposed values [1],[2]. The measurement from the point of view of one performance indicator
of this fact is made using a performance indicator (a isn’t optimal from the point of view of other
function) [3], [4]. The project’s requests refer not performance indicator. Hardware project of an
only to system’s performances but to assure physic optimal control law may be difficult apd expensive.
reliability and imposed command restraints. An example of optimal problem with analytical

The chose of most appropriate performance solve Is the one of linear system based on quality
indicator for a system is a difficult job, especially in quadratic indicator.

the case of complex systems. Determination of the
performance indicator must me done not only from o ]
the mathematic point of view, but also from 2 Description of aircraft’s move and

practical issues point of view. Generally one must of the optimal control law
make a compromise between physical performances The move of an aircraft is described by state
evaluation and solve of the mathematical problem. equation [5]

Solution for optimal problem exists if the system X(t) = AQ)X(t) + B(t)u(t), 1)
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with u(t)— command vector (mx1),x(t)— state
vector (nx1), A(t) and B(t) — matrices (nxn) and
respectively (nxm). Control law has the form
u(t) = -K®x(),
with K(t)— gain matrix (mxn) [6]
For evaluation of the system’s performances one
chooses performance indicator

7= 1 Lix@),u(®)dt; @3)

9 has a determined numerical value which differs
from one trajectory to another. The array of
admitted trajectories T is generated by commands
array U. If g7 admits on array U one or multiple
extreme points one may express correctly the
optimisation problem as a problem of command’s
determination u(t) e U which leads indicator 7 to
the extreme value.

Optimal synthesis consists of control law’s
determination which leads the system from initial
state X, in the final state x,, in a time interval

[t,.t,] so that quadratic criterion

()

7=3x @Mx(t) +
2, @
+21 X" ©QMx(t) +u” @R()u(t) ot

takes minimum possible value; M and Q(nxn) are

symmetric, positive defined and non-singular
matrices; R(t)— matrix of command variables’

weights.

Setting that state vector
X(t, >©)=0, choosing initial
performance indicator (4) becomes

g :%I[XT HQMX() +u" HRBuUMFL.  (5)

The Hamiltonian for the system is [7]

tends to
moment

zZero,
t, =0,

H =%XTQX+%UTRU+\VTX=

. L (6)
ZEXTQX+EUTRU +y' (Ax + Bu),
where v is the adjunct vector
Differential equation of the adjunct vector is
. oH
=——. 7
V=-7 (7)

or, taking into account equation (6) and setting the
minimum of H condition in rapport with

u(@z()j’
ou
u=-R*B"y. (8)

The dependence between vectors x and y may
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have, for example, the form [8]

y(t) =P(O)x(), )
where P(nxn) is a symmetric positive defined
matrix. Matrix P(t) is the solution of Riccati
algebraic matricidal equation (41).

Taking into account the slow variation of the
flight parameters (dynamic regimes are shorter than
variation time of parameters), all the matrices will be
considered, from this moment, constant and matrix
P will be obtained by solving EMAR equation (41).

For control law’s synthesis the system (1) is
brought to Jordan canonic form

X=AX+Bu,u=-Kx, K=R?'B"P, (10)
where X is the new state vector which verifies
equation

x=TX,A=TAT,B=T'B=[I, : 0]";(11)
T is a non singular transformation (nxn),I -
unity matrix (mxm).
Transformation matrix T is chosen so that [9]

T=[6 : T] (12)
where T isan arbitrary matrix so that rangT =n.
In paper [10],
s,. =[§mn -A :B|R, =[N, i m, ] @13

where |, — unity matrix (nxn), A, — eigenvalues of
the closed loop system and N, ,M,. — sub-matrices

(columns of R, ) form a base for S, , columns of

N, are linear independent; one calculates gain
matrix
K=w(®)", (14)
where
W=Ww, W, - W - W]
[ 1 B 2 _I n] (15)
W, =M, p,, @=0.V,
V =diag[p, B, - P, p.]. P = (@) n,. (16)

where (Q,)" — pseudo inverse of matrix Q,,n, is
the column of unity matrix corresponding of the k™
sub matrix of matrix ®'®,,®, =D,V

[, - o - 9l=0f0,

q)a=[N N,, I... N, e anJ-

A

17)
" (18)

Solution of the Riccati equation may be obtained
using eigenvalues and eigenvectors of matrix N.

Columns of modal matrix U are eigenvectors of

matrix N;U verifies equation
NU =UA, (29)

where

A

A 0 ] .
{ 01 Aj’Al =diagh,, A, =diagr;, (20)

with A.,i=1n, eigenvalues with real part negative,
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A, j=n+12n, eigenvalues with real part positive.
Setting z(t) of form [8]
z(t) =Ue"z(0),
equivalent with equation
{x(t)}:{uu uuHeAl‘ 0 Hvu qux(O)}’ 22)
w(t)| (U, U, 0 e ||V, V,||w)
or equivalent with equations system
X(t) = U™ [V, x(0) +Vi,w (0) |+
+ UlzeA21 [V21X(O) +V22\V(O)],
w(t) = U™V, x(0) +Vi,w (0) ]+
+U,,e"?[V,,x(0) +V,,y(0)]
and taking into account equation y(0) = Px(0), one
obtains

(21)

(23)

P=U,U,". (24)
Other forms of command law, based on
eigenvalues and eigenvectors’ use are presented in
[3], [11]. For the system described by equation (1),
with y=Cx, one chooses command law u =Ky,
with K — gain matrix. With these, equation (1)
becomes
K=B*(UA-AU)(CU)™,
where B* is the pseudo inverse of B.
In [3] one has presented the algorithm for
calculus of matrices Q,R and K.
Another algorithm for calculus of P uses sign
matrix [12]; this is now short presented.
For a matrix A(nxn), having -eigenvalues
Ay Ay, ey, ., With multiplicity orders p,p, ...,

there is a non singular matrix T (modal matrix)
which brings matrix A to the canonical Jordan form

(25)

™, 1 0 - 0
0 A 1 - 0
A = (26)
0 0 - & 1
0 0 - 0 ]
transformation relation is
A=TAjT‘1. (27)

If A is adichotomic matrix (ReA, #0), one may
define sign matrix of the Jordan cell J,;

sgn A, 0 0o - 0
sgn J, = 0 soni, 0 :(sgnxi)lm,(zs)
0 0 0 sgni,
where
+1,Rei, >0,
sgn i, = ' (29)
-1 ReA, <0.

Sign matrix associated to matrix A may be
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expressed as follows

sgn J, 0 0o - 0
0 sgnJ, O
sgn A=T g T (30)
0 0 0 sgnJ,

Choosing matrix T so that first Jordan cells
correspond to eigenvalues with negative real parts
and the following ones to eigenvalues with positive
real parts, then

| 0
sgn A=T| T, (31)
0 1,
where
-1 0 0 0
R 0
0 0 0 - -1 (32)
1 0 0 0
|0 10 0
L 0 0 0 (n-q)x(n-q)
With notation
M:sgnA,M+:%(ln+M),M,=%(In—|\/|), (33)

it results

M+=TO 0 T4 M =T = (34)
0 I 00

+

Matrix P is EMAR’s solution for the system (10)

PA+A"P -PBK +Q =0; (35)

matrices P and K may be partitioned as below [3]
5:{1 @}K:R;

1 P22
|312 = 5_21’522 =
where P, and K, are sub matrices with dimension
(mxm), P,
obtaining of K if matrix P is diagonalizable; in
this case P, must be diagonalizable also; it must be

K, ]

SOl 20|

(36)
IST

227

doesn’t interfere in calculus for

chosen in rapport with matrix R; by replacing B
with form (4) in equation K = R™BTP, one obtains

K, © K,J=r71, : O]F11 EZ}:
PZl P22 (37)
=[R* : o]{;“ Eﬂ}:[Ran R, ;
21 22
one results
1= RKI’ P12 = Rsz (38)
po| R RK (39)
RK,)™ 1.,
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where, for simplicity, one has chosen P,=1__

unity matrix; P,, may have any form because it
doesn’t interfere in calculus of K.

For m=1 and n=4 (the case of longitudinal move
of the aircraft) matrices have the following
dimensions:

A(4x4), T(4x4), A(4x4),B(4x1),B(4x1),P(4x4),
Kl(lxl),K2(1x3), P(4x4),K(1x4),K(1x4),

P (1X1) P, =P, (1x3),P,(3x3);

[p1] PlZ = P21 = [pn Ez ﬁm]l =13 R= [l],
R:[ ] [k : Ky kza];K1:[k1]1 (40)
K2 :[ 23]' .

Replacmg P,,R and K, in (38) and (39) one
results
711 = [kl]’ 712 = 521 [k21 2 kzs]
I(1 k21 kzz k23
P= K, 1 0 0
k,, 0 1 0
k 0 0 1

For m=2 (the case of lateral move of the aircraft),

Ell =|:?11 ?12 :|’R:|:rll r‘12 :|, Kl :|:k11 k12:|’ (42)
le p22 er I’22 kZl k22

which, replaced in first equation (38) leads to

|:?11 ?12 :| _ |:r11 rlZ :||:k11 klz :|; (43)
le p22 r21 r‘22 k21 kzz
for r, =r,, =1, expressing p,, and P, from this
one obtains
- 1r
k12 kZl , R — ] (44)
k11 - kzz rl
The relations for calculus of P,P,K and K,Q,Q

r=r,=r,=

are obtained. These verify Riccati algebraic

equations afferent to system (1) and (10)
PA+A"P-PBK +Q=0, (45)
PA+A"P-PBK+Q =0. (46)

For mentioned relations’ obtaining equation (46) is
left multiplied with (T)" and right multiplied
with T, By terms’ identification of the equation

(45) one obtained the desired equations. First of
them is

Q=(T?)QT. (47)

Taking into account that A =T AT and
(T2 77 =(rT ) =17 =1, one results

P=(r)PT (48)

By equaling the third term of (46) with the third
term of equation obtained by left multiplied with
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(T)" and right multiplied with (T ) of (48) and
taking into account that B =T B, one yields

K=KT™ (49)

3 Synthesis algorithm (ALGLX) of the
optimal control law using state

vector
Step 1: one brings the system described by pair
(A,B),A(nxn),B(nxm), to Jordan canonical form

(K, E), using transformation x=Tx; here T is a
non singular linear transformation;
A=T?AT,B=T*'B=[I, 0], (50)
where T has the form T =[B 'F], with T
random matrix (nx (n—m)) so that rangT =n [9].

Step 2: gain matrix K for the optimal control of
system (K, §) is obtained so that closed loop system

with matrix G =A-BK has imposed stable

eigenvalues.
Step 3: matrices K and P are partitioned as
follows
K =[K, KZ],E{E“ ﬁ}
PZl P22 (51)
R, =PLP, =P,
K, and P, are sub matrices (mxm); sub matrices
P,,P,,P, and R are calculated in rapport with
sub matrices of matrix K and with weight matrix
R=R
P, =RK,,
P, =P, =RK,, (52)
IS22 - In—m'
where 1 is the unity matrix (n —m)x (n—m); for
m=1
K Z[kl k21 k22 kzs]’ (53)
R=[1]
and for m=2
po| K RK (54)
RK,) 1,

where K, and K, have forms
o 71— |k, k,| = k, Kk,
K:[Kl : Kz],K1:|: " 12:|7Kz:|: 1,1 i2:|'

k21 kzz k21 kzz (55)

R:1 r r:k“
roaf

_k21 .
k11 _kzz
Step 4:
Variant 1: matrices Q and Q are calculated
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Q= —[ﬁ +ATP - E§K], (56)

Q=) QT+ (57)

then, knowing matrices A,B,Q and R, one solves
EMAR and obtains P

PA+ A"P-PBR™'B"P +Q=0; (58)
one calculates gain matrix with equation
K=R"'BTP. (59)
Variant 2

Using form (41) of P, matrices P and K are
obtained with equation P =(T*) PT*,K =R*BP.

Step 5: one calculates the eigenvalues of matrix
G =(A-BK); if these are placed in left complex
semi plane (matrix G is stable), then gain matrix is
the one already obtained; otherwise one returns to
step 1 and chooses another matrix 'F, of course
another matrix T and the calculus conform to
algorithm’s steps is again achieved.

Comparatively with algorithm presented in [3],
calculus of matrix K (step 2) and of matrix T (step
5) differs; in [3] another formula for calculus of K
is used and K is calculated using formula
K = KT . Usually, gain matrix is calculated directly
by EMAR’s solution using matrices Q and R

random chosen or calculated with other methods.

4 Numeric examples

Examples 4.1 (aircraft longitudinal move)

One considers the case of longitudinal move of an
aircraft described by equation (1) with no
dimensional variables,

v | [-0026 0025 -01 o0 Jv] [o
o|_|-036 -3 0 L ojal, |0 ,(60)
0 0 0 0 1 |6/ |of”
o, [04212 -3849 0 -367]0, | (1
where
~ AV . t . b
V: *it:7lco = *0)1
Y, , ) Vv (61)
0=A0,0 = A

1, =21s— aerodynamic time constant, V — flight
velocity, o — attack angle, 6 pitch angle, o, =6
and u=3, — elevator deflection. For move’s study

one goes over algorithm’s steps 15 times till the
condition from step 5 is certified; one imposes, for
example, the following eigenvalues for matrix
(A-BK)

~3.4+6.21j,-0.33,-0.1. (62)
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One yields the following matrices
0 -0.691 -1.441 0.815

1|0 0858 0571 0711
0 1254 -0.399 1290
1 -1593 0.690 0.668
-4.775 -15.972 -21.143 -20.010
5_|-0032 2046 1354 3036
0573 -4.456 -1.402 -3.326 |
0.984 -5479 -1.216 -3.464
B'=[1 0 0 0]
K =[1.539 3.102 -6.042 6.133],
R=[1],
(0539 3102 -6.042 6.133
5_| 3102 1 0 0
-6.042 0 1 0
6133 0 0 1
[ 0500 22689 -26.496 34.147
o= 22689 102850 -46.560 181529| (g3
-26.496 -46.560 -216.207 -23.758
| 34.147 181529 -23.758 290.023

Using both variant 1 and variant 2 one obtains
the same matrices
-2.860 5927 -10.454 0.547

5927 38528 -40554 -5.020

“|-10454 -40554 39.066 6.897 | (64)
0547 -5020 6.897 0.539

K =[0.547 -5.020 6.897 0.539].

a2

B>
B
Hef—
=

;ﬁﬁﬂ i@

-~

>

=
= B
a

N

<
=
41

Fig.1 Matlab/Simulink model associated to the
longitudinal move of an aircraft

Calculus program for the algorithm’s validation
is presented Section 5; one uses instruction PLACE
[13] for calculus of matrix K and instruction LQR
for calculus of matrix K using the first variant of
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the algorithm.
For obtaining the characteristics V (f), &(f), 6(f),
Gay(f),ép(f) one uses Matlab/Simulink model from

fig.1; the obtained characteristics are presented in
fig.2; initial values of state variables are
V(0)=0.1,6(0) =0.08,0(0) =0.5, &, (0) = 0.08.
The obtained characteristics by the two methods
are the same.

0.15 ' ' . 01
0.05
ot [adim] 0

-0.05

01

0z

Fig.2 Characteristics V (f), a(), 6(f), &, ©).5, @)

Let’s consider now the case of longitudinal move
of an aircraft whose wing is affected by elastic
deformations (bend); in this case state vector and
input vector are [8]

X=[aa Ao, A hy g Ay A Rk Ay hy Ayl (65)
uT:[Sp 8m];

[ -16 1 -003 0 0 0 0 0 0 0 0 0 ]
69 -224 -0039 003 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0

-2833 -1752 -5681 -553 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 ] 0 0 0 0

-531 971 0 0 -23139 009 O 0 0 0 0 0

Al o 0 0 0 0 0 0 1 0 0 0 0

-824 952 0 0 0 0 -38487 -268 -1071 -052 0 0

0 0 0 0 0 0 0 0 0 1 0 0

121 22 0 0 0 0 124 0176 -3901 0474 0 0

0 0 0 0 0 0 0 0 0 0 0 1
|-1471 524 0 0 0 0 0 0 0 0 -14661 -1.75]

B = -007 374 0 2252 0 -183 0 -2293 0 -441 0 3657
“|-0006 -0276 0 0765 0 -214 0 -21 0 -137 0 3993

where A, Aq, A, Ag, A,, are wing local bend angles.
The algorithm steps are gone over 10 times. The
imposed eigenvalues of matrix (A §K) are [14]
-37.2,-10.81+32j,-0.54+19.66 j, (66)
-4.01+13.73j,- 2.26 +16.73j,—8.04,— 6.88,-1.01
Initial state vector is
=L 021005 -1-120 0 10]
The obtained time characteristics x, (t),i =112, are

presented in fig.3. The obtained characteristics by
the two methods are the same.
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[-271.46 17021 -160.34 113.89 -265.67 322.89 -13.4 -91.01 266.99 -5321 74.12 10.93]
17021 60.90 -22.81 9.05 8.02 4543 -19.25 -1152 7212 -6.98 4812 338
-160.34 -22.81 -289 751 -3922 713 1356 514 597 462 -27.66 -121
11389 9.05 751 -753 3346 -15.02 -9.68 519 602 466 16.65 045
-265.67 8.02 -39.22 3346 -10452 76.82 1422 -2354 3051 -14.05 -20.45 1.02

32289 4543 713 -1502 7682 -13.34 -2573 572 3975 343 5434 245

7| 134 -1925 1356 -968 1422 -2573 672 637 -3089 053 -1634 -1.29]

-91.01 -1152 514 519 -2354 572 637 -178 -878 -0.23 -13.43 -0.50

266.99 7212 597 6.02 3051 3975 -30.89 -8.78 8920 032 7198 4.06

-53.21 -6.98 4.62 466 -1405 343 053 -023 032 439 -301 -0.10

7412 4812 -27.66 16.65 -2045 54.34 -16.34 -13.43 71.98 -3.01 4199 3.35

[ 1093 338 -121 045 1.02 245 -129 -050 4.06 -010 335 042]

9455 -0.82 2215 015 -7.30 001 -0.04 -7.74 -0.22 1.32 -343.98

:{- 60.55 209 6.34 -67.21 -4.27 34.45 -2.34 -69.12 -7.11 106 -2.22 |

Fig.3 Characteristics x, (t),i =112,

Examples 4.2 (aircraft lateral move)
One considers now the case of lateral move of a
Boeing 744 [15], which flies with M =0.8, and

H =4.10° ft; the lateral move’s state equation is

AB | [-0.0558 —0.9968 0.0802 0.0415]] A
Ad,| | 0598 -0115 -0.0318 0 | Ao,
A, | | 0305 0388 -0465 0 |lAo, +(67)
Ap| | 0 0.0805 1 0 |l Ag
[0.0073 0
-0.475 0.123|[3,
0.153 1.063 L‘J’
0 0

Algorithm steps are gone over 7 times. Imposed
eigenvalues of matrix (A - BK) are
~13.25,-1.43+1.598j,—0.318. (68)
Using both variant 1 and variant 2 one obtains
the same matrices
-3.956 -9.447 8344 -64.110
-9.447  -2.656 2.725 -55.942
8344 2725 3406 47.703 | (69)
-64.110 -55.942 47.703 -583.535
-2545 -1.880 -13.786 -11.773
{9.848 4151 15548 53.727 }

For obtaining of the characteristics ApP(t),
Aw, (t),Ap(t),5, (t) and 3, (t) one  used

Matlab/Simulink model from fig.4. Initial values of
the state variables are
AB(0) = 4.583grd, Aw, (0) =1.145grd/s,

Ao, (0) =1.718grd/s, Ap(0) =17.188grd .

(70)
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One obtained the following matrices The obtained characteristics are presented in

0007 0 -0432 -1146 fig.5 (the characteristics are obtained with the
_|0475 0123 -1665 1190 two variants of the algorithm).
0.153 1.063 0.125 1.189 Let’s consider now the case of lateral move of an
0 0 0287 -0.037 aircraft whose wing is affected by elastic
2.480 -15.096 -2.354 -15.012 deformations (torsion); in this case state vector and
Ao 0.709 2902 1168 2174 input vector are [8]
0325 3546 -0216 4.356 | X' =[AB Ao, Ao, AQ AW Y, V1 ¥, Vo Vs Vs Yo Vo Tio Trols
-0561 -1.401 -1.422 -0.841 u' =[5, 3,1
g [t 000 [1 o84 one considers matrices A and B
0100 Jogs 1] P A A Rl A
7_ _1234 -14886 -0881 _15272 -003037 0.1)6 0.4:)13 g g g g g g g g -0.;37 0.(;01 g g
"1 0478 17.039 6230 10.121 | PO A R O S
-0.01 -798 -1063 0 0 -97.67 -189 0 0 0 0 0 0 0 0
- 0831 - 0559 4357 = 6762 A= 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
-0.003 -3227 -161 0 0 0 0 -151 -357 150.1 3.73 0 0 0 0
ﬁ— '0559 4521 5489 '2720 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
T 4357 5489 1 o | B
-6762 _2720 0 1 70‘(:)27 74635 73‘5 g g g g g g g g 75302‘64 71672 3,;5 701‘36
770018 -227 -1429 0 O 0 0 0 0 0 0 154 092 -9303 -23
'13010 '40917 '6140 ‘43184 (71) B':{ 15.78 -0.79 0052 0 0 O 214 0 0.4 0 4716 0 -0411 0 0.712}
—27447 -0312 -432 0 0 0 -2568 0 -432 0 7.132 0 646 0 -24.28]
_ |-40.917 -4.321 65684 -82.912 . ’
Q= 6140 65684 38483  26.814 The algorithm steps are gone over 10 times. The
"o ' ' : imposed eigenvalues of matrix (A—-BK ) are
-43.184 -82.912 26.814 -113.789

-2.527, -1.1439,-0.0245,- 0.012 + 0.304i,
-0.008+0.23i,-0.0319+ 0.15i,-0.0307 + 0.0973i, (72)

=
-0.0098+0.0995i,-0.0035+0.0024i .
= The obtained time characteristics are the ones
from fig.6.
E ] :|____ .1--‘-'11“ :.'-" """ [ :|_ o
g H T . ::- I:: i} e B [}
| i I l = ':o i i_.l.‘u W :I 5 P : I‘::' i e i
5_—<<—- 4* Mé‘_i.!-l" oo j“ . (d : i
H_ ‘n_ ’_'!E‘! ¥ :, 5 ‘ = 3 I et (FEE [
Fig.4 Matlab/Simulink model associated to the A s e —;
lateral move of an aircraft il F = _
T T b L P I
Al.{gvd.]_s aw,| F:d ;\u : : . :
m T Fig.6 State variables of the optimal command
ey L 4 G system for lateral move using ALGLX algorithm
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elastic deformations (bend or torsion) are similar.

Algorithm ALGLX - longitudinal move
close all;
A=[-0.026 0.025 -0.1 0;-0.36 -3 0 1,
0001;0.4212 -38.42 0 -3.67];
B=[0,0;0;1];
Q=[10000;01000;001000;000 1];
R=[2];
[K,P,.E] = LQR(A,B,Q,R);
12=[1 0;0 1];
% T presentation
N3=randn(4,3);
contor=1,
T(:,1)=B(:,1);
for i=1:4
for j=1:3
T(i,j+1)=N3(i.j);
end
end
Ab=(inv(T))*A*T,
Bb=(inv(T)*B);
Kb=place(Ab,Bb,E);
e=eig(Ab-Bb*Kb);
k1=Kb(1);k21=Kb(2);k22=Kb(3);
k23=Kb(4);r1=1;Rb=[r1];R=Rb;
Pb=r1*[k1 k21 k22 k23;k21 1 0 0;
k22 010;k2300 1];
ee=eig(Rb);
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb);
% Variant 2
PPP=transpose(inv(T))*Pb*inv(T);
KKK=inv(R)*transpose(B)*PPP;
EEE=¢ig(A-B*KKK);m=rank(T);
while real(EEE(1))>0 | real(EEE(2))>0 |
real(EEE(3))>0 | real(EEE(4))>0 | m<4
% T presentation
N3=randn(4,3);
contor=contor+1;
T(:,1)=B(:,1);
fori=1:4
for j=1:3
T(i,j+1)=N3(i.j);
end
end
Ab=(inv(T))*A*T,
Bb=(inv(T)*B);
Kb=place(Ab,Bb,E);
e=eig(Ab-b*Kb);
k1=Kb(1);k21=Kb(2);k22=Kb(3); k23=Kb(4);
r1=5;Rb=[r1]; R=Rb;
Pb=r1*[k1 k21 k22 k23;k21 1 0 0;
k2201 0;k2300 1];
ee=eig(Rb);
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb);
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% Variant 2
PPP=transpose(inv(T))*Pb*inv(T);
KKK=inv(R)*transpose(B)*PPP;
EEE=eig(A-B*KKK);m=rank(T);

end

contor

% Variant 1
Q=transpose(inv(T))*Qb*inv(T);
R=Rb;

[KK,PP,EE] = LQR(A,B,Q,R);
K=KK;

sim('schprogl";
subplot(321);plot(t,varl);grid;hold on;
subplot(322);plot(t,var2);grid;hold on;
subplot(323);plot(t,var3);grid;hold
on;subplot(324);plot(t,var4);grid; hold on;
subplot(325);plot(t,u);grid;hold on;
K=KKK;

sim('schprogl’);
subplot(321);plot(t,varl,'r);
subplot(322);plot(t,var2,'r);
subplot(323);plot(t,var3,'r");
subplot(324);plot(t,var4,'r);
subplot(325);plot(t,u,'r;

Algorithm ALGLX - lateral move
clear all;close all;
A=[-0.0558 -0.9968 0.0802 0.04415;
0.598 -0.115 -0.0318 0;
0.305 0.388 -0.465 0;
00.0805 1 0];
B=[0.0073 0;-0.475 0.123; 0.153 1.063;0 0];
Q=[100000;0100;00 100 0;0 00 10];
R=[1-0.5;-0.5 1];
[K,P,E] = LQR(A,B,Q,R);
12=[1 0;0 1];
% T presentation
N3=randn(4,2);
contor=1;
fori=1:4
for j=1:2
T(i.)=B(i,j);
T(1,j+2)=N3(i,j);
end
end
Ab=(inv(T))*A*T,
Bb=(inv(T)*B);
Kb=place(Ab,Bb,E);
e=eig(Ab-Bb*Kb);
for i=1:2
for j=1:2
K10(i,j)=Kb(i,j);
K20(i,j)=Kb(i,j+2);
end
end
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k11=K10(1,1);k12=K10(1,2);
k21=K10(2,1);k22=K10(2,2);
Rb=[1 (k12-k21)/(k11-k22);
(k12-k21)/(k11-k22) 1];
ee=eig(Rb);
N1=Rb*K20;
N2=transpose(N1);
Pb=[Rb*K10 Rb*K20;N2 12];
R=Rb:;
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb);
% Variant 2
PPP=transpose(inv(T))*Pb*inv(T);
KKK=inv(R)*transpose(B)*PPP;
EEE=eig(A-B*KKK);m=rank(T);
while real(ee(1))<0 | real(ee(2))<0 | real(EEE(1))>0 |
real(EEE(2))>0 | real(EEE(3))>0 | real(EEE(4))>0 |
m<4
% T presentation
N3=randn(4,2);
contor=contor+1,;
fori=1:4
for j=1:2
T(i,))=B(i,j);
T(i,j+2)=N3(i,j);
end
end
% Aflarea Ab,Bb,Kb,Rb
Ab=(inv(T))*A*T,
Bb=(inv(T)*B);
Kb=place(Ab,Bb,E);
e=eig(Ab-Bb*Kb);
fori=1:2
for j=1:2
K10(i,j)=Kb(i,j);
K20(i,j)=Kb(i,j+2);
end
end
k11=K10(1,1);k12=K10(1,2);
k21=K10(2,1);k22=K10(2,2);
Rb=[1 (k12-k21)/(k11-k22);(k12-k21)/(k11-k22) 1];
ee=eig(Rb);
N1=Rb*K20;
N2=transpose(N1);
Pb=[Rb*K10 Rb*K20;N2 12];
R=Rb;
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb);
% Variant 2
PPP=transpose(inv(T))*Pb*inv(T);
KKK=inv(R)*transpose(B)*PPP;
EEE=eig(A-B*KKK);
m=rank(T);
end
% Variant 1
Q=transpose(inv(T))*Qb*inv(T);
R=Rb;[KK,PP,EE] = LQR(A,B,Q,R);
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K=KK;

sim('schprog3");
subplot(321);plot(t,varl);grid;hold on;
subplot(322);plot(t,var2);grid;hold on;
subplot(323);plot(t,var3);grid;hold on;
subplot(324);plot(t,var4);grid;hold on;
subplot(325);plot(t,ul);grid;hold on;
subplot(326);plot(t,u2);grid;hold on;
K=KKK;

sim('schprog3";
subplot(321);plot(t,varl,'r’);
subplot(322);plot(t,var2,'r");
subplot(323);plot(t,var3,'r");
subplot(324);plot(t,var4,'r’);
subplot(325);plot(t,ul,'r";
subplot(326);plot(t,u2,'r";

6 Conclusion

The paper presents a new algorithm for optimal
control law’s synthesis in rapport with state vector
of the aircraft’s longitudinal and lateral move. The
presented algorithm (ALGLX) is illustrated for
models of aircrafts’ longitudinal move, no
dimensional description (elastic no deformable) and
dimensional description (elastic deformable).
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