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Abstract: - The paper presents a new algorithm for optimal control law’s synthesis in rapport with state vector 
of the aircraft’s move. Starting from state equation of the movement, the system is brought to Jordan canonic 
form and Riccati algebraic matricidal equation (whose solution is the gain matrix of the control law) is brought 
to an equivalent form with transformation relation. The new gain matrix is partitioned conform to equations 
(35)÷ (40). Using ALGLX algorithm, one studies elastic no deformed (no dimensional description) 
longitudinal and lateral move of an aircraft and dimensional elastic deformed move. One obtained 
Matlab/Simulink models and numerical programs and with them time characteristics expressing state variables’ 
dynamic are obtained. 
 
Key-Words: - algorithm, optimal, control law, longitudinal and lateral move, synthesis. 
 
1 Introduction 

To project optimal control systems one must take 
into account to minimize physic variables’ deviation 
from their imposed values [1],[2]. The measurement 
of this fact is made using a performance indicator (a 
function) [3], [4].  The project’s requests refer not 
only to system’s performances but to assure physic 
reliability and imposed command restraints.  

The chose of most appropriate performance 
indicator for a system is a difficult job, especially in 
the case of complex systems. Determination of the 
performance indicator must me done not only from 
the mathematic point of view, but also from 
practical issues point of view. Generally one must 
make a compromise between physical performances 
evaluation and solve of the mathematical problem. 

Solution for optimal problem exists if the system  

is controllable and observable. 
The performance indicator determines the 

system’s configuration. A system that is optimal 
from the point of view of one performance indicator 
isn’t optimal from the point of view of other 
performance indicator. Hardware project of an 
optimal control law may be difficult and expensive. 
An example of optimal problem with analytical 
solve is the one of linear system based on quality 
quadratic indicator. 
 
 
2 Description of aircraft’s move and 

of the optimal control law 
The move of an aircraft is described by state 

equation [5] 
 ),()()()()( tutBtxtAtx +=  (1) 
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with −)(tu  command vector −× )(,)1( txm  state 
vector )(,)1( tAn×  and −)(tB  matrices )( nn×  and 
respectively .)( mn ×  Control law has the form 
 ),()()( txtKtu −=  (2) 
with −)(tK  gain matrix )( nm ×  [6] 

For evaluation of the system’s performances one 
chooses performance indicator 

 { } ;d)(),(
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J  has a determined numerical value which differs 
from one trajectory to another. The array of 
admitted trajectories T  is generated by commands 
array U.  If J  admits on array U  one or multiple 
extreme points one may express correctly the 
optimisation problem as a problem of command’s 
determination U∈)(tu  which leads indicator J  to 
the extreme value. 

Optimal synthesis consists of control law’s 
determination which leads the system from initial 
state 0x  in the final state ,1x  in a time interval 
[ ]10 , tt  so that quadratic criterion 
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takes minimum possible value; M  and )( nnQ ×  are 
symmetric, positive defined and non-singular 
matrices; −)(tR  matrix of command variables’ 
weights. 

Setting that state vector tends to zero, 
,0)( 1 =∞→tx  choosing initial moment ,00 =t  

performance indicator (4) becomes 
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The Hamiltonian for the system is [7] 
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where ψ  is the adjunct vector 
Differential equation of the adjunct vector is  

 .
x
H
∂
∂

−=ψ  (7) 

or, taking into account equation (6) and setting the 
minimum of H  condition in rapport with 

,0⎟
⎠
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⎜
⎝
⎛ =
∂
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u
Hu  

 .1 ψ−= − TBRu  (8) 
The dependence between vectors x  and ψ  may  

have, for example, the form [8] 
 ),()()( txtPt =ψ  (9) 
where )( nnP ×  is a symmetric positive defined 
matrix. Matrix )(tP  is the solution of Riccati 
algebraic matricidal equation (41). 

Taking into account the slow variation of the 
flight parameters (dynamic regimes are shorter than 
variation time of parameters), all the matrices will be 
considered, from this moment, constant and matrix 
P  will be obtained by solving EMAR equation (41). 

For control law’s synthesis the system (1) is 
brought to Jordan canonic form 
 ,,, 1 PBRKxKuuBxAx T−=−=+=  (10) 
where x  is the new state vector which verifies 
equation 
 [ ] ;0,, 11 T

mIBTBATTAxTx ==== −−  (11) 
T  is a non singular transformation −× mInn ,)(  
unity matrix .)( mm×  
Transformation matrix T  is chosen so that [9]  
 [ ],~TBT =  (12) 
where T~  is an arbitrary matrix so that .rang nT =  

In paper [10], 
   [ ] [ ],,

iiinii
MNRBAIS λλλλ =−λ=  (13) 

where −nI  unity matrix −λ× inn ),(  eigenvalues of 
the closed loop system and −λλ ii

MN ,  sub-matrices 
(columns of 

i
Rλ ) form a base for ,

i
Sλ  columns of 

i
Nλ  are linear independent; one calculates gain 
matrix 
 ( ) ,1−Φ=WK  (14) 
where 
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[ ] ,)(,diag 21 kiini npppppV +Ω== (16) 
where −Ω +)( i  pseudo inverse of matrix ki n,Ω  is 
the column of unity matrix corresponding of the kth 
sub matrix of matrix ,,1 Vadad Φ=ΦΦΦ−  
 [ ] ,1

21 adni ΦΦ=ΩΩΩΩ −  (17) 
 [ ].

21 nia NNNN λλλλ=Φ  (18) 
Solution of the Riccati equation may be obtained 

using eigenvalues and eigenvectors of matrix .N  
Columns of modal matrix U  are eigenvectors of 
matrix UN;  verifies equation 
 ,Λ=UNU  (19) 
where 

 ,diag,diag,
0

0
21

2

1
ji λ=Λλ=Λ⎥

⎦

⎤
⎢
⎣

⎡
Λ

Λ
=Λ  (20) 

with ,,1, nii =λ  eigenvalues with real part negative,  
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,2,1, nnjj +=λ  eigenvalues with real part positive. 
Setting )(tz  of form [8] 

 ),0()( zUetz tΛ=  (21) 
equivalent with equation 
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or equivalent with equations system 
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and taking into account equation ),0()0( Px=ψ  one 
obtains 
 .1

1121
−= UUP  (24) 

Other forms of command law, based on 
eigenvalues and eigenvectors’ use are presented in 
[3], [11]. For the system described by equation (1), 
with ,Cxy =  one chooses command law ,Kyu =  
with −K  gain matrix. With these, equation (1) 
becomes 
 ( )( ) ,1−+ −Λ= CUAUUBK  (25) 
where +B  is the pseudo inverse of .B  

In [3] one has presented the algorithm for 
calculus of matrices RQ,  and .K  

Another algorithm for calculus of P  uses sign 
matrix [12]; this is now short presented. 

For a matrix ),( nnA ×  having eigenvalues 
...,,...,, 21 iλλλ  with multiplicity orders ,...,,..., 21 iμμμ  

there is a non singular matrix T  (modal matrix) 
which brings matrix A  to the canonical Jordan form 
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transformation relation is  
 .1−= TTAA j  (27) 

If A  is a dichotomic matrix ( ),0Re ≠λ i  one may 
define sign matrix of the Jordan cell ;iJ  
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where 
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Sign matrix associated to matrix A  may be  

expressed as follows 
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Choosing matrix T  so that first Jordan cells 
correspond to eigenvalues with negative real parts 
and the following ones to eigenvalues with positive 
real parts, then 
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where 
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With notation  
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it results 
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Matrix P  is EMAR’s solution for the system (10) 
 ;0=+−+ QKBPPAAP T  (35) 
matrices P  and K  may be partitioned as below [3] 
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where 11P  and 1K  are sub matrices with dimension  
),( mm×  22P  doesn’t interfere in calculus for 

obtaining of K  if matrix P  is diagonalizable; in 
this case 11P  must be diagonalizable also; it must be 
chosen in rapport with matrix ;R  by replacing B  
with form (4) in equation ,1 PBRK T−=  one obtains 
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one results 
 ;, 212111 KRPKRP ==  (38) 
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where, for simplicity, one has chosen mnIP −=22  

unity matrix; 22P  may have any form because it 
doesn’t interfere in calculus of .K  
For 1=m  and 4=n  (the case of longitudinal move 
of the aircraft) matrices have the following 
dimensions: 

),44(,)14(),14(),44(),44(),44( ×××××× PBBATA
),41(,)41(),44(),31(),11( 21 ××××× KKPKK  
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Replacing RP ,11  and 1K  in (38) and (39) one 
results 
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For 2=m  (the case of lateral move of the aircraft), 
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which, replaced in first equation (38) leads to 
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for ,12211 == rr  expressing 12p  and 21p  from this 
one obtains 
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The relations for calculus of KPP ,,  and QQK ,,  
are obtained. These verify Riccati algebraic 
equations afferent to system (1) and (10) 
 ,0=+−+ QPBKPAPA T  (45) 
 .0=+−+ QKBPPAAP T  (46) 
For mentioned relations’ obtaining equation (46) is 
left multiplied with ( ) TT 1−  and right multiplied 
with .1−T  By terms’ identification of the equation 
(45) one obtained the desired equations. First of 
them is 
 ( ) .11 −−= TQTQ T  (47) 

Taking into account that ATTA 1−=  and 
( ) ( ) ,11 IITTTT TTTT

=== −−  one results 
 ( ) .11 −−= TPTP T  (48) 

By equaling the third term of (46) with the third  
term of equation obtained by left multiplied with  

( )TT 1−  and right multiplied with ( )1−T  of (48) and 
taking into account that ,1BTB −=  one yields 
 .1−= TKK  (49) 
 
 
3 Synthesis algorithm (ALGLX) of the 

optimal control law using state  
vector 
Step 1: one brings the system described by pair 

( ) ( ) ( ),,,, mnBnnABA ××  to Jordan canonical form 
( ),, BA  using transformation ;xTx =  here T  is a 
non singular linear transformation; 
 [ ],0, 11

mIBTBATTA === −−  (50) 
where T  has the form [ ],~TBT =  with T~  
random matrix ( )( )mnn −×  so that nT =rang  [9]. 

Step 2: gain matrix K  for the optimal control of 
system ( )BA,  is obtained so that closed loop system 
with matrix KBAG −=  has imposed stable 
eigenvalues. 

Step 3: matrices K  and P  are partitioned as 
follows 
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1K  and 11P  are sub matrices ( );mm×  sub matrices 

221211 ,, PPP  and R  are calculated in rapport with 
sub matrices of matrix K  and with weight matrix 

RR =  
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where mnI −  is the unity matrix ( ) ( );mnmn −×−  for 
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Step 4: 
Variant 1: matrices Q  and Q  are calculated 
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 [ ],KBPPAAPQ T −+−=  (56) 

 ( ) ;11 −−= TQTQ T  (57) 
then, knowing matrices QBA ,,  and ,R  one solves 
EMAR and obtains P  
 ;01 =+−+ − QPBPBRPAPA TT  (58) 
one calculates gain matrix with equation 
 .1 PBRK T−=  (59) 

Variant 2 
Using form (41) of ,P  matrices P  and K  are 

obtained with equation ( ) ., 111 PBRKTPTP TT −−− ==  
Step 5: one calculates the eigenvalues of matrix 
( );BKAG −=  if these are placed in left complex 

semi plane (matrix G  is stable), then gain matrix is 
the one already obtained; otherwise one returns to 
step 1 and chooses another matrix ,~T  of course 
another matrix T  and the calculus conform to 
algorithm’s steps is again achieved.  

Comparatively with algorithm presented in [3], 
calculus of matrix K  (step 2) and of matrix T  (step 
5) differs; in [3]  another formula for calculus of K  
is used and K  is calculated using formula 

.1−= TKK  Usually, gain matrix is calculated directly 
by EMAR’s solution using matrices Q  and R  
random chosen or calculated with other methods. 
 
 
4 Numeric examples 
 
Examples 4.1 (aircraft longitudinal move) 
One considers the case of longitudinal move of an 
aircraft described by equation (1) with no 
dimensional variables, 
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where 
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−=τ s1,2a  aerodynamic time constant, −V  flight 
velocity, −α  attack angle, −θ  pitch angle, θ=ω y  
and  −δ= pu  elevator deflection. For move’s study 
one goes over algorithm’s steps 15 times till the 
condition from step 5 is certified; one imposes, for 
example, the following eigenvalues for matrix 
( )KBA −   
 .1.0,33.0,21.64.3 −−±− j  (62) 

One yields the following matrices 
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Using both variant 1 and variant 2 one obtains 
the same matrices  
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Fig.1 Matlab/Simulink model associated to the 
longitudinal move of an aircraft 

 

Calculus program for the algorithm’s validation 
is presented Section 5; one uses instruction PLACE 
[13] for calculus of matrix K  and instruction LQR 
for calculus of matrix K  using the first variant of 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lungu Mihai, Lungu Romulus, Jula Nicolae, 
Cepisca Costin, Calbureanu Madalina

ISSN: 1109-2734 496 Issue 6, Volume 7, June 2008



.
2.22-1.067.11-69.12-2.34-34.454.27-67.21-6.342.0960.55-

343.98-1.320.22-7.74-0.04-0.017.30-0.1522.150.82-94.55

,

0.423.350.10-4.060.50-1.29-2.451.020.451.21-3.3810.93
3.3541.993.01-71.9813.43-16.34-54.3420.45-16.6527.66-48.1274.12
0.10-3.01-4.390.320.23-0.533.4314.05-4.664.626.98-53.21-
4.0671.980.3289.208.78-30.89-39.7530.516.025.9772.12266.99
0.50-13.43-0.23-8.78-1.78-6.375.7223.54-5.195.1411.52-91.01-
1.29-16.34-0.5330.89-6.376.7225.73-14.229.68-13.56 19.25-13.4-
2.4554.343.4339.755.7225.73-13.34-76.82 15.02-7.1345.43322.89
1.0220.45-14.05-30.5123.54-14.2276.82 104.52-33.4639.22-8.02265.67-
0.4516.654.666.025.199.68-15.02-33.467.53-7.519.05113.89
1.21-27.66-4.625.975.1413.56 7.1339.22-7.512.89-22.81-160.34-
3.3848.126.98-72.1211.52-19.25-45.438.029.0522.81-60.90170.21

10.9374.1253.21-266.9991.01-13.4-322.89265.67-113.89160.34-170.21271.46-

⎥
⎦

⎤
⎢
⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

K

P

.
993.3037.101.2014.20765.00276.0006.0
57.36041.4093.2203.18052.22074.307.0

,

75.11.14660000000024.51.147
100000000000
00474.01.390176.024.100002.21.12
001000000000
0052.071.1068.287.384000052.94.82
000010000000
00000009.039.2310071.91.53
000000100000
0000000053.581.5652.173.283
000000001000
0000000003.0039.024.29.6
00000000003.016.1

⎥
⎦

⎤
⎢
⎣

⎡
−−−−−
−−−−

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−

−−−−−

−−

−−−−

−−
−−

=

TB

A

the algorithm. 
For obtaining the characteristics ),ˆ(ˆ),ˆ(ˆ),ˆ(ˆ tttV θα  

)ˆ(ˆ),ˆ(ˆ tt py δω  one uses Matlab/Simulink model from 
fig.1; the obtained characteristics are presented in 
fig.2; initial values of state variables are 

.08.0)0(ˆ,5.0)0(ˆ,08.0)0(ˆ,1.0)0(ˆ =ω=θ=α= yV  
The obtained characteristics by the two methods 

are the same. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Characteristics )ˆ(ˆ),ˆ(ˆ),ˆ(ˆ),ˆ(ˆ),ˆ(ˆ tttttV py δωθα  

 

Let’s consider now the case of longitudinal move 
of an aircraft whose wing is affected by elastic 
deformations (bend); in this case state vector and 
input vector are [8] 
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where 128751 ,,,, λλλλλ  are wing local bend angles.  
The algorithm steps are gone over 10 times. The 
imposed eigenvalues of matrix ( )KBA −  are [14] 

    
01.1,88.6,04.8,73.1626.2,73.1301.4

,66.1954.0,3281.10,2.37
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jj  (66) 

Initial state vector is 
[ ].10002115.0012010 −−=Tx  

The obtained time characteristics ,12,1),( =itxi  are 
presented in fig.3. The obtained characteristics by  
the two methods are the same. 

 

 
 
 
 
 

 

 

 
Fig.3 Characteristics ,12,1),( =itxi  

 

Examples 4.2 (aircraft lateral move) 
One considers now the case of lateral move of a 

Boeing 744 [15], which flies with ,8.0=M  and 
;ft104 3⋅=H  the lateral move’s state equation is 
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Algorithm steps are gone over 7 times. Imposed 
eigenvalues of matrix ( )KBA −  are 
 .318.0,598.143.1,25.13 −±−− j  (68) 

Using both variant 1 and variant 2 one obtains 
the same matrices  
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For obtaining of the characteristics ),(tβΔ   
)(),(),( ttt dx δϕΔωΔ  and )(teδ  one used 

Matlab/Simulink model from fig.4. Initial values of 
the state variables are 

 
.17.188grd)0(,1.718grd/s)0(
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One obtained the following matrices 
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 (71) 

 
Fig.4 Matlab/Simulink model associated to the 

lateral move of an aircraft 
 

 
Fig.5 Time variation of the state variables  

and input variables for the lateral move 
 

The obtained characteristics are presented in 
fig.5 (the characteristics are obtained with the 
two variants of the algorithm). 

Let’s consider now the case of lateral move of an 
aircraft whose wing is affected by elastic 
deformations (torsion); in this case state vector and 
input vector are [8] 
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The algorithm steps are gone over 10 times. The 
imposed eigenvalues of matrix ( )KBA −  are 

.0.0024i  0.0035-0.0995i,  0.0098-
0.0973i, 0.0307-0.15i, 0.0319-0.23i,  0.008-

0.304i,  0.012-0.0245,-1.1439,- 2.527,-

±±
±±±

±
 (72) 

The obtained time characteristics are the ones 
from fig.6. 

 
Fig.6 State variables of the optimal command 

system for lateral move using ALGLX algorithm 
 
 

5  Matlab programs 
One presents below the programs associated to 

the algorithm (ALGLX) for optimal control law’s 
synthesis in rapport with state vector of the 
aircraft’s longitudinal and lateral move. In these 
programs the Matlab/Simulink models presented in 
fig.1and fig.4 are simulated.  

The programs for the longitudinal and lateral 
move of the aircraft whose wing is affected by  
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elastic deformations (bend or torsion) are similar.  
 
Algorithm ALGLX – longitudinal move 
close all; 
A=[-0.026 0.025 -0.1 0;-0.36 -3 0 1; 
        0 0 0 1; 0.4212 -38.42 0 -3.67]; 
B=[0;0;0;1]; 
Q=[10 0 0 0;0 10 0 0; 0 0 100 0;0 0 0 1]; 
R=[2]; 
[K,P,E] = LQR(A,B,Q,R); 
I2=[1 0;0 1]; 
% T presentation 
N3=randn(4,3); 
contor=1; 
T(:,1)=B(:,1); 
for i=1:4 
    for j=1:3 
        T(i,j+1)=N3(i,j); 
    end 
end  
Ab=(inv(T))*A*T; 
Bb=(inv(T)*B); 
Kb=place(Ab,Bb,E); 
e=eig(Ab-Bb*Kb); 
k1=Kb(1);k21=Kb(2);k22=Kb(3); 
k23=Kb(4);r1=1;Rb=[r1];R=Rb; 
Pb=r1*[k1 k21 k22 k23;k21 1 0 0; 
            k22 0 1 0;k23 0 0 1]; 
ee=eig(Rb); 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 
% Variant 2 
PPP=transpose(inv(T))*Pb*inv(T); 
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK);m=rank(T); 
while real(EEE(1))>0 | real(EEE(2))>0 | 
real(EEE(3))>0 | real(EEE(4))>0 | m<4 
% T presentation 
N3=randn(4,3); 
contor=contor+1; 
T(:,1)=B(:,1); 
for i=1:4 
    for j=1:3 
        T(i,j+1)=N3(i,j); 
    end 
end  
Ab=(inv(T))*A*T; 
Bb=(inv(T)*B); 
Kb=place(Ab,Bb,E); 
e=eig(Ab-b*Kb); 
k1=Kb(1);k21=Kb(2);k22=Kb(3); k23=Kb(4); 
r1=5;Rb=[r1]; R=Rb; 
Pb=r1*[k1 k21 k22 k23;k21 1 0 0; 
             k22 0 1 0;k23 0 0 1]; 
ee=eig(Rb); 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 

% Variant 2 
PPP=transpose(inv(T))*Pb*inv(T); 
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK);m=rank(T);  
end         
contor 
% Variant 1 
Q=transpose(inv(T))*Qb*inv(T); 
R=Rb; 
[KK,PP,EE] = LQR(A,B,Q,R); 
K=KK; 
sim('schprog1'); 
subplot(321);plot(t,var1);grid;hold on; 
subplot(322);plot(t,var2);grid;hold on; 
subplot(323);plot(t,var3);grid;hold 
on;subplot(324);plot(t,var4);grid; hold on; 
subplot(325);plot(t,u);grid;hold on; 
K=KKK; 
sim('schprog1'); 
subplot(321);plot(t,var1,'r'); 
subplot(322);plot(t,var2,'r'); 
subplot(323);plot(t,var3,'r'); 
subplot(324);plot(t,var4,'r'); 
subplot(325);plot(t,u,'r'); 
 
Algorithm ALGLX – lateral move 
clear all;close all; 
A=[-0.0558 -0.9968 0.0802 0.04415; 
        0.598 -0.115 -0.0318 0; 
        0.305 0.388 -0.465 0; 
        0 0.0805 1 0]; 
B=[0.0073 0;-0.475 0.123; 0.153 1.063;0 0]; 
Q=[100 0 0 0;0 1 0 0;0 0 100 0;0 0 0 10]; 
R=[1 -0.5;-0.5 1]; 
[K,P,E] = LQR(A,B,Q,R); 
I2=[1 0;0 1]; 
% T presentation 
N3=randn(4,2); 
contor=1; 
for i=1:4 
    for j=1:2 
        T(i,j)=B(i,j);  
        T(i,j+2)=N3(i,j); 
    end 
end    
Ab=(inv(T))*A*T; 
Bb=(inv(T)*B); 
Kb=place(Ab,Bb,E); 
e=eig(Ab-Bb*Kb); 
for i=1:2 
    for j=1:2 
        K10(i,j)=Kb(i,j);  
        K20(i,j)=Kb(i,j+2); 
    end 
end 
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k11=K10(1,1);k12=K10(1,2); 
k21=K10(2,1);k22=K10(2,2); 
Rb=[1 (k12-k21)/(k11-k22); 
(k12-k21)/(k11-k22) 1]; 
ee=eig(Rb); 
N1=Rb*K20; 
N2=transpose(N1); 
Pb=[Rb*K10 Rb*K20;N2 I2]; 
R=Rb; 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 
% Variant 2 
PPP=transpose(inv(T))*Pb*inv(T);  
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK);m=rank(T); 
while real(ee(1))<0 | real(ee(2))<0 | real(EEE(1))>0 | 
real(EEE(2))>0 | real(EEE(3))>0 | real(EEE(4))>0 | 
m<4 
% T presentation 
N3=randn(4,2); 
contor=contor+1; 
for i=1:4 
    for j=1:2 
        T(i,j)=B(i,j);  
        T(i,j+2)=N3(i,j); 
    end 
end    
% Aflarea Ab,Bb,Kb,Rb 
Ab=(inv(T))*A*T; 
Bb=(inv(T)*B);  
Kb=place(Ab,Bb,E); 
e=eig(Ab-Bb*Kb); 
for i=1:2 
    for j=1:2 
        K10(i,j)=Kb(i,j);  
        K20(i,j)=Kb(i,j+2); 
    end 
end 
k11=K10(1,1);k12=K10(1,2); 
k21=K10(2,1);k22=K10(2,2); 
Rb=[1 (k12-k21)/(k11-k22);(k12-k21)/(k11-k22) 1]; 
ee=eig(Rb); 
N1=Rb*K20; 
N2=transpose(N1); 
Pb=[Rb*K10 Rb*K20;N2 I2]; 
R=Rb; 
Qb=-(Pb*Ab+(transpose(Ab))*Pb-Pb*Bb*Kb); 
% Variant 2 
PPP=transpose(inv(T))*Pb*inv(T); 
KKK=inv(R)*transpose(B)*PPP; 
EEE=eig(A-B*KKK); 
m=rank(T); 
end         
% Variant 1 
Q=transpose(inv(T))*Qb*inv(T); 
R=Rb;[KK,PP,EE] = LQR(A,B,Q,R); 

K=KK; 
sim('schprog3'); 
subplot(321);plot(t,var1);grid;hold on; 
subplot(322);plot(t,var2);grid;hold on; 
subplot(323);plot(t,var3);grid;hold on; 
subplot(324);plot(t,var4);grid;hold on; 
subplot(325);plot(t,u1);grid;hold on; 
subplot(326);plot(t,u2);grid;hold on; 
K=KKK; 
sim('schprog3'); 
subplot(321);plot(t,var1,'r'); 
subplot(322);plot(t,var2,'r'); 
subplot(323);plot(t,var3,'r'); 
subplot(324);plot(t,var4,'r'); 
subplot(325);plot(t,u1,'r'); 
subplot(326);plot(t,u2,'r'); 
 
 
6  Conclusion 

The paper presents a new algorithm for optimal 
control law’s synthesis in rapport with state vector 
of the aircraft’s longitudinal and lateral move. The 
presented algorithm (ALGLX) is illustrated for 
models of aircrafts’ longitudinal move, no 
dimensional description (elastic no deformable) and 
dimensional description (elastic deformable). 
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