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Abstract: - In order to optimise and characterize technological processes for quality planning, evaluation and 
development purposes must be used proper methodology. Methodology for designed experiment and uncertainty can 
be one possible way to do this. Variation and effect of various technological factors in relation to the material structures 
stability, consistency and overall performance in the relation to the important aspects related to the observation and 
analysis of the influence more than one variable at a time on the response of interest.  
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1 Problem introduction, important 
aspects of burn-in process of electronic 
devices 
The reliability of electronic devices constitutes an 
important aspect of quality control. Most of the 
electronic devices show a decreasing failure rate in the 
early life and an increasing failure rate in later life. One 
of the fundamental concepts in reliability is the 
"Bathtub" curve, as illustrated in Figure 1. The Figure 1 
shows that the theoretical life characteristic curve has 
three distinct periods. The initial early failure period is 
sometimes called the infant-mortality or the burn-in or 
the debugging period. The initial decreasing failure rate 
is due to early failure of substandard products. Failure 
mechanisms during the infant mortality may arise from 
random defects built into the product during the 
manufacturing process. Manufacturing defects, latent 
material defects, poor assembly methods, and poor 
quality assurance can contribute to a high initial failure 
rate. The early failures in this region could be eliminated 
by a 100% "burn-in" (for components and parts) or by 
initial "debugging" (of a complex system). 

Once the infant mortality is removed from the 
population, the useful life period (so called steady-state 
region) is reached with a relatively lower failure rate. 
Failures are random and relatively constant in time and 
have very low failure rate during the useful life. 
Finally, as products age they reach a wear out phase 
characterised by an increasing failure rate. The final 
stage is wear out, the parts begin to wear out and fail at 
some relatively higher failure rate. 
Screening and burn-in of products are often performed to 
weed out infant mortality before use or delivery. The 
term "screening" mean the use of some environmental 
stress as a screen for reducing infant mortality defects. 
Burn-in is an effective means for screening out defects 
contributing to infant-mortality. For the producer is the 
purpose of this testing (1) weed out defective or 
unsatisfactory product and (2) eliminate “infant 
mortality” before delivery to the customer. Burn-in 
process of electronic devices combines electrical stresses 
with temperature for a given period of time. In practice, 
the underlying mechanisms of the burn-in process are 
frequently so complicated that an empirical approach is 
necessary.  

Fig.1:  Typical "Bathtub" Curve showing the relationship between failure rate and device lifetime 
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Burn-in is the process of exercising of electronic devices 
to accelerated test. This is the process of operating 
devices under accelerated voltage, temperature, or load 
in order to screen out infant mortality failures. The 
understanding of the burn-in procedure is very important 
question related to planning and controlling of burn-in 
process in production of electronic devices. In practice, 
the underlying mechanisms of the burn-in process are 
frequently so complicated that an empirical approach is 
necessary. 
The traditional probabilistic approach is to a large degree 
replaced by empirical study approaches constructed on 
designed reliability testing experiments. The 
methodological approach is based on manipulation of 
factors (independent variables) in order to determine the 
effect of this manipulation on other response variables 
(dependent variables). The problem studied in this paper 
is sequential experimental determining the burn-in 
process conditions for obtaining optimum results.   
 
 
2   Some aspects of causality evaluation 
and basic terms 
Experimental methods are used in research and 
development as well as in industrial settings for various 
purposes: determination of the effect(s) on some 
behaviour (the dependent variable) while controlling 
other relevant factors, examination of a hypothesized 
causal relationship between independent and dependent 
variables, observation of the effect of the treatments on 
the experimental units by measuring one or more 
response variables, translation of the different research 
hypotheses into a set of treatment conditions, reach 
"cause and effect" conclusions about the effect, 
evaluation of the statistical significance of an effect that 
a particular factor exerts on the dependent variable of 

interest, observation whether cause and effect 
relationships are present, settings of the technological 
factors in order to make the output that meet certain 
quality requirements. 
Discovering key relationships between inputs and 
outputs is for quality control and improvement very 
important. Tools such as Cause and Effect diagram (also 
known as a “Ishikawa Diagram” or “Fishbone”), Cause 
and Effect Matrix, correlation analysis or Design of 
Experiments give advice in discovering causal 
relationships. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2: Graph showing the Interaction effect of particular 
experimental factors 
 
An experiment is a study in which the investigator 
manipulates one or more variable to determine its effect 
on the response variable(s). The former variables are call 
“independent variables”; or “factors”; the latter are call 
“dependent variables” or “dependent measures”. 
Graphical illustration of this type of problem is at the 
Figure 3. An experiment consists of testing combinations 
of different values (termed levels) of factors thought 
likely to influence the characteristic (so called response) 
of interest.  

Fig.3: Graphical illustration of process variables and process output variables. Independent variables 
describe input parameters and dependent variables describe the output variables. 
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The change in the average response as a factor is varied 
is called the main effect of that factor. If the input factors 
are not independent, their interaction may also be 
considered. The interaction among factors refers to that 
the average effect of one factor depends on the level of 
another factor. 
The interaction plot depicted in the Fig. 2 shows the 
estimated refractive index as a function of pairs of 
factors.  In each plot, one factor is varied from its low 
level to its high level.  On one line, the second factor is 
held at its low level.  On the other line, the second factor 
is held at its high level.  All other factors besides the two 
involved in the interaction are held constant at their 
central values. From another point of view we can say 
that input factors or factors within a process can be 
correlated with output parameters. These parameters are 
often important to the customer. They are so called 
critical to quality parameters, i.e. attributes most 
important to the customer. Key process input variables 
for processes must be understand in order to manage 
them in order to achieve given quality and reliability 
goals.  
Critical to Quality characteristics related to output of a 
process that are important to the customer are sometimes 
call Key Process Output Variables (KPOV).  
Critical to Quality characteristics represent the product 
or service characteristics defined by the customer 
(internal or external). They are the key measurable 
characteristics of a product or process whose 
specification limits or performance standard must be met 
to satisfy the voice of the customers. Specification limits 
set the requirements for judging acceptability of a 
particular characteristic. 
Critical to quality characteristics are typically categorize 
under Quality or Reliability, Time, and Cost. These 
characteristics of product or service are usually 
determined from a qualitative (external or internal) 
customer statement and then translated into quantitative 
specification. The appropriate specification can allow 
comparison of actual result of KPOV against target or 
specification.  
 
 
3 Uncertainty of measurement results 
related to the quantification of the factor 
values and responses 
The uncertainty of measurement is the basic parameter 
that characterises quality of result of measurement. 
General, the basic requirements to expression of 
uncertainty in measurement are given by normative 
documents and standards. International standard ČSN 
EN ISO/IEC 17 025 “General requirements for the 
competence of testing and calibration laboratories” in 
paragraph 5.10.3 requires to test report includes 

“statement on the estimated uncertainty of measurement 
(where applicable)” and in paragraph 5.4.6 
simultaneously say that calibration and testing 
laboratories shall have and shall apply procedures for 
estimating uncertainty of measurement.  
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Fig.4: Uncertainty of measurement as important aspect 
for experimental evaluation of causality 
 
In certain cases the nature of the test method may 
preclude rigorous, metrologically and statistically valid, 
calculation of uncertainty of measurement. In these cases 
the laboratory shall at least attempt to identify all the 
components of uncertainty and make a reasonable 
estimation, and ensure that the form of reporting of the 
result does not give a wrong impression of the 
uncertainty. Reasonable estimation shall be based on 
knowledge of the performance of the method and on the 
measurement scope. 
Expression of uncertainty of measurement is directed 
also by requirements of European Accreditation of 
Laboratories (EAL). The basic documents are EAL-R2 
“Methodology of expression of uncertainty in calibration 
laboratories” (for calibration laboratories) and EAL-G23 
“Expression of uncertainty in quantitative testing” (for 
calibration and testing laboratories). 
The formal definition of the term “uncertainty of 
measurement” is as follows:  
“Parameter, associated with the result of a measurement 
that characterizes the dispersion of the values that could 
reasonably attributed to the measurand.”  
The basic types of uncertainty:  
(1) Type A: Type A evaluation of uncertainty is based 
on method of evaluation uncertainty by the statistical 
analysis of series of observation.  
(2) Type B: Type B evaluation of uncertainty is based on 
method of evaluation of uncertainty by means other then 
the statistical analysis of series of observations.   
Combined standard uncertainty is standard uncertainty 
of the result of measurement when the result is obtained 
from the values of a number of other quantities. It is the 
estimated standard deviation associated with the result 
and is equal to the positive square root of the combined 
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variance obtained from all variance and covariance 
components. Combine standard uncertainty is denoted 
uc(y). 
Expanded uncertainty is quantity defining an interval 
about the result of a measurement that may be expected 
to encompass a large fraction of the distribution of 
values that could reasonably be attributed to the 
measurand. Expanded uncertainty is denoted U(y).  
Uncertainty of measurement is inseparable part of 
measurement results and its importance is obvious from 
figure 1 where only result signposted A is correct, 
because this estimate of measurand and its uncertainty 
are fully in required zone. All other results (sign posted 
B, C, D) are not satisfied. 
 
 
4 Methodology for evaluation of 
uncertainty of measurement 
Overall uncertainty of measurement is expressed by 
specific mathematic methodology from single 
components of uncertainty. Evaluating of single sources 
of uncertainty in single partial steps is example of 
modular access to evaluation of uncertainty components. 
It is suitable to proceed from modular access in design of 
way for their evaluation and expression.  
In particular measurement, it is necessary to proceed 
from actual methods of measurement for evaluation of 
uncertainties, because the single sources of uncertainty 
that participate on overall uncertainty result from this 
methodology. The mathematical methodology for 
evaluating and expressing of uncertainty is universal and 
in practice it must be particularised for current technical 
condition to conform to actual necessities of particular 
assignment. This methodology can be generally 
summarized to following steps:  

  
 
4.1 Analysis of input conditions 
The first step of measurement predicates in choosing 
appropriate method of measurement and appropriate 
measurement devices. It should be done by analysis of 
input conditions and input requirements. It is seasonable 
to approximately estimate possible sources of 
uncertainty because it could be important factor for 
choosing of measurement method. Measurement can be 
modelled mathematically to the degree imposed by the 
required accuracy of the measurement. 
 
 
4.2 Mathematical model of measurement 
Usually, a measurand Y is not measured directly, but is 
determined from N other quantities Xi through a 
functional relationship f by following equation: 

),...,,( 21 NXXXfY = .  
The functional relationship f is given by chosen 
measurement method and expressed the way by which 
the measurand is obtained from input quantities Xi. The 
mathematical model of the measurement that transforms 
the set of repeated observations into the measurement 
result is of critical importance because, in addition to the 
observation, it generally includes various influence 
quantities that are inexactly known. This lack of 
knowledge contributes to the uncertainty of the 
measurement result, as do the variations of the repeated 
observations and any uncertainty associated with the 
mathematical model itself. 
Because the mathematical model may be incomplete, all 
relevant quantities should be varied to the fullest 
practicable extent so that the evaluation of uncertainty 
can be based as much as possible on observed data. The 
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mathematical model should always be revised when 
observed data, including the result of independent 
determination of the same measurand, demonstrate that 
the model is incomplete. A well-designed experiment 
can greatly facilitate reliable evaluations of uncertainty 
and is an important part of the art of measurement.   
 
 
4.3 Identification of all sources of uncertainty 
When estimating the uncertainty of measurement, all 
uncertainty components, which are importance in the 
given situation, shall be taken into account using 
appropriate methods of analysis. In practice, there are 
many possible sources of uncertainty in a measurement, 
for example following: 
• incomplete definition of the measurand, 
• imperfect realization of the definition of the 
measurand, 
• nonrepresentative sampling,  
• inadequate knowledge of the effects of environmental 
conditions on the measurand,  
• imperfect measurement of environmental conditions,  
• personal bias in reading,  
• finite instrument resolution,  
• or inexact values of measurement standards or 
reference materials.  
The possible sources of uncertainty result from 
mathematical model of measurement. It is necessary to 
identify all significant sources of uncertainty and it is 
also necessary not to “double-count” uncertainty 
components. Practically, the sources are not necessarily 
independent, and so some of sources may contribute to 
other sources. Good way for identification of sources of 
uncertainty and finding possible correlations is using 
Ishikawa charts.  
As example, there is shown Ishikawa chart of sources of 
uncertainty in electromagnetic non-destructive testing in 
figure 2. It may be seen that any quantities can be 
components of uncertainty in more sources. Of course, 
in practise these possible sources would be reduced for a 

few really important sources by using method and other 
uncertainty components could be neglected. 
 
 
4.4 Evaluation of input standard uncertainties  
As it was written, input uncertainties are grouped into 
two categories (Type A and Type B evaluation). Both 
types of evaluation are based on probability distribution 
and the uncertainty components resulting from either 
type are quantified by variances or standard deviations. 
While Type A standard uncertainty is obtained from a 
probability density function derived from an observed 
frequency distribution, Type B standard uncertainty is 
obtained from an assumed probability density function 
based on the degree of belief. 
When an input quantity Xi is estimated from n 
independent repeated observations (Type A), standard 
uncertainty associated with arithmetic mean   is given by 
experimental standard deviation of the mean x , thus:  
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When the input quantity Xi is not estimated from 
repeated observations, the associated estimated variance 
or the standard deviation is evaluated by scientific 
judgement based on all of the available information on 
the possible variability of Xi. In these cases, the standard 
uncertainty u(xi) is given by square root of variance of 
appropriated probability distribution to input quantity Xi. 
It often may be possible to estimate only bound (upper 
and lower limits) for Xi without knowledge about 
probability distribution. Then it may be assumed 
trapezoidal probability distribution with half-width and 
top of width or its extreme cases – rectangular or 
triangular probability distribution. Then the standard 
uncertainty is given by: 

6
)1()(
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=

axu i .  

A … Uncertainty of random influences
B … Uncertainty of distortion of power supply
C … Uncertainty of indicator
D … Uncertainty of sample temperature
E … Other uncertainties  .

0

2,5 10× -5

u (X)
[V ]

2

2
i

2,0 10× -5

1,5 10× -5

1,0 10× -5

0,5 10× -5

100

80

60

40

20

cummulative
portion of 

uncertainty
[%]

A B C D E
0

Fig.6: Example of Pareto analysis of uncertainty components 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Radovan Novotný

ISSN: 1109-2734 464 Issue 6, Volume 7, June 2008



 For β = 1 the trapezoidal probability distribution passes 
to rectangular probability distribution, for β = 0 the 
trapezoidal probability distribution passes to triangular 
probability distribution. 
 In practice, the input standard uncertainties must be 
evaluated for all significant sources of uncertainty by 
one of this way of evaluation. Then it is possible to 
express overall uncertainty of result of measurement. 
 
 
4.5 Expressing of overall uncertainty 
The final step in expressing of uncertainty is given by 
combining the standard uncertainties to one parameter 
that characterizes overall uncertainty of result of 
measurement. This parameter is known as combined 
standard uncertainty and is denoted uc(y). The combined 
standard uncertainty is given by: 
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where ),( ji xxr  is correlation coefficient that 
characterizes the degree of correlation between xi and xj.  
When input quantities are uncorrelated, equation is 
reduced to: 
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These equations are termed as “law of propagation of 
uncertainty”. The partial derivatives often call sensitivity 
coefficients; describe how the output estimate y varies 
with changes in the values of the input estimates xi. By 
expressing of sensitive coefficients and single members 
of law of propagation of uncertainty it is possible to 
analyse single uncertainty components, find the 
dominant uncertainty component and (when it is 
required or useful) try to eliminate or reduced it. It is 
helpful to use any statistical methods, for example Pareto 
analysis as is shown on figure 3. There is performed 
Pareto analysis of uncertainty components in practical 
non-destructive testing of material properties realised by 
measurement of higher harmonics component of voltage 
induced in coil to that the controlled material is inserted. 
The importance of expressing of uncertainties in 
measurement was unambiguously supported by 
experiments namely not only in a relation to results of 
measurements, but also in a relation to choose of 
measurement methodology. Quantification of 
components of entry uncertainty enables to delimit 
exactly the percent part of particular share in total 
uncertainty of measurements. On the basis of this 

knowledge it is possible to option the most acceptable 
method and to optimise the methodology of testing. 
Although the combined standard uncertainty can be used 
to express the uncertainty of a measurement result, in 
some cases it is often necessary to give a measure of 
uncertainty that defines an interval about the 
measurement result that may be expected to encompass a 
large fraction of the distribution of values that could 
reasonably be attributed to the measurand. This 
additional measure of uncertainty is termed expanded 
uncertainty. The expanded uncertainty, denoted by 
symbol U(y), is obtained by multiplying uc(y) by a 
coverage factor, denoted by symbol k: 

)()( yukyU c⋅= . 
The result of a measurement is then conveniently 
expressed as Y = y ± U(y), which is interpreted to mean 
that the best estimate of the value attributable to the 
measurand Y is y, and that y - Y to y + U is an interval 
that may be expected to encompass a large fraction of 
the distribution of values that could reasonably be 
attributed to Y. 
The value of the coverage factor is chosen on the basis 
of the required level of confidence to be associated with 
the interval defined by U(y). Typically, k is in the range 
2 to 3. When the normal distribution applies and uc(y) 
has negligible uncertainty, )(2)( yuyU c⋅= defines an 
interval having a level of confidence of approximately 
95 percent, and )(3)( yuyU c⋅=  defines an interval 
having a level of confidence greater than 99 percent. 

 
 

2   Observation and analysis of more than 
one variable at a time 
The traditional technique to experimentation is based on 
changing only one factor at a time whilst holding the 
remaining factors constant. This method however 
doesn’t provide data on interactions of factors and it isn’t 
cost effective. There is no way to account for the effect 
of joint variation of factors and it usually isn’t possible 
to hold all other variables constant and a large number of 
runs are required. 
The overall combination of all factors and their levels 
can grow to be too large and daunting a task if each 
factor is changed one at a time. An alternative approach 
called factorial design can uncover interactions and is 
more efficient than the approach of one factor at a time 
approach. The design of experiments enables to plan an 
experiment that simultaneously alters a number of 
variables in an experimental system to see how they 
affect and interact to affect responses. The statistical 
design of experiments enables to plan an experiment that 
simultaneously alters a number of experimental variables 
to evaluate how they affect response parameters. The 
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factorial design that varies multiple factors at a time can 
reduce the number of runs and still offer enough 
information. Factorial Designs are form of DOE where 
one or more trials are making with each combination of 
levels for the factors. This approach provides the way to 
the analysis of the effects of multiply technological 
factors on the response. To dampen the effect of 
systematic changes, the trials should ideally be 
conducted in a random order, known as randomization, 
and replicated.   
 
 
 
 
 
 
 
 
 
 
 
Fig.7: Example of normal probability plot for separation 
of the real effects from those which are caused by noise 
 
A full factorial experiment combines the levels of each 
factor with each of the levels of all the remaining factors. 
The full factorial design has the advantage of being able 
to estimate interactions between factors. However, full 
factorial designs become very large as the number of 
factors and levels increases. 
It is possible to investigate the main effects of the factors 
and their more important interactions in a fraction of the 
number of runs required for the full factorial experiment. 
These fractional factorials experiments are useful 
because they require much fewer runs, although they do 
not allow the separation of main effects from high-order 
interactions.  
One of the strengths of the factorial experiment is that it 
allows the study of several factors at once, rather than 
only one factor at a time. DOE, in contrast to the one 
factor method, advocates the changing of many factors 
simultaneously in a systematic way.   
The normal probability plot can be used to separate the 
real effects from those which are just noise.  It is 
particularly useful when there are few or no degrees of 
freedom to estimate the experimental error.  
The plot is scaled in such a way that the effects which 
are not real will fall approximately along a straight line, 
while the real signals will fall off the line. The noise 
effects behave like they come from a normal distribution 
centered at zero. If there are adequate degrees of 
freedom to estimate the experimental error, the analysis 
of variance (ANOVA) techniques can be used to 
determine significant factors. 

A response surface is a surface that represents predicted 
responses to variations in factors in the region of 
interest. The region of interest is the set of runs, in which 
combinations of vital continuous factor levels are 
included, that are perform in order to predict investigated 
response. A mathematical statement of the relations 
among variables can be express as an empirical model. 
The most common empirical models fit to the 
experimental data take polynomial form.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.8: Estimated values of response (refractive index) for 
various values of experimental factors 
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Fig.9: Overview of steps for the design of experiments 
by Taguchi methodology 
 
 
3 Response surface description and 
response surface methodology 
Response surface methodology helps to quantify the 
relationships between one or more measured responses 
and the vital continuous factors.  
The response is a dependent variable of interest in an 
experiment whose changes we wish to study. It is 
a characteristic of an experimental unit measured after 
treatment and analyzed to address the objectives of the 
experiment. In most experimental situations, several 
responses are usually of interest, and their selection is 
related to the purpose of the study. In the context of 
industrial experiment are the responses related to the 
quality characteristics of a product which are most 
critical to customers. 
Identifying quantifiable responses is very important 
steps of an experiment execution. Responses must be 
measured by capable measurement system that 
consistently produces reliable results. 
Attribute data (pass/fail, good/bad) are for design of 
experiment purposes inefficient. These data ask for 
a large number of experimental units and leads to 
experimental plans that are time and resources 
consuming. One way to solve it is to define the 
numerical rating scale (e.g. 1-very bad to 3-okay to 7-
very good) by providing benchmarks in the form of 

defective units or pictures and train about three people to 
use the scale. To evaluate the response, each trained 
people should independently rate each experimental unit 
after the experimental treatment. Then the response 
should be the average rating for each experimental unit, 
but it can be also evaluate the standard deviation of the 
ratings as a second response. 
Response Surface Methodology approximates the 
response values Y in the form of polynomial function of 
independent variables xi, xj:   

 
The symbol n is the number of independent variables 
and a0, ai, aii , aij are model coefficients.  
Response surface methodology is use to determine the 
optimum combination of factors setting that yield a 
desired response and describe the response near the 
optimum or to determine how a specific response is 
affected by changes in the level of the factors over the 
specified levels of interest. The eventual objective of 
RSM is to gain understanding of the physical mechanism 
of a system. 
 
 
4   Study of the microelectronic structure 
in the relation to the study of burn-in 
process influence 
In this part is presented the example presents the 
simultaneous study of the effects that three vital 
continuous factors (concretely temperature, time and 
voltage) have on the microelectronic structure 
(concretely electrical parameters stability coefficient), 
see Figure 2.   

Fig.10: Experimental factors and their levels in the study 
of the influence of the burn-in process 
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Fig.11: Description of Box Behnken experimental design 
for two level full factorial design 23 with center points 
 
Experimental factors are generally explanatory variables 
that might influence the response variable. These are the 
possible causes of variation that affect the response. 
Factors may be variable (continuous - thickness, 
pressure, voltage) or they may be attribute (discrete, 
categorical - production method, type of material). 
Factors can be divided into control and noise factors. 
Control factors are those factors that can be deliberately 
manipulated during the experiment; these are during 
experiment changed across the experimental plan from 
run to run. Noise (lurking, nuisance) factors are 
background variables that are difficult, inconvenient or 
too expensive to control in actual experimental situation. 
Noise factors include time, day, ambient temperature, 
humidity, air flow or test conditions. 
Unfortunately these uncontrolled variables can be a 
major cause for variability in the responses. The effect of 
background variables can contaminate primary variable 
effects unless they are properly handled by 
randomization, replication and blocking. 
Determination of the important control factors that can 
affect the responses and selection levels or settings for 
each of these factors during the experiment can be done 
by various ways. Cause and effect diagram, flowcharts, 
brainstorming or brain writing are useful tools for this. 
At various treatments are control factor setting at various 
levels. The levels need to be in an operational range of 
the product or process. The number of levels depends on 
the experimental factors, nature of the experimental 
design and whether or not the selected factor is variable 
or attribute. The cost of experimentation can grow 

significantly if too many factors and/or levels of factors 
are selected. If important factors are left out of the 
experiment, then the results may be inadequate. 
The experimental plan for the presented example is 
depicted in the Figure 3. This can be used for study the 
effects of three experimental factors in 15 runs. 
According the experimental plan each factor was varied 
at high (+), central point (0) and low (-) levels according 
the experimental design as sum up in Figure 2. Center 
points serve to test for the presence of curvature, and 
give information about quadratic effects.  
There is a simple underlying geometric structure to all 
factorial experimentation. For presented example, a 
three-factor experiment can be represent as a cube in 
which each corner represents one trial, see Figure 4. 
 
 
 
 
 
 
 
 
 
 

 
Fig.12: Visual representation of the geometric structure 
for two level full factorial design 23with center points 
 
From the fitted regression model was create the response 
plot. The response plot shows a plot of the effects for 
two of the factors on the response. Example of the 
response plot is in the Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 13. Estimated response surface for tantalum 
capacitor structure stability evaluation 
 
 
5   Conclusion 
The understanding of the burn-in procedure is very 
important question in the electronic industry related to 
planning and controlling production burn-in of devices. 
This paper deals with the problem how to follow the 

Temperature 
Time 

St
ab

ili
ty

 c
oe

ff
ic

ie
nt

 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Radovan Novotný

ISSN: 1109-2734 468 Issue 6, Volume 7, June 2008



factors influencing the burn-in procedure using design of 
experiments. The design of experiments using sound 
statistically oriented thinking is an important aspect of 
the solution of the optimization of the technological 
process to achieve required reliability. 
In our research we need to study multiple sources of 
variation related to the modification of microelectronics 
structures, technological process factor settings and 
burn-in process. We can say that one of the most 
important problems in industrial research is the 
discovery of the optimum conditions of technological 
process. In some cases it is possible to calculate the 
optimum conditions on theoretical grounds, much more 
often, however, only an empirical approach is possible.  
It is unwise to design too comprehensive an experiment 
at the start of a study. The idea of using information 
from the early parts of a series of observations to design 
the later work is termed the sequential approach to the 
discovery of the optimum conditions of technological 
process. 
This paper describes some aspects of experimental cause 
and effect evaluation and presents some results of burn-
in process sequential experimental evaluation. The used 
methodology consists of appropriate experimental plan 
that yields the most information from predetermined 
model with the least number of experiment runs. 
Empirical model coefficients and approximate models in 
the reference points obtained from the experimental data 
are created based on a multivariate regression analysis of 
each investigated response.When the region of 
experimentation is a long way from the top of the 
optimum a slope may be a good approximation. This 
approach can be used for characterization, qualification, 
and testing in relation to quality improvement and 
statistical process analysis purposes.  
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