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Abstract: In this paper, H∞ loop-shaping control is applied to improve the performance of a buck-
boost dc-dc power converter based on pulse-width-modulation (PWM) techniques. Here, classical
control techniques (i.e., proportional-integral-derivative (PID) control) and post-modern control
techniques (i.e., H∞ control), are used to design the feedback loop of a buck-boost dc-dc power
converter. The results of the experiment are satisfactory and show that robust controllers do not
depend strongly on the operating point, and that H∞ loop-shaping control performs better than
PID control.
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1 Introduction
In the last two decades the classical approach
to designing power converters has been trans-
formed into the one based on the application
of linear and nonlinear control techniques to
improve the performance of these converters.

In [1], a nonlinear control algorithm was
used to reduce the sensitivity of the control-to-
output transfer function of a boost converter
to the nature and magnitude of resistive loads.

Also, in [2] the most simple form of the
general H∞ algorithm [3–5] was applied to re-
duce the sensitivity of a boost converter to dis-
turbances in the input voltage of the power
converter and in its output load. What is
more, Naim et al. [2] showed that dc-dc power
converters whose transfer functions have right-
half-plane (RHP) zeros can be controlled sat-
isfactorily by using H∞ optimal control.

Other highly regarded references on Ro-
bust Control are [6–9]

In [10], μ synthesis with DK-iteration was
applied to design a robust voltage controller
for a buck-boost converter with current mode
control.

In [10] the μ-synthesis with DK-iteration

approach yielded a much better design than
the one based on PI-control.

At this point, it is should be highlighted
that the nonlinear H∞ control theory [11] has
also been applied satisfactorily to improve the
performance of a Ćuk converter, see [12].

In [12], a linear control law was used
to guarantee the asymptotic stability of the
closed-loop system. In addition, the controller
parameters were used to adjust the perfor-
mance of the closed-loop system and they were
chosen taking into account heuristic consider-
ations. Also, the control law was implemented
with computer assistance.

Another application of μ synthesis with
DK-iteration to improve the performance of
a boost converter can be found in [13]. In that
paper, the order of the controller from the DK
iterations was 79 and in order to implement
that controller it was necessary to reduce it to
a second order controller.

In [13], the importance of including com-
ponent uncertainties in the design of high-
performance robust switching regulators was
shown clearly.

Another application of the standard H∞
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control problem to improve the performance
of both a boost converter and a buck-boost
converter can be found in [14]. In that paper,
the experimental results of the application of
H∞ control to designing the boost converter
and the buck-boost convert were satisfactory,
the tracking performance of the closed-loop
systems were very good and both converters
maintained their outputs closed to the desired
values in the presence of disturbances.

In [15] a linear quadratic regulator (LQR)
combined with a linear state estimator was
used to improve the time domain performance
of a Ćuk converter.

Finally, one example of the application of
the LQG/LTR design technique (i.e., linear
quadratic gaussian (LQG) control with loop
transfer recovery (LTR) procedure) to design-
ing a robust controller for a series parallel res-
onant dc-dc converter can be found in [16].

Therefore, taking into consideration the
above analysis of the state of the art of the
applications of robust control techniques to de-
signing controllers for power converters, it can
be seen that most of the applications of the
robust control theory have been aimed at im-
proving the response of boost converters and
Ćuk converters.

Furthermore, they have been focused on
the application of the LQR controller design
technique, the LQG/LTR controller design
technique, the standard H∞ controller design
technique, the nonlinear H∞ controller design
technique and the μ synthesis with DK itera-
tion controller design technique.

However, there are other controller design
techniques that are very powerful tools for the
design of robust controllers. For example, the
H∞ loop-shaping controller design. In short,
this technique is a two stage design process
based on H∞ robust stabilization combined
with classical loop shaping [17, 18].

Moreover, important advantages of the
H∞ loop-shaping controller design technique
are that no problem-dependent uncertainty
and no γ-iteration for its solution are required.

In the present paper a robust controller for
a buck-boost dc-dc power converter by using
H∞ loop-shaping control was designed [3–5,17,
18]. Moreover, in order to carry out a compari-
son between classical control and post-modern
control, here the H∞ loop-shaping controller is
compared with a robust proportional-integral-
derivative (PID) controller.

The results are satisfactory and show the
importance of using robust controllers when
designing the feedback-control loop of power
converters.

2 The Buck-Boost Con-

verter

In this paper, the state-space averaging pro-
cedure [19, 20] has been employed for the de-
termination of the transfer function from the
duty cycle to the output voltage. Fig. 1 shows
the low-power buck-boost converter used in
this paper; and Fig. 2 shows the circuits for
developing the state equations, this figure in-
cludes the equivalent series resistance of the
inductor and the capacitor. Here, the switch-
ing frequency is 250 kHz, the nominal input
voltage is 12 V and the output voltage is -12
V.

It is assumed for simplicity that the con-
verter is operated so that either the transis-
tor or the diode is always conducting; this as-
sumption rules out the discontinuous conduc-
tion mode, in which both devices are off during
some part of each cycle.

Figure 1: The buck-boost converter of this pa-
per

Then, with the assumption of real compo-
nents, (1) and (2) show the finite dimensional
linear time invariant dynamical model of the
system, where x(t) is the system state vector,
d(t) is the system input (the duty cycle), and
vo(t) is the system output (the voltage across
the output capacitor).
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Figure 2: Circuits for developing the state
equations for the buck-boost converter: (a)
Switch closed; (b) Switch open.

In (3), the corresponding transfer function
from d(s) to vo(s) is defined, where vo(s) and
d(s) are the Laplace transforms of vo(t) and
d(t) with zero initial conditions (x(0) = 0).

ẋ(t) = Ax(t) + Bd(t) (1)

vo(t) = Cx(t) + Dd(t) (2)

vo(s) = [C(sI − A)−1B + D]d(s) (3)

where

x(t) =

[
iL(t)
vC(t)

]

A =

[
− (R+rC )rL+RrC(1−D)

(R+rC )L
R(1−D)
(R+rC)L

− R(1−D)
(R+rC )C

− 1
(R+rC)C

]

B =

[
(R2(1−D)+R(rC+rL)+rCrL)Vin

L(rL(R+rC )+RrC(1−D)+R2(1−D)2)
RDVin

(rL(R+rC)+RrC(1−D)+R2(1−D)2)C

]

C =
[

−RrC(1−D)
R+rC

R
R+rC

]

D =
RrCDVin

rL(R + rC) + RrC(1 − D) + R2(1 − D)2

Here, D represents the DC component of
the duty cycle, iL(t) is the inductor current,
vC(t) is the capacitor voltage, and IL and VC

represent the DC components of the induc-
tor current and the capacitor voltage, respec-
tively. Also, rL and rC represent the effect of
the equivalent series resistance of the inductor
and the capacitor, respectively, and Vin is the
DC component of the input voltage. There-
fore, in accordance with [2], if it is assumed
for a moment that rL = 0, then (4) shows the
transfer function from the duty cycle to the
output voltage.

vo(s)

d(s)
=

Vin

LC
·

(s LD
R(1−D)2

− 1)(sCrC + 1)

s2 + sL+RrCC(1−D)
LCR

+ (1−D)2

LC

(4)

For the purpose of this paper, the equiv-
alent series resistance of the power transistor
and the diode have been neglected. However,
according to [2], rL and rC have not been ne-
glected. Therefore, if we take into account
that for this paper rL = 0.2 Ω, rC = 0.1 Ω
and D = 0.53, then for the values shown in
Fig. 1, the transfer function from the duty cy-
cle to the output voltage is given by (5).

Gp(s) =
vo(s)

d(s)
= 0.1363 · Np(s)

Dp(s)
(5)

where

Np(s) = (s + 45455)(s − 38696)

Dp(s) = s2 + 1347.81s + 4.77 · 106

3 Robust Controller De-

sign
In the previous section, the transfer function
from the duty cycle to the output voltage was
given. However, it is important to say that no
single fixed model can respond exactly like the
true plant. According to Zhou et al. [4], the
universe of mathematical models from which
a model set is chosen is distinct from the uni-
verse of physical systems. For this reason,
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a model set which includes the true physi-
cal plant can never be constructed. In a nut-
shell, the designer is faced with both structured
uncertainties and unstructured uncertainties.
The first ones are due to the fact that the ex-
act value of the parameters of the structure
of the model is unknown and such parame-
ters also vary with aging, perturbations, and
so on. In addition, the second uncertainties
are due to the fact that, for high frequency sig-
nals, the parameterized finite dimensional lin-
ear time invariant model fails to describe the
plant because the plant will always have dy-
namics which are not represented in the fixed
order model.

The above-mentioned uncertainties nega-
tively affect parameters that define the dy-
namics of the process such as the inductor cur-
rent and the capacitor voltage.

With this scenario in mind, designing a ro-
bust controller for power converters is not an
easy task. However, for a single-input-single-
output (SISO) plant, if the designer guaran-
tees that the system has a gain margin equal
to infinity, a gain reduction margin equal to
0.5 and a (minimum) phase margin of 60o, the
robustness of the controlled system is guaran-
teed [4, 5].

This paper’s buck-boost dc-dc power con-
verter is based on pulse-width-modulation
(PWM) techniques and the voltage-mode
PWM mode of operation was used. More-
over, in order to know whether the feedback-
controlled system contains hidden unstable
modes, an internal stability analysis of the
closed-loop system was made.

3.1 Internal Stability

In this paper, in order to carry out the internal
stability analysis of the feedback-controlled
system, the block diagram shown in Fig. 3 was
used. It consists of the plant Gp(s), the con-
troller C(s), the plant output disturbance ω1,
the plant input disturbance ω2, the controller
input signal z1 and the plant input signal z2.

Assume that the feedback-controlled sys-
tem is well-posed and that neither Gp(s) nor
C(s) have hidden unstable modes [4]. The sys-
tem shown in Fig. 3 can be given by

[
z1

z2

]
= T (s)

[
ω1

ω2

]
(6)

where

T (s) =

[
T11(s) T12(s)
T21(s) T22(s)

]
(7)

and

T11(s) = (I + GpC)−1

T12(s) = Gp(I + CGp)
−1

T21(s) = −C(I + GpC)−1

T22(s) = (I + CGp)
−1

Figure 3: Diagram used to carry out the in-
ternal stability analysis.

Theorem 1 The feedback-controlled system
in Fig. 3 is internally stable if the internal
signals (i.e., z1 and z2) are bounded for all
bounded inputs (i.e., ω1 and ω2).

Proof: An excellent proof of this theorem
can be found in Chapter 5 of Zhou et al. [4].

According to Skogestad and Postlethwaite
[5], the feedback-controlled system shown in
Fig. 3 is internally stable if T (s) in (7) is sta-
ble.

According to Youla et al. [21], all the
stabilizing controllers for this paper’s power
converter can be parameterized. Lemma 1
is due to the Youla-parameterization or Q-
parameterization.

Lemma 1 For the case under analysis, Gp(s)
is a stable plant, the closed-loop system in
Fig. 3 is internally stable provided that

Q = C (I + GpC)−1

is stable.
Proof: An excellent proof of this lemma can
be found in Skogestad and Postlethwaite [5].
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3.2 PID Controller Design
Among all the classical control techniques de-
veloped over the years, PID control stands
out as one of the most effective control tech-
nique when meeting the performance specifi-
cations of feedback-controlled systems. The
PID-controller is the most widely used con-
troller in the process industry and its transfer
function is given by

C(s) = Πp + Πds +
Πi

s
(8)

which can be written as

C(s) =

(
Πds

2 + Πps + Πi

s

)

where the gains Πp, Πd and Πi are the PID
coefficients [22].

In (8), it can be seen that C(s) involves
differentiation of the input, it is an improper
transfer function.

Experience tells us that (8) can be trans-
formed into a proper transfer function by let-
ting the derivative action be effective only over
a limited frequency range [5].

Thus, in order to limit the derivative ac-
tion, the transfer function given by (8) can be
changed into the following transfer function

C(s) = Πp +
Πds

(εΘds + 1)
+

Πi

s
(9)

where ε ≤ 0.1 and Θd is the derivative time
constant. Therefore, (9) can be re-written as

C(s) =
Πd + εΘdΠp

εΘd
· N1(s)

D1(s)
(10)

where

N1(s) = s2 +
Πp + εΘdΠi

Πd + εΘdΠp
s +

Πi

Πd + εΘdΠp

D1(s) = s

(
s +

1

εΘd

)

For the problem at hand, a PID-controller
that gave a closed-loop system with robust sta-
bility margins (i.e., phase margin = 60.4o and
gain margin = 17.31 dB) was

C(s) = −(s + 1934.8)2

s (s + 45455)
(11)

The loop transfer function is given by

L(s) = Gp(s)C(s)

where Gp(s) is given by (5) and C(s) is given
by (11).

Finally, for this paper’s PID-controller, it
can also be checked that T (s) (see (7)) is sta-
ble. Therefore, the closed-loop system is in-
ternally stable.

3.3 H∞ Loop-Shaping Con-

troller Design
In the present paper, the one degree-of-
freedom (1DOF) H∞ loop-shaping design pro-
cedure was also used [18]. Excellent informa-
tion on H∞ loop-shaping control can also be
found in [3–5].

In this control technique, the converter’s
transfer function Gp(s) (see (5)) is represented
as the following left coprime factor perturbed
plant

Gp
U = (O + UO)−1 (R + UR) (12)

where the transfer functions UO and UR are
stable and unknown. They represent the un-
certainty in GP (s). In addition,∣∣∣∣[ UR UO

]∣∣∣∣
∞ < δ (13)

where δ is the stability margin (0 < δ) [3–5].
Fig. 4 shows the block diagram of the 1DOF
H∞ loop-shaping design problem.

Figure 4: Block diagram of the 1DOF H∞
loop-shaping design problem.

According to Skogestad and Postlethwaite
[5], the feedback-controlled system shown in
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Fig. 4 is robustly stable provided that

γ
�
=

∣∣∣∣
∣∣∣∣
[

C
I

]
(I − GpC)−1O−1

∣∣∣∣
∣∣∣∣
∞

be

γ ≤ 1

δ
(14)

where the symbol
�
= denotes equal by defini-

tion. Here, the H∞ control problem is to find
a robust and optimal controller that guaran-
tees that (14) holds.

Finally, according to Glover and McFar-
lane [17] and Skogestad and Postlethwaite [5],
the minimum value of γmin and the maximum
stability margin δmax are given by

γmin =
1

δmax

=
(
1 − ∣∣∣∣[ R O

]∣∣∣∣− 1
2

H

)− 1
2

(15)

where ||·||H denotes Hankel norm. An efficient
procedure to find a controller that robustly
stabilizes a given shaped plant with respect
to coprime factor uncertainty using H∞ opti-
mization is given by Skogestad and Postleth-
waite [5] (Chapter 9, p. 378). In addition, the
MATLAB function coprimeunc can be used to
obtain the above-mentioned controller.

In order to carry out the controller design
process, the plant Gp(s) (5) was shaped by
using the pre-compensator F (s) given by

F (s) = −0.02
s + 1.3 · 103

s
(16)

Therefore, the shaped plant was given by

Gp
S(s) = Gp(s)F (s) (17)

and, using the MATLAB function coprimeunc,
the H∞ loop-shaping positive-feedback con-
troller given by (18) was obtained.

C(s) = 2.7 · 10−3 · N2(s)

D2(s)
(18)

where

N2(s) = s3 − 4.6 · 106s2 − 5.7 · 109s − 1.3 · 1013

D2(s) = s3 + 1.3 · 104s2 + 5.7 · 107s + 5.8 · 1010

In order to guarantee tracking, the gain
K0 given by

K0 = C(0) = −0.6253

was placed between at the system input.
In this case, the loop transfer function is

given by
L(s) = Gp

S(s)C(s)

where Gp
S(s) is the shaped plant given by (17)

and C(s) is the controller given by (18).
For this paper’s H∞ loop-shaping con-

troller (18), the system also had robust sta-
bility margins (i.e., phase margin = 88.4o and
gain margin = 17.63 dB). Furthermore, γmin

was equal to 1.73, which is a satisfactory value
of γmin [5].

Moreover, for the controller given by (18),
it can also be checked that the feedback-
controlled system is internally stable.

4 Experimental Results
The prototype of the buck-boost converter
tested in the laboratory is shown in Fig. 5.

Figure 5: Prototype of the buck-boost con-
verter tested in the laboratory.

Also, Fig. 6 shows a schematic repre-
sentation of the implementation of the PID-
controller (11), where R1 = 98.43 Ω, C1 = 5.25
μF, R2 = 5.17 kΩ, C2 = 100 nF and C3 = 4.45
nF. In that figure, the resistors and capacitors
with nonstandard values were implemented by
using classical techniques of linear circuit anal-
ysis for the connection passive components.

Furthermore, a block diagram of the
closed-loop system by using the PID-controller
is shown in Fig. 7. Here, the PWM actuator
was implemented by using the National Semi-
conductor Regulating Pulse Width Modulator
LM3524D.

Experimental results of the response of the
PID-controlled buck-boost converter to a rect-
angular perturbation in the input voltage of ±
2.4 V at 50 Hz are shown in Fig. 8.
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Figure 6: Schematic representation of the PID
control for the buck-boost converter.

Figure 7: Block diagram of the closed-loop sys-
tem by using the PID-controller.

Also, experimental results of the response
of the PID-controlled buck-boost converter to
a rectangular perturbation in the load of ±
220 mA at 50 Hz are shown in Fig. 9. Here,
the PWM actuator was implemented by using
the National Semiconductor Regulating Pulse
Width Modulator LM3524D.

At the beginning of this research, the ro-
bust controller given by (18) was implemented
by using analog electronics (operational ampli-
fiers and passive electrical components). How-
ever, such a practical implementation had
some drawbacks. For instance, the practi-
cal implementation of the transfer function
given by (18) was much more complex than
the one of the PID-controller given by (11).
In addition, the characteristics of that analog
controller could not be changed easily when
such changes were needed. For these reasons,
among others, in this research it was decided
to discard the practical implementation of (18)
as an analog controller.

Therefore, here the implementation of (18)
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Figure 8: Experimental results of the response
of the PID-controlled buck-boost converter to
a rectangular perturbation in the input voltage
of ± 2.4 V at 50 Hz.
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Figure 9: Experimental results of the response
of the PID-controlled buck-boost converter to
a rectangular perturbation in the load of ±
220 mA at 50 Hz.

was carried out by using computer assistance
as a digital controller, as in [12].

Data processing in the digital controller
was straightforward, complex calculations
could be performed easily, controller charac-
teristics could be changed easily when such
changes were needed, and the digital controller
was far superior to the corresponding analog
controller from the point of view of internal
noise and drift effects.

Fig. 10 shows the block diagram of the dig-
ital control system. In addition, for a sampling
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rate of 4 kHz and applying the bilinear trans-
formation, the pulse transfer function of the
1DOF H∞ loop-shaping controller given by
(18) multiplied by the pre-compensator given
by (16) is the one given by

C(z) =
N3(z)

D3(z)
(19)

where

N3(z) = bo + b1z
−1 + b2z

−2 + b3z
−3 + b4z

−4

D3(z) = 1 + a1z
−1 + a2z

−2 + a3z
−3 + a4z

−4

and

a1 = −1.9321

a2 = 1.1640

a3 = −0.2790

a4 = 0.0471

bo = 0.0120

b1 = −0.0156

b2 = −0.0052

b3 = 0.0162

b4 = −0.0064

Figure 10: Block diagram of the digital control
system. 1DOF H∞ loop-shaping control.

Here, (19) was implemented by using the
National Instruments Data Acquisition Card
NI DAQCard-6062E.

Experimental results of the response of
the 1DOF H∞ loop-shaping-controlled buck-
boost converter to a rectangular perturbation
in the input voltage of ± 2.4 V at 50 Hz are
shown in Fig. 11, and experimental results of
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Figure 11: Experimental results of the
response of the 1DOF H∞ loop-shaping-
controlled buck-boost converter to a rectan-
gular perturbation in the input voltage of ±
2.4 V at 50 Hz.
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Figure 12: Experimental results of the
response of the 1DOF H∞ loop-shaping-
controlled buck-boost converter to a rectan-
gular perturbation in the load of ± 220 mA at
50 Hz.

the response of the 1DOF H∞ loop-shaping-
controlled buck-boost converter to a rectan-
gular perturbation in the load of ± 220 mA at
50 Hz are shown in Fig. 12.

The above experimental results show that
the buck-boost converter implemented by us-
ing the post-modern controller attenuates in-
put ripple at 50 Hz better than the buck-boost
converter implemented by using the classical
controller (see Fig. 8 and Fig. 11).
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Second, in spite of the fact that Fig. 9
and Fig. 12 indicate a satisfactory rejection
of both controlled systems to load current rip-
ple at 50 Hz, the aforementioned two figures
also show that the H∞ loop-shaping-controlled
buck-boost converter is superior to the PID-
controlled buck-boost converter.

On the other hand, the practical imple-
mentation of the PID-controller (11) was much
more easier than the one of the H∞ loop-
shaping controller (18). The latter required
computer assistance.

To sum up, it should be highlighted that
in spite of the fact that the performance of the
H∞-controlled buck-boost dc-dc power con-
verter was better than the performance of the
PID-controlled power converter, it can be said
that the performances of both robust designs
were satisfactory.

Other applications of general robust con-
trol techniques to improve the performance of
electrical systems that have yielded satisfac-
tory results can be found in [23–25]

5 Conclusion
To conclude, in this paper two robust con-
trollers have been designed in order to build a
robust buck-boost dc-dc power converter. One
of the controllers was designed by using clas-
sical control techniques and the other was de-
signed by using post-modern ones.

The results of the experiments were sat-
isfactory and showed that both controllers al-
lowed the buck-boost converter to reject per-
turbations in the input voltage and in the load
current satisfactorily.

Also, these results showed that none of
the robust controllers presented in this pa-
per depend strongly on the operating point.
Both controllers satisfactorily met the desired
closed-loop system behavior.

Comparing both robust controllers, the re-
sults of the experiment also showed that the
1DOF H∞ loop-shaping controller performed
better than the PID-controller.

The H∞-controlled converter attenuates
both input ripple and perturbations in the
load current at 50 Hz better than the buck-
boost converter implemented by using the
PID-controller.
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