
 

Fuzzy Techniques in Analog Circuit Design 
 

GABRIEL OLTEAN  
Bases of Electronics Department 

Technical University of Cluj-Napoca 
C. Daicoviciu Street, 15, 400020, Cluj Napoca, 

ROMANIA, 
Gabriel.Oltean@bel.utcluj.ro 

 
Abstract: - The aim of his paper is to present some applications of fuzzy techniques in the optimization-based 
design of analog circuits. Our approach turns into profit the advantages offered by different fuzzy techniques. 
Fuzzy systems or fuzzy sets are involved in every algorithm phase. The optimization problem formulation is 
accomplished in a flexible manner using fuzzy sets to define fuzzy optimization objectives. Also, the initial 
guess of design parameters is based on matching degrees determined with fuzzy sets. The optimization engines 
use fuzzy systems to compute the coefficients to modify the design parameters in each iteration. In order to 
reduce the time spent for circuit performance evaluation, we use a fuzzy system to model each circuit 
performance. Two computer-aided design tools, at the cell level are developed in Matlab. A large collection of 
experimental results proves the validity of our approach. Different analog modules as simple transconductance 
operational amplifier, Miller operational transconductance amplifier, and common-emitter stage were designed 
for several sets of design requirements with very good results. 
 
Key-words: Analog design, Multiobjective optimization, Fuzzy sets, Fuzzy systems, Unfulfillment degree. 
 
1. Introduction 
Actual trends in VLSI technology are towards 
integration of mixed analog-digital circuits as a 
complete system-on-a-chip. Most of the knowledge-
intensive and challenging design effort spent in such 
systems design is due to the analog building blocks 
[1]. Analog design has been traditionally a difficult 
discipline of IC design. In circuit design 
optimization, a circuit and its performance 
specifications are given and the goal is to 
automatically determine the device sizes in order to 
meet the given performance specifications while 
minimizing a cost function, such as a weighted sum 
of the active area or power dissipation [2]. This is a 
difficult and critical step for several reasons: 1) most 
analog circuits require a custom optimized design; 
2) the design problem is typically underconstrained 
with many degrees of freedom; and 3) it is common 
that many (often conflicting) performance 
requirements must to be taken into account, and 
tradeoffs must be made that satisfy the designer [3]. 
Consequently, the development of CAD tools at the 
cell-level, that automate and speed up the design 
process of analog portions of circuits and systems 
remains as an active research area in both industry 
and academia [1]. 
Fuzzy techniques have been successfully applied in 
a variety of fields such as automatic control, data 
classification, decision analysis, expert systems, 
computer vision, multi-criteria evaluation, 
modeling, optimization, etc. 

Works showing the possibility of application of 
fuzzy logic in computer aided design of electronic 
circuits started to appear in late 1980s and early 
1990s. An argument for fuzzy logic application in 
CAD is derived from the nature of the algorithm 
used for solving design problems. The majority of 
algorithms for design synthesis use heuristics that 
are based on human knowledge acquired through 
experience and understanding of problems. The 
natural language, a fuzzy logic language is the most 
convenient way to express such knowledge. 
Linguistic descriptions are usually given in fuzzy 
terms not only because this is the most common 
form of representation of human knowledge, but 
also because our knowledge about many aspects of 
the design is fuzzy [4]. Linguistic information, 
while not precise, represents an important source of 
knowledge. Another important source of knowledge 
is numerical data. Fuzzy logic systems are 
appropriate in such situations because they are able 
to deal simultaneously with both types of 
information: linguistic and numerical. 
Also, fuzzy systems being universal approximators 
can model any nonlinear functions of arbitrary 
complexity [5], [6]. This is very useful in modeling 
complex circuit functions of high accuracy at low 
cost, necessary in performances evaluation. 
The objective of our research is to turn into good 
account the advantages of fuzzy techniques in the 
optimization-based analog circuit design field. We 
developed optimization algorithms that use fuzzy 
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approaches in all their phases. Two CAD tools at the 
cell level, with friendly graphical user interfaces are 
developed in Matlab.     
The reminder of the paper is organized as follows. 
We begin in Section 2 with an overview of the 
optimization algorithm used in the design 
optimization of analog modules. Section 3 focuses 
on fuzzy sets utilization in the formulation of the 
multiobjective optimization problem. The method to 
obtain a good initial solution, based on matching 
degree, is presented in Section 4. Evaluation engine, 
based on fuzzy models of circuit performances is the 
subject of Section 5. The detailed procedure to build 
such fuzzy models and some results for a simple 
operational transconductance amplifier are also 
included. The heart of the algorithm, the 
optimization engine is address in Section 6. Two 
fuzzy system-based engines (global gradients fuzzy 
optimization and local gradients fuzzy optimization) 
are explained in some details here. Section 7 
discusses the implementation of our fuzzy-based 
CAD tools and some results designing three analog 
modules. In the end, in Section 8, some conclusions 
are drawn.      
 
 
2. Optimization Algorithm 
Design optimization of an electronic circuit is a 
technique used to find the design parameter values 
(length and width of MOS transistors, bias current, 
capacitor values etc) in such a way that the final 
circuit performances (dc gain, gain-bandwidth, slew 
rate, phase margin etc.) meet as close as possible the 
design requirements.  
In contrast with the circuit analysis, which is a direct 
problem, the circuit design is a reverse problem. The 
goal of the reverse problem is to determine a cause 
(values of the design parameters) that produces an 
arbitrarily specified effect. Due to the arbitrarily 
character of the specified effect it is possible for the 
design problem to have no solution.  Even though a 
solution exists, generally it is not unique. 
Finding design solutions is difficult due to 
concurrent requirements and complex nonlinear 
relations connecting the circuit performances on the 
design parameters. As well, the number of 
parameters and the number of design requirements 
(design equations) are different, so we have to deal 
with an over-determined or under-determined 
system of nonlinear equations.  
There is no general design procedure independent of 
the circuit; also, there is no formal representation to 
connect the circuit functions on its structure in a 
consistent manner. The major obstacle consists in 

the peculiarity of the analog signals: the continuous 
domain of the signals’ amplitude and their 
continuous time dependency. Hereby the analog 
circuit design is known like an iterative, multi-phase 
task that necessitates a large spectrum of knowledge 
and abilities of designers.  
As stated in [7] there are two basic modalities to 
deal with the analog design: knowledge based 
approaches and optimization based approaches. In 
the present paper we are centered on the last one. 
The optimization algorithm begins with the 
formulation of the optimization objectives and 
optimization problem, followed by the initialization 
of the design parameters. During iterations an 
evaluation engine computes the actual circuit 
performances based on the actual design parameter 
values. If the objectives are fulfilled, the solution 
consists in the set (or sets – in the case of a real 
multiobjective optimization) of the actual design 
parameter values and the algorithm is stopped. If 
not, new design parameter values are to be 
computed by the optimization engine and the 
optimization loop is covered once again. 
The novelty introduced in this paper is the 
utilization of different fuzzy techniques in every 
phase of the optimization algorithm, as it is shown 
in Fig. 1. Fuzzy sets are involved in the formulation 
of the optimization objectives and in the initial 
guess of the design parameters, while some fuzzy 
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systems address the performance evaluation issues 
(evaluation engine) and new parameter values 
computation (optimization engine).     
 
 
3. Optimization Objectives 
Formulation 
To formulate the design objectives for a real design 
is not always a simple task. Often, it is not clear 
what precise values to give to each objective. In fact 
design objectives are often better expressed in real 
world terms than in precise numbers. The designers 
usually accept a certain degree of fulfillment of the 
design objectives. This comes mainly from then 
reality of fabrication process where accurate control 
of every step of the fabrication process becomes 
more and more difficult and provides differences 
between computed values and fabricated values [8]. 
The fuzzy techniques used to define the 
optimization objectives suppose the fuzzification of 
the requirements, getting this way the possibility to 
consider different degrees for requirement 
achievements and acceptability degrees for a 
particular solution. One or two fuzzy sets are 
associated with each requirement. Their 
membership functions represent the corresponding 
fuzzy objective functions. One approach [9] - [14] is 
to consider that the membership degree μ represents 
the degree of fulfillment of the fuzzy objective. A 
value μ=1 means that the objective is fully satisfied, 
while a value μ=0 means that the objective is not 
satisfied at all. This method suffers a disadvantage 
in the case of equality requirement. No information 
is provided regarding the relation between the 
requirement and the actual performance, as the 
performance is greater than the requirement and it 
should be decreased, or the performance is smaller 
than the requirement and it should be increased. 
This disadvantage can be overcome using the 
method proposed by the author [15]-[18]. The 
membership degree μ represents the error degree in 
the fulfillment of the fuzzy objective. A value μ=1 
means the objective is not satisfied at all, while a 
value μ=0 means the objective is fully satisfied. 
As an example, the requirements “greater or equal” 

r
kk fxf ≥)(  and “equal” r

kk fxf =)(  have the 
corresponding fuzzy objective functions presented 
in Fig 2. where:  

x – the vector of the design parameters; 
fk - the kth performance function; 

   r
kf - the kth requirements; 

    x* - the current value of the design parameters 
vector.   

 
The fuzzy objective functions are: 
 
                 ( )( ) ]1,0[: →

kfkk Dxfμ                    (1) 
 

where 
kf

D is the range of possible values for fk(x). 

( )( )xfkkμ  indicates the error degree in 
accomplishing the kth requirement, so we will call it 
“unfulfillment degree” (UD). A value μk=0 means 
full achievement of fuzzy objective, while a value 
μk=1 means that the fuzzy objective is not achieved 
at all. This occurs when fk(x) takes an unacceptable 
value. Fig 2 shows the corresponding value of the 
unfulfillment degree *

kμ  for the current value of the 
variables vector x*. The optimization problem 
formulation became: 
 
     Find x that 
     minimizes   {μ1(f1(x)), μ2(f2(x)),…, μn(fn(x))}   (2) 
 
where n is the number of requirements. 
To solve such a multi-objective optimization 
problem there are two possibilities. The first one is 
to convert the problem into a single objective 
optimization problem, by combining all the 
individual objectives into a single objective function 
(for example using a weighted sum). The second 
approach involves a real multiobjective optimization 
method, as it is discussed in Section 6. 
Fuzzy objectives have some advantages compared 
with the crisp ones. Fuzzy objectives provide an 
interface between the real world design problems 
and the mathematical formulation supported by 
most optimization algorithm. Tradeoffs are handled 
by manipulating the shape of the membership 
functions that reflect the fulfillment or violation of 
the design requirements.  
 
 
4. Initial Design Parameters 
Without a well-chosen starting point an optimization 
run may converge very slowly or converge to a local 
minimum with a significantly worse performance 

Fig. 2 Fuzzy objective functions: 
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k kf f=  
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than the circuit’s best capability [19]. 
Different methods to obtain initial solutions are 
presented in the literature. In [10], [20], and [21] an 
experienced user is the one that provides a good 
initial guess. Approximate analytic design equations 
are used in [10], [11], and [22] while some 
randomly generated initial solution are preferred in 
[13], [19], [23], and [24].  
The author proposed a fuzzy based method for the 
initial solution [18] and [25]. It is based on a 
selection of the initial solutions from a larger set of 
design parameter vectors, previously generated 
using Latin Hypercube Sample technique. The 
selection criterion is the matching degree of the 
corresponding initial performances with the design 
requirements. For every requirement a fuzzy set is 
used to define the matching degree, as for example 
in Fig. 3 for an “equal” type requirement and for a 
“greater or equal” type requirement.  
 

 
For every set of initial performances an arithmetic 
mean of the individual matching degrees is 
computed. The m initial solutions are sorted in 
descending order of the mean matching degree and 
the first n are chosen as initial candidate solutions. 
This method is appropriate for optimization methods 
based on a population of solutions. If a conventional 
method is used, the initial solution with highest 
matching degree can be selected.   
The fuzzy method presents positive aspects: no 
necessity for an experienced designer, good quality 
of the initial solution and no user intervention.  
 
 
5.  Evaluation Engine 
The design process of an electronic circuit is an 
iterative process (see Fig.1) that requires a large 
number of performance evaluations. Analog circuits 
are difficult and time-consuming for a proper 
evaluation.  
Performance modeling of an analog integrated 
circuit involves the representation of a circuit 

behavior in terms of its design parameters 
(component sizes, bias currents and voltages).  
Even in the case of basic characteristics of a simple 
circuit (amplifier gain, gain-bandwidth, slew rate 
etc) the performance in question can be a complex 
function of many parameters. In a realistic case, a 
performance model will be in general a non-linear 
function over a high dimensional space of circuit 
parameters [26]. 
An accurate estimation of the circuit performances 
requires the use of complex models (for example 
SPICE simulation) leading to an excessively large 
computation time. One way to reduce the 
computation time is to use more simple models of 
circuits and devices. In order to satisfy both main 
requirements (accuracy and speed), many researches 
proposed several methods to evaluate circuit 
performances. 
Simple analytical models are used in [11], [20], 
[21], [27], and [28], while some version of 
polynomial and monomial models are involved in 
[29], [30] and [2]. A lot of automatic design tools 
include a Spice-like simulator to accurately compute 
the performances [31] - [35] and [2]. Least-square 
support vector machine are also involved in [26], 
[36], and [37]. 
Fuzzy systems are very useful to model the circuit 
performances because they imply just a few simple 
mathematical operations and can model any 
complex, multivariable and nonlinear function at 
any level of accuracy. Such fuzzy models are used 
in [1], [38], and [39].  
The author synthesized a method to build such 
models and used it for some analog modules [16], 
[18], [40]. These models can be automatically built 
up using an input-output data set.   
Each circuit performance is modeled by a first order 
Takagi-Sugeno system, having the circuit 
parameters as inputs and the performance function 
as output (see Fig. 4.).   
 

 
 
The full modeling procedure is explained in Fig. 5. 
The procedure starts with the analog circuit whose 
performances are to be modeled. 
The ranges of the parameter values are established 
so that irrespective of the parameter values 
combinations, the circuit must operate in the desired 
region. For example, in an amplifier the transistors 
should be maintained in their active regions.  
The parameter set (the combination of the parameter 
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values) should be chosen to be representative for the 
function to be modeled (covers the space of the 
parameters and embeds all the specific 
characteristics of the function). 
For each input vector (one combination of the 
parameter values), the function value has to be 
found, in our case by SPICE simulation. All input 
vectors, together with their corresponding function 
values compose the data sets. Two data sets: 
training set and checking set are generated.  
The training set is then subdued to a subtractive 
clustering procedure resulting an initial first order 
Takagi-Sugeno fuzzy system. Next, the initial fuzzy 
system is trained using ANFIS – Adaptive Neuro-
Fuzzy Inference System and the training data set. 
The resulting fuzzy model is tested from the 
accuracy point of view. If the accuracy is to low, the 
procedure must be resumed by generating a new 
initial fuzzy system or even by determining new 
data sets. If the accuracy is acceptable the modeling 
procedure stops and provides the desired fuzzy 
model of that circuit function. 
Using fuzzy models in the evaluation engine, the 
accuracy can be very good at a high speed. The 
accuracy is good, but not sufficient to pass the 
resulted design directly to an industrial 
manufacturing process, where an industrial strength 

simulator is used to validate the circuit. One idea 
[20] is to perform the optimization in two steps:  
first step uses non-Spice (fuzzy) models for speed, 
and the second step uses Spice models for accuracy. 
Because the starting point for the second phase is 
very close to the final solution only few iteration are 
necessary to carry out the optimization process, so 
the overall time will not increase too much. The 
main advantage of fuzzy models is that there are no 
restrictions in the kind of functions that can be 
modeled, as far as fuzzy systems are universal 
approximators. So, developing such models for 
circuit functions can be a very useful task in the 
field of analog design. 

 
 

5.1. Fuzzy Models for SOTA 
This paragraph presents some results regarding the 
fuzzy models obtained for the circuit functions in 
the case of a simple operational transconductance 
amplifier (SOTA) (see Fig. 6).  
 

 
The design parameters of the circuit are the 
dimensions of the transistors (W/L) and the bias 
current Ib. The input transistors Q1 and Q2 must be 
identical, therefore (W/L)1=(W/L)2 resulting the first 
parameter 12)/(12 LWW = . The transistors Q3 and 
Q4 (active load) must be paired, resulting 
(W/L)3=(W/L)4, so our second parameter will be 

34)/(34 LWW = . For the current mirror, Q5 and 
Q6, we consider the current (Ib) equal trough both 
transistors so (W/L)5=(W/L)6. In order to keep a 
minimal area, we have taken W=L so we obtained 
our third parameter 56)/(56 LWW = . The fourth 
and final parameter is Ib.  
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As performances, the important ones were 
considered: voltage gain 0vA , unity gain bandwidth 
GBW , phase margin PM and common mode 
rejection ratio CMRR . 
Applying the previously described procedure, we 
built our fuzzy models for each circuit function with 
a set of 850 data pairs (700 training pairs and 150 
checking pairs). 
 

 
The resulted surfaces of the voA  fuzzy model are 
presented in Fig. 7. Because the function depends on 
four variables, two different plots appear, each of 
them representing the voA  dependence on two 
variables: ,12, WIb  (top), respectively 56,34 WW  
(bottom). In each picture, the values of the other two 
parameters were set to the middle of their ranges. 

voA  depends heavily on the 12, WIb  parameters, 
considering its quite large variation (from 20 to 63). 

voA  increases with 12W  and decreases with bI , its 
maximum value being obtained for maximum 12W  
and minimum bI . The voA  dependence on the other 
two parameters, 56,34 WW  is reduced, the variation 
of the function lying in a narrower range (from 40.5 
to 45).  

To check the accuracy of the fuzzy model, we tested 
it against two sets of data, a test set (data that was 
not included neither in the training or checking sets) 
and a verification set (data that was included in the 
training set).  As accuracy metric we used the 
absolute relative error, shown in Table 1. Mean and 
maximum values of this error are presented for all 
the performance functions. The mean errors are 
relatively small, confirming the good modeling 
accuracy for these multi-variable complex nonlinear 
functions.  
 
    Table1. Errors for fuzzy models 

Relative error [%] Circuit 
function Data set 

Mean Maximum
Test 0.83 1.01 Avo Verification  0.85 2.57 
Test 3.07 8.53 GBW 

Verification 1.81 5.20 
Test 0.03 0.10 PM 

Verification 0.02 0.11 
Test 3.04 8.74 CMRR 

Verification 4.67 9.24 
 
 
6. Optimization Engine 
The optimization engine (the way to compute new 
parameter values) is the heart of the optimization 
algorithm. It should be chosen so that the 
optimization will converge to an optimal solution in 
a reduced number of iterations. This task is not an 
easy one due to complex relations between design 
parameters and circuit performances. The same 
parameter can affect more than one circuit 
performance at a time, so when a parameter is 
modified to improve a performance it can worsen 
another. 
The literature abounds in optimization methods. 
Some classic (local) optimization methods involved 
in analog design automation are: steepest descent 
[19], [22] and [41], sequential quadratic 
programming [38], [42], Lagrange multiplier [22], 
conjugate gradient [20], feasible direction [10], or 
simplex [4]. Global optimization based on classical 
methods are also present in the field: simulated 
annealing [20], stochastic pattern search [24], 
geometric programming in convex form [29], [30], 
and [2]. Computational based method as genetic 
algorithm and evolutionary strategy [1], [31], [43], 
and [44] proved to be another class of efficient 
optimization methods. 
The author proposed two fuzzy optimization 
methods based on fuzzy inference systems. The first 
one, GGFO (Global Gradients Fuzzy Optimization) 

Fig. 7.  The surface of the Avo fuzzy model 
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uses global qualitative dependencies (qualitative 
gradients) of the performance functions on the 
design parameters. The second optimization engine, 
LGFO (Local Gradients Fuzzy Optimization) is 
based on local quantitative gradients.   
 
 
6.1 Global Gradients Fuzzy Optimization 
The GGFO method proposes [15] and [36] a zero 
order Takagi-Sugeno fuzzy system for every design 
parameter to compute a coefficient (coef) to modify 
it (Fig. 8.).  
 

 
The fuzzy sets for the inputs (performances) are the 
same with those used to formulate the optimization 
problem. The coefficient takes values in [-1; 1] and 
the corresponding parameters will be modified as 
follows: 

⎪
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where uη and dη  are two dump factors with default 
values uη =1, dη =0.5, and i=1, 2, …, N is the index 
of the parameter and j=1, 2, …, M is the current 
iteration index. 
The fuzzy rule base is build using the qualitative 
dependencies between design parameter and each 
circuit performances. For example let us consider 
the qualitative dependences of the f1 and f2 
performance functions on the x1 and x2 parameters 
presented in the Table 2 (the arrows show the 
variation direction). The fuzzy system rules for coef2 
(the iteration index is omitted) are written based on 
Table 2: 
  

 
 

R1:  If   f1 is bigger or f2 is smaller  
                                                 then coef2 is positive 
 

R2:  If   f1 is smaller or f2 is bigger 
                                                 then coef2 is negative 

This is a local multioptimization method so it can 
find an acceptable local optimal solution. It should 
be noticed that this approach holds only for 
monotone performance function in respect with 
every parameter. We can increase the chances to 
find the global optimum solution if we repeat 
several times the optimization procedure for 
different initial design parameter.  
 
 
6.2 Local Gradients Fuzzy Optimization 
The second fuzzy approach uses local quantitative 
gradient information (LGFO) [18], [45]. The 
optimization starts with the initial candidate 
solution. Each design parameter can affect more or 
less each objective function. The sign and the value 
to modify a certain design parameter take into 
account the unfulfillment degrees, the quantitative 
gradients and the relative importance of the involved 
variables in relations with the objectives. 
The method acts as a human expert for a certain 
circuit performance: 
• modifies more the parameter with greater 
importance, because it can really affect the 
performance, and the modification also depends on 
the unfulfillment degrees of the corresponding 
requirements. 
• the parameter with lower importance is modified 
less or not at all, because its influence on circuit 
performance is insignificant. 
• the final modification of a parameter is a 
weighted sum of the partial modification (imposed 
by every objective function). 
Such human expert knowledge is captured and 
incorporated in the optimization engine by means of 
a fuzzy logic system. For every xi parameter and 
every fk function, a partial coefficient partci,k to 
modify that parameter is computed in each iteration 
by a first order Takagi-Sugeno fuzzy system. The 
fuzzy rules are presented in Table 3 where, for 
example the 4th column and the 3rd   row give the 
following fuzzy rule: 
 

 
 
If UD is Medium and importance is Small 
                                                    then partc is Small. 
 

 

                    UD 
importance 

Z S M L 

Z Z    
S  VS S M 
M  S M L 
L S L VL 

Z – Zero 
VS – Very Small
S -Small              
M – Medium 
L – Large 
VL – Very Large 

Table 3. Fuzzy rules for partial coefficient
x2 x1 

Table 2. Qualitative dependence   
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The control surface generated by this fuzzy system 
is presented in Fig. 9. Finally, we should mention 
that the optimization method acts in an adaptive 
manner: when the UDs are great (towards 1), large 
coefficients to modify the parameters result. For 
small UDs result small coefficients to modify the 
parameter. Thus we can focus our search so that the 
solution converges to the optimal point. This 
method falls in the category of local optimization 
method.  
In order to obtain a set of local Pareto optimal points 
for our multiobjective optimization problem, the 
method was developed to deal with multiple parallel 
search paths by means of a population of solutions, 
consisting of candidate solutions. During iteration, 
for every candidate solution, the actual performance, 
the UDs and new parameter values are computed. If 
the UDs for one candidate solution can not be 
decreased anymore, we have found a local Pareto 
optimal point and the future iterations will not visit 
this candidate solution, shortening the optimization 
time. 
The optimization algorithm stops in one of the 
following situations: 
i) All UDs become zero for one candidate solution. 
This candidate solution is considered a global Pareto 
optimal point and it is the final solution.  
ii) None of the candidate solutions can be further 
improved, meaning that the set of local Pareto 
optimal points was obtained. As final optimal 
solution we chose the one with the minimum value 
of the mean of unfulfillment degrees.  
iii)  Maximum number of iterations is reached.  
The fuzzy optimization with qualitative gradients 
(GGFO) is fast, because it implies a low 
computation volume, but it is restricted to monotone 
function and can found only a local solution. 
Contrary, the fuzzy optimization with quantitative 
gradients (LGFO) and multiple search paths has the 
advantage to avoid a local solution and find a set of 
Pareto optimal points. Also it can cover a wide 
spectrum of the performance functions to be 

optimized. Due to these advantages this method is 
comparable or even better than some of the non-
fuzzy methods.  
 
 
7. Implementations and Results 
The fuzzy optimization algorithms (see Fig. 1) are 
implemented in the Matlab environment, as CAD 
tools, with user-friendly graphical interfaces as 
communication bridges between the user and 
computer. 
FMODO (Fuzzy Miller OTA Design Optimization) 
tool uses GGFO as optimization engine and it can 
be used to design Miller operational 
transconductance amplifiers (MOTA). FADO 
(Fuzzy Analog Design Optimization) is based on 
LGFO with multiple parallel search paths. FADO 
can be used to design several analog modules. 
Due to the lack of space, we will discuss here only 
the implementation and some detailed results for 
FADO design tool.  
 
7.1 FADO 
FADO benefits by a library of three analog modules 
that can be designed: a simple CMOS operational 
transconductance amplifier (SOTA), a Miller 
compensated CMOS operational transconductance 
amplifier (MOTA) and a BJT common emitter stage 
(CE). The user can select the circuit to be designed. 
After selection, a new graphical interface, specific to 
the selected circuit opens.  
 
7.1.1. MOTA Design Optimization 
The schematic for the Miller operational 
transconductance amplifier is presented in Fig. 10. 
The design parameters of the circuit are: the 
dimensions of the transistors, the bias current Ib and 
compensation capacitance CC. Not all circuit 
parameters are independent, so after a mathematical 
analysis just four independent design parameters 
result: Ib, (W/L)1, (W/L)6 and  CC  . The circuit 
functions taken into consideration were: voltage 
gain voA , unity gain bandwidthGBW , phase 
margin PM, and slew rate SR. 
Fig. 11 presents the FADO graphical interface to 
design the MOTA circuit. 
The user can select all four available requirements 
or just some of them by activating the radio buttons. 
For the selected ones, the numerical values should 
be provided and the requirement type (“<”, “=” or 
“>”) should be selected.  
The default values of maximum number of 
iterations (200) and of candidate solution (5) can be 
altered by the user. Some extra options of the tool 

Fig. 9 Control surface for partial coefficient 
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can be modified as well by pushing “Options” 
button.  
The method to generate initial solutions (Matching 
degree, Latin Hypercube Sample, Random, User) 
has to be selected  from the pop-up menu.  
Optimization starts by acting the ”Start” button. 
During the optimization, the number of current 

iteration, the progress ratio, and elapsed time are 
displayed. 
To the end of the optimization, FADO provides the 
optimal solution (meaning the computed value of 
the parameter), the unfulfillment degree (UD) for 
each requirement and mean UD. 
The time evolution of the mean UD and maximum 

Fig. 10 Miller operational transconductance amplifier (MOTA) 

Fig.11 FADO graphical interface for design optimization of MOTA circuit 
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UD during the optimization are displayed if the user 
presses the “UD evolution” button.  
The MOTA amplifier design is illustrated here for 
two sets of requirements: Set1, where all 
requirements are “greater than” type (Table 4.) and 
Set2 where one requirement is “equal” type (hard 
requirement), the other three requirements being 
“greater than” type (Table 6). 
For Set1 of requirements, the optimization was run 
for a total number of 30 candidate solutions and a 
maximum number of 200 iterations. The results are 
presented in Table 4 (requirements, performances, 
mean UDs, iterations number) for three candidate 
solution (9, 12 and 26) .These candidate solutions 

provided very good results, especially candidate 12 
that fulfills all the requirements (final mean UD = 0) 
after 104 iterations.  The final solutions are different 
and they are part of the Pareto optimal set, specific 
to multiobjective optimization. Each of them can be 
selected by the user as final solution, according to 
the UD of the requirements and the value of the 
design   parameters.    Practically,   all   these    three  
solutions accomplish the requirements alluding to 
real design usually accept some tolerances. It is 
obvious that the optimization strategy (LGFO with 
multiple search paths) has an appreciable chance to 
find the best optimal solution (global optimum), if 
such a solution exists.          

   Table. 4 Results for MOTA design optimization using FADO, Set1 of requirements 
candidate solution 9 candidate solution 12 candidate solution 26
iterations:  29 iterations:  104 iterations:  24 circuit 

function 
require-

ment 
time 

moment 
perform mean UD perform mean UD perform mean UD

initial 362421 288359 381886 Avo ≥300000 
final 299326 301539 299697 
initial 508.1 935.30 338.8 GBW 

[kHz] ≥2000 
final 1965.6 2000.08 1959.1 
initial 81.4 75.33 80.35 PM     

[ °] 
≥60 

final 58.6 61.36 57.07 
initial 0.55 1.09 0.38 SR   

[V/μs] 
≥2 

final 2.31

initial 
0.467

final 
0.00071

2.42

initial 
0.296

final
 0.0

2.29 

initial 
0.492

final 
0.0017

 
 Table. 5 Comparative results for MOTA design optimization using FADO, fgoalattain, and FMODO 

performances 
  candidate solution 9 candidate solution 12 candidate solution 26 circuit 

function 
require- 
ment 

FADO fgoalattain FMODO FADO fgoalattain FMODO FADO fgoalattain FMODO
Avo ≥300000 299326 283762 293424 301539 296069 290654 299697 300852 292928

GBW [kHz] ≥2000 1965.6 1277 1953 2000.08 1820 1934 1959.1 1727 1950
PM [ °] ≥60 58.6 64.15 58.57 61.36 60.73 57.99 57.07 60.09 58.47

SR [V/μs] ≥2 2.31 2.16 2.22 2.42 2.02 2.1 2.29 1.98 2.19
mean UD 0.00071 0.081 0.0009 0 0.005 0.0019 0.0017 0.012 0.0011
iterations 29 13 200 104 21 200 24 6 200

Table. 6  Results for MOTA design optimization using FADO, Set2 of requirements 
candidate solution 18 candidate solution 25 candidate solution 45 

iterations:  250 iterations:  250 iterations:  250 circuit 
function 

require-
ment 

time 
moment 

perform mean UD perform mean UD perform mean UD 
initial 387906 432221 303209 Avo =450000 
final 449235 449850 449338 
initial 2092,7 502.2 544.6 GBW 

[kHz] ≥1500 
final 1540.0 1503.2 1495.6 
initial 52.87 78.90 81.23 PM 

[ °] 
≥60 

final 59.66 59.93 60.45 
initial 2.30 0.54 0.58 SR 

[V/μs] 
≥1,5 

final 1.59 

initial 
0.02

final 
2.2.10-5 

1.51

initial 
0.50

final 
4.89.10-6

1.49 

initial
 0.47

final 
5.7.10-5
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In its ordinary utilization, FADO automatically 
chooses as final solution the one having the 
minimum value of the  mean UD, in our example 
the candidate solution 12 and the optimization stops 
at the iteration 104.  
For the sake of comparison, Table 5 presents the 
performances and mean UD for MOTA design 
optimization obtained using our CAD tools (FADO 
and FMODO) and the “fgoalattain” optimization 
method from the Matlab Optimization Toolbox.  
“Fgoalattain” is a multiobjective optimization 
method that implements the goal attainment method 
of Gembicki. The functions to be optimized by 
“fgoalattain” are our fuzzy models of circuit 
functions. Mean UD for the results provided by this 
method was subsequently computed using the fuzzy 
sets that define fuzzy objectives in FADO and 
FMODO. The initial solutions were the same for all 
three optimization methods. 
Regarding the quality of final solutions, the 
superiority of our CAD tools compared with 
“fgoalattain” was confirmed (smallest UD). FADO 
and FMODO are comparable, an exception 
appearing for the candidate 12, where FADO proved 
to be superior by finding a solution with the 
realization of all design requirements.    
From the convergence point of view, FADO and 
FMODO appear to be inferior compared with 
“fgoalattain”, more iterations being necessary to rich 
their final solutions.  The main advantage of FADO 
resides in its highly probability to find an as good as 
possible solution, due to the multiple search path.   
For the Set2 of requirements, design optimization 
was carried out for a population of 30 candidate 
solutions, for a maximum number of 250 iterations. 
Table 6 presents the requirements, performances, 
mean UDs, to the beginning and to the end of the 
optimization.  The results refer to a selection of 
three candidate solutions: 18, 25, and 45 that 
provided the best final solutions. FADO 
automatically selects as final optimal solution the 
one corresponding to the candidate 25 because of its 
lowest final mean UD (4.89.10-6). This solution 
assures full achievement for GBW (1503.2>1500) 
and SR (1.51>1.5) and almost full achievement for 
Avo (449850 vis a vis >450000) and PM (59.93o vis a 
vis >60o). 
 
7.1.2. SOTA Design Optimization 
SOTA circuit (Fig. 6) was also considered for 
design optimization using FADO. Numerical values 
of the requirements and initial and final (after 
optimization) performances are presented in Table 
7. All the requirements are considered as “greater or 
equal” type.  FADO was set to run with a population 

of 30 candidate solutions. The optimal solution was 
found after only 9 iterations. All the performances 
fulfill the requirements, (the final mean UD is 0). 
We can see that the initial performances are pretty 
close to the requirements, so the optimization was 
very fast. This is a merit of the population of 
solutions, which enabled multiple points in the 
parameters space to search for the solution.   
 
   Table. 7 Results for SOTA optimization 

circuit 
function

require-
ment 

time 
moment perform mean 

UD 
initial 46.97Avo ≥50 
final 52.20
initial 4245.9GBW 

[kHz] ≥4500 
final 4585.2
initial 91.07PM [ °] ≥60 
final 90.89
initial 612111CMRR ≥1000000
final 1000040

initial 
0.271

final 
0.0

 
7.1.3. CE design optimization 
The circuit of a simple CE stage is shown in Fig. 12. 
For this simple BJT amplifier we considered the 
following circuit functions: input resistance Ri, 
output resistance Ro, band-pass gain voA , and 
bandwidth B. For one resistor we choused a fixed 
value R1=68 KΩ. The other resistors R2, RE, and RC 
are the design parameters.  
 

 
 Table.8. Results for the CE optimization 

circuit 
function

require-
ments

time 
moment perform Mean 

UD 
initial 1.32 Ri [KΩ] ≥2.5 
final 2.501 
initial 0.86 Ro [KΩ] ≤0.4 
final 0.39 
initial 138.49 Avo ≥30 
final 31.29 
initial 57.42 B[MHz] ≥150
final 158.64 

initial 
0.75 

 
final 
0.0 

Rl RC 

R2 RE 

CE 
 

100μF

Ci 

100 μF 

vi 

vo

+15V

T 
 

Fig. 12  CE amplifier 
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The requirements for the Ri, Avo and B are “greater 
or equal” type, while for the Ro  is “less or equal” 
type. The results for CE design optimization using 
FADO are presented in Table 8. After 17 iterations, 
a solution that fully accomplishes all requirements 
was picked up from a number of 20 candidate 
solutions.  
 
 
8. Conclusions 
Two analog design optimization tools FMODO 
(Fuzzy Miller OTA Design Optimization) and 
FADO (Fuzzy Analog Design Optimization), 
embedding fuzzy techniques was introduced in this 
paper. Both tools benefit on some advantage offered 
by a collection of fuzzy approaches. The quality of 
initial solutions can be improved by selecting them 
according with their matching degrees in 
accomplishing the design requirements; these 
matching degrees being determined by means of 
fuzzy sets. Fuzzy sets used to define the 
optimization functions bring some advantages in 
comparison to classical methods: support real term, 
allows degrees of acceptability for solutions, and 
assure a known range [0, 1] for the value of 
objective functions. Takagi-Sugeno fuzzy systems 
are used to build fuzzy models of circuit 
performances. These fuzzy models are built 
automatically using numerical data sets. Main 
advantages of such fuzzy models are: high accuracy 
at a low computational cost and no restrictions for 
functions to be modeled. In the optimization engine, 
fuzzy systems are used to decide on the 
modification of every design parameter in each 
iteration. It worth to mention that these fuzzy 
systems incorporate human expert knowledge to 
guide the parameter modification toward optimal 
solutions during optimization. The combination of 
fuzzy objective functions and fuzzy optimization 
engines assures a real multiobjective optimization. 
The results obtained with FADO, optimizing three 
analog modules are very promising. Optimal 
solutions are found in a reduced number of 
iterations, as for example 19, 104, or 24 iterations in 
the case of MOTA circuit design optimization (“≥” 
– type requirements). Very good results were 
obtained even if one requirement was “=”  type, a 
more difficult design problem. In 250 iterations, 
FADO provides its optimal solutions having very 
low values of mean UD (4.89.10-6 or 2.2.10-5).  Due 
to the use of population of solutions we found a set 
of Pareto optimal points and the point with 
minimum UD has been choused as the final optimal 
solution. Also in the proximity of the final solutions 

the method works well to continue decrease UDs up 
to the local Pareto optimal point. The quality of each 
final solution is very high. This is possible because 
the method uses local gradient information and 
works in an adoptive manner: while the UD 
decrease, the step in the parameter modification also 
decreases. 
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