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Abstract: - Because of increasingly common damage and thefts of the transmission towers, a new function is 
proposed to enhance the state maintenance of transmission lines. It relies on the monitoring of the high-voltage 
transmission towers to ensure the reliability and safety of the power grid operation. An approach which 
combines Independent Component Analysis (ICA) with neural network based on Particle Swarm Optimization 
(PSO) algorithm is presented. Its purpose is to extract the vibration source signals caused by the theft of the 
towers. Initially, the proposed algorithm separates the source vibration signals from the observed mixing 
signals based on the FastICA of negentropy and Exploratory Projection Pursuit (EPP). In order to distinguish the 
vibration pulse signal from other similar interference pulses, the algorithm of the feed forward neural network 
(FFNN) is used to identify the vibration pulses. It is trained online with particle swarm optimization (PSO), 
which incorporates the pulse extraction algorithm based on an adaptive threshold.  Numerical results show that 
the algorithm is effective in extracting and identifying the vibration signals, and it also can suppress the 
interference signals. 
 
Key-Words: - Transmission tower; ICA; Negentropy; Adaptive threshold; Particle swarm optimization (PSO); 
Neural network 
 
 
1 Introduction 

The monitoring system of the high-voltage 
transmission tower is a new feature of the state 
maintenance for transmission lines [1]. It is 
designed to prevent the materials of transmission 
tower from being destroyed or stolen. A three-axis 
acceleration sensor is installed on the transmission 
tower to measure the vibration due to motion of the 
tower during damage or theft. The system combines 
a common alarm system with a video monitor. The 
control system is sensitive to vibration caused by the 
motion of the tower. When the sensor detects theft-
induced vibration signals, an alarm is broadcast, and 
local information can be transmitted by video 
communication in order to visually attest to the state 
of the transmission tower in question, and quickly 
make the correct decision.  

The goal is to suppress the interference signals, 
detect and differentiate the signature vibration 
caused by human activity, especially the signals 
from sawing the transmission tower and knocking 
on it. Because of the electromagnetic interference 
around transmission towers and other interference 
signals, such as wind force and influence of the 
transmission line galloping, it is difficult to 
distinguish the vibration signals caused by human 
activity and suppress the background noise. 

To address that issue, we extend the ICA model 
to the situation where noise is present. Independent 
component analysis (ICA) is a statistical and 
computational technique for revealing hidden 
factors that underlie sets of random variables, 
measurements, or signals. It is applicable to the non-
stationary vibration signals [2].  

The technique of ICA, although not yet the name, 
was introduced in the early 1980s by J. H´erault, C. 
Jutten, and B. Ans [3]. The problem first came up in 
1982 in a neurophysiological setting. In a simplified 
model of motion coding in muscle contraction, the 
outputs x1(t) and x2(t) were two types of sensory 
signals measuring muscle contraction, and s1(t) and 
s2(t) were the angular position and velocity of a 
moving joint. Then it is not unreasonable to assume 
that the ICA model holds between these signals. The 
nervous system must be somehow able to infer the 
position and velocity signals s1(t), s2(t)from the 
measured responses x1(t), x2(t). One possibility for 
this is to learn the inverse model using the nonlinear 
decorrelation principle in a simple neural network. 
H´erault and Jutten proposed a specific feedback 
circuit to solve the problem.  

All through the 1980s, ICA was mostly known 
among French researchers, with limited influence 
internationally. The few ICA presentations in 
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international neural network conferences in the mid-
1980s were largely buried under the deluge of 
interest in back-propagation, Hopfield networks, 
and Kohonen’s Self-Organizing Map (SOM), which 
were actively propagated in those times. Another 
related field was higher-order spectral analysis, on 
which the first international workshop was 
organized in 1989. Cardoso used algebraic methods, 
especially higher-order cumulant tensors, which 
eventually led to the JADE algorithm. The use of 
fourth-order cumulants has been earlier proposed by 
J.-L. Lacoume.  

In signal processing, there had been earlier 
approaches in the related problem of blind signal 
deconvolution. In particular, the results used in 
multichannel blind deconvolution are very similar to 
ICA techniques.  

However, until the mid-1990s, ICA remained a 
rather small and narrow research effort. Several 
algorithms were proposed that worked, usually in 
somewhat restricted problems, but it was not until 
later that the rigorous connections of these to 
statistical optimization criteria were exposed. 

ICA attained wider attention and growing 
interest after A.J. Bell and T.J. Sejnowski published 
their approach based on the infomax principle in the 
mid-90’s. This algorithmwas further refined by S.I. 
Amari and his co-workers using the natural gradient, 
and its fundamental connections to maximum 
likelihood estimation, as well as to the Cichocki-
Unbehauen algorithm, were established. A couple of 
years later, the fixed-point or FastICA algorithm 
was presented , which has contributed to the 
application of ICA to large-scale problems due to its 
computational efficiency [2]. 

The interference signals on tower, or 
transmission line galloping caused by the wind, are 
sometimes similar to the theft-induced vibration 
pulses, both in time and frequency domains. Based 
on the typical characteristics of those different 
disturbance signals, the paper proposes an algorithm 
which combines a PSO-driven neural network with 
a pulse extraction algorithm based on an adaptive 
threshold. The result proves that the algorithm could 
extract and identify the useful vibration pulses 
effectively, and effectively suppress all other pulse 
interference. 
 
 
2 Independent Component Analysis 
2.1 The model of ICA 

ICA defines a generative model for the observed 
multivariate data, which is typically given as a large 
database of samples. The data variables of the 
model are assumed to be linear or nonlinear 

mixtures of the unknown latent variables, and the 
mixing mechanism is also unknown. The latent 
variables are assumed to be non-Gaussian and 
mutually independent, and they are called the 
independent components of the observed data [2].  

We observe n random variables x1,…,xn, which 
are modeled as linear combinations of n random 
variables s1,…,sn: 

1 1 2 2i i i in nx a s a s a s= + + +L                                (4) 
where the aij, i, j=1,…,n are some real 

coefficients. By definition, the si are statistically 
mutually independent. 

This is the basic ICA model. The ICA model is a 
generative model, which means that it describes 
how the observed data are generated by a process of 
mixing the components sj. The independent 
components sj (often abbreviated as ICs) are latent 
variables, meaning that they cannot be directly 
observed. Also the mixing coefficients aij are 
assumed to be unknown. All we observe are the 
random variables xi, and we must estimate both the 
mixing coefficients aij and the ICs sj using the xj. 
This must be done under as general assumptions as 
possible. 

ICA is very closely related to the method called 
blind source separation (BSS) or blind signal 
separation. A “source” means here an original signal, 
i.e., independent component, like the speaker in the 
cocktail-party problem. “Blind” means that we 
know very little, if anything, of the mixing matrix, 
and make very weak assumptions on the source 
signals. ICA is one method, perhaps the most widely 
used, for performing blind source separation. 

It is usually more convenient to use vector-
matrix notation instead of the sums as in the 
previous equation. An ICA model can be formulated 
as: 

Asx =                                                             (1) 
where A is an unknown m×n matrix, called the 

mixing matrix; x is an m-dimensional observed 
vector x=[ x1, x2,,…,xn ]T; s is an n-dimensional 
(latent) unknown source vector s=[ s1, s2,,…,sn ]T, in 
which components are as independent as possible. 
For the purpose of feature extraction, the columns of 
A represent features, and si, is the coefficient of the 
i-th feature in the observed data vector x. 

Sometimes we need the columns of matrix A; if 
we denote them by aj the model can also be written 
as 

1

n

i i
i

x a s
=

= ∑                                                            (2) 

The definition given here is the most basic one. in 
many applications, it would be more realistic to 
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assume that there is some noise in the measurements, 
which would mean adding a noise term in the model 

The independent components are assumed 
statistically independent. This is the principle on 
which ICA rests. Surprisingly, not much more than 
this assumption is needed to ascertain that the model 
can be estimated. This is why ICA is such a 
powerful method with applications in many 
different areas. 
 
2.1.1 Whitening  

A useful preprocessing strategy in ICA is to 
whiten the observed variables. A zero-mean random 
vector z=(z1…zn)T is said to be white if its elements zi 
are uncorrelated and have unit variances: 

{ }i j ijE z z δ=                                                     (3) 
In terms of the covariance matrix, this obviously 

means that E{zzT}=I, with I the unit matrix. The 
best-known example is white noise; then the 
elements zi would be the intensities of noise at 
consequent time points i =1,2,…and there are no 
temporal correlations in the noise process. The term 
“white” comes from the fact that the power 
spectrum of white noise is constant over all 
frequencies, somewhat like the spectrum of white 
light contains all colors. 

A synonym for white is sphered. Because 
whitening is essentially decorrelation followed by 
scaling, the technique of PCA can be used. This 
implies that whitening can be done with a linear 
operation. The problem of whitening is now: Given 
a random vector x with n elements, find a linear 
transformation V into another vector z such that        
z=Vx is white (sphered). 

The problem has a straightforward solution in 
terms of the PCA expansion. Let E(e1...en) be the 
matrix whose columns are the unit-norm 
eigenvectors of the covariance matrix Cx=E{xxT}. 
These can be computed from a sample of the vectors 
x either directly or by one of the on-line PCA 
learning rules. Let D=diag(d1…dn) be the diagonal 
matrix of the eigenvalues of Cx. Then a linear 
whitening transform is given by 

       1/ 2 TV D E−=                                             (4) 
This matrix always exists when the eigenvalues 

di are positive; in practice, this is not a restriction. 
Because Cx is positive semidefinite, in practice 
positive definite for almost any natural data, so its 
eigenvalues will be positive. 

 
2.1.2 Orthonormal in ICA 

In ICA algorithms, we know that in theory the 
solution vectors are orthogonal or orthonormal, but 
the iterative algorithms do not always automatically 

produce orthogonality. Then it may be necessary to 
orthogonalize the vectors after each iteration step, or 
at some suitable intervals.  

given a set of n-dimensional linearly independent 
vectors a1,…,am, with m≤ n, compute another set of 
m vectors w1,…,wm that are orthogonal or 
orthonormal (i.e., orthogonal and having unit 
Euclidean norm) and that span the same subspace as 
the original vectors. This means that each wi is some 
linear combination of the aj. 

The classic approach is the Gram-Schmidt 
orthogonalization (GSO) method: 

1 1

1

1

Tj
i j

j j iT
i i i

w a

w a
w a w

w w

−

=

=

= −∑                                   (5) 

As a result, wi
Twj=0 for i≠ j. 

If in the GSO each wj is further divided by its 
norm, the set will be orthonormal. 

In symmetric orthonormalization methods, none 
of the original vectors ai is treated differently from 
the others. If it is sufficient to find any orthonormal 
basis for the subspace spanned by the original 
vectors,without other constraints on the newvectors, 
then this problem does not have a unique solution. 
This can be accomplished for instance by first 
forming the matrix A=(a1,…,am) whose columns are 
the vectors to be orthogonalized, then computing 
(ATA)-1/2 using the eigendecomposition of the 
symmetric matrix (ATA), and finally putting 

    T -1/2 W=A(A A)                                      (6) 
Obviously, for matrix W it holds WTW=I, and its 

columns w1,…,wm span the same subspace as the 
columns of matrix A. These vectors are thus a 
suitable orthonormalized basis. This solution to the 
symmetric orthonormalization problem is by no 
means unique; again, any matrix WU with U an 
orthogonal matrix will do quite as well [2]. 
 
2.2 FastICA algorithm 

FastICA algorithm is an effective computational 
method for performing the estimation of ICA. It 
uses a fixed-point iteration scheme, which has been 
found faster than conventional gradient descent 
methods for ICA applications, as per [4]-[7]. 
Another advantage of the FastICA algorithm is that 
it can be used to perform projection pursuit as well, 
thus providing a general-purpose data analysis 
method that can be used both in an exploratory 
fashion and for estimation of independent 
components. 
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2.2.1 Negentropy measure criterion  
In general, Kurtosis is usually as a measure of 

non-Gaussianity. However, kurtosis has some 
drawbacks in practice, when its value has to be 
estimated from a measured sample. The main 
problem is that kurtosis can be very sensitive to 
outliers. Kurtosis may depend on only a few 
observations in the tails of the distribution, which 
may be erroneous or irrelevant observations. In 
other words, kurtosis is not a robust measure of non-
Gaussianity. Thus, other measures of nongaussianity 
might be better than kurtosis in some situations [2]. 

Negentropy is based on the information-theoretic 
quantity of differential entropy, which we here call 
simply entropy. Entropy is the basic concept of 
information theory. The entropy of a random 
variable is related to the useful information that the 
observation of the variable contains. The more 
“random”, i.e., unpredictable and unstructured the 
variable is, the larger its entropy. The differential 
entropy H of a random vector y=[ y1, y2,,…, yn ]T 
with density p(y) is defined as 

∫−= dyypypyH )(lg)()(                            (7) 

A fundamental result of information theory is that 
a gaussian variable has the largest entropy among all 
random variables of equal variance. This means that 
entropy could be used as a measure of 
nongaussianity. In fact, this shows that the gaussian 
distribution is the “most random” or the least 
structured of all distributions. Entropy is small for 
distributions that are clearly concentrated on certain 
values, i.e., when the variable is clearly clustered, or 
has a pdf that is very “spiky”. 

To obtain a measure of nongaussianity that is zero 
for a gaussian variable and always nonnegative, one 
often uses a normalized version of differential 
entropy, called negentropy. Negentropy J is defined 
as follows 

)()()( yHyHyJ gauss −=                                  (8)  
where ygauss is a gaussian random vector of the same 
covariance matrix ∑  as y. 

Due to the above-mentioned properties, 
negentropy is always nonnegative, and it is zero if 
and only if y has a Gaussian distribution. The 
property of Negentropy is robust, which is better 
than that of kurtosis. Furthermore, negentropy has 
the additional interesting property that it is invariant 
for invertible linear transformations. 

The advantage of using negentropy, as a measure 
of non-Gaussianity is that it is well justified by 
statistical theory. In fact, negentropy is in some 
sense the optimal estimator of non-Gaussianity[2]. 

So we measure non-Gaussianity by kurtosis in this 
paper. 
 

In practice, we only need approximation of 1-D 
entropies, so we only consider the scalar case here. 
The classic method of approximating negentropy is 
using higher-order cumulants, using the polynomial 
density expansions. Actually, this approximation 
often leads to the use of kurtosis. Therefore, we 
develop here more sophisticated approximations of 
negentropy.  

In the case when we use only one non-quadratic 
function G, the approximation becomes 

2)}]({)}({[)( gaussyGEyGEyJ −∝               (9) 
Where ygauss is a Gaussian variable of zero-mean and 
unit variance, and G( · )is a nonlinear and non-
quadratic function. 

In particular, choosing a G that does not grow 
too fast, one obtains more robust estimators [2]. The 
following choices of G have proved very useful: 

1 1
1( ) log cosh ,G y a y
a

=                                 (10) 

2
2 ( ) exp( / 2)G y y= − −                               (11) 

Where 1 ≤ a ≤ 2 is some suitable constant, often 
taken equal to one. Thus we obtain approximations 
of negentropy that give a very good compromise 
between the properties of the two classic 
nongaussianity measures given by kurtosis and 
negentropy. They are conceptually simple, fast to 
compute, yet have appealing statistical properties, 
especially robustness.  
 

2.2.2 Exploratory Projection Pursuit (EPP) 
Projection pursuit is a technique developed in 

statistics for finding “interesting” projections of 
multidimensional data.  

It is usually argued that the gaussian distribution 
is the least interesting one, and that the most 
interesting directions are those that show the least 
gaussian distribution. One motivation for this is that 
distributions that are multimodal, i.e., show some 
clustering structure, are far from gaussian [2]. 

An information-theoretic motivation for 
nongaussianity is that entropy is maximized by the 
gaussian distribution, and entropy can be considered 
as a measure of the lack of structure. This is related 
to the interpretation of entropy as code length: a 
variable that has a clear structure is usually easy to 
code. Thus, since the gaussian distribution has the 
largest entropy, it is the most difficult to code, and 
therefore it can be considered as the least structured. 
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2.2.3 A fast fixed-point algorithm using 
negentropy  

The FastICA algorithm using negentropy finds a 
direction, i.e., a unit vector w, such that the 
projection wTz maximizes non-gaussianity. More 
rigorously, it can be derived as an approximate 
Newton iteration. The Newton method is a fast 
method for solving equations. When it is applied on 
the gradient, it gives an optimization method that 
usually converges in a small number of steps. The 
problem with the Newton method, however, is that 
it usually requires a matrix inversion at every step. 
Therefore, the total computational load may not be 
smaller than with gradient methods. What is quite 
surprising is that using the special properties of the 
ICA problem, it can been found an approximation of 
the Newton method that does not need a matrix 
inversion but still converges roughly with the same 
number of iterations as the real Newton method. 
This approximative Newton method gives a fixed-
point algorithm of the form (12). 

(1 ) { ( )}Tw E zg w z zα α+ = +                      (12) 
Where α is constant.  

 The FastICA algorithm using negentropy 
combines the superior algorithmic properties 
resulting from the fixed-point iteration with the 
desirable statistical properties due to negentropy. 
We choose a nonlinearity g, which is the derivative 
of the nonquadratic function G used in equation (9), 
which give robust approximations of negentropy. 

In general, we can assume that both mixture 
variables and the independent components have zero 
mean. This assumption substantially simplifies the 
theory and algorithms. If the assumption of zero 
mean is not true, preprocessing can be applied to 
make it hold. This is accomplished by centering the 
observable variables, i.e., subtracting their sample 
mean.  

It is useful to whiten the observed variables. The 
observed vector x is linearly transformed into a new 
white vector z whose covariance matrix is the 
identity matrix: E{zzT}=I. Whitening reduces the 
number of parameters to be estimated. Instead of 
having to estimate the n2 parameters which are 
elements of the original matrix, we only need to 
estimate the new, orthogonal mixing matrix. In large 
dimensional situations, an orthogonal matrix 
contains only about half of the number of 
parameters of an arbitrary matrix. 

Finally, we solve equation (9) by Newton’s 
method, and get the fixed-point iterative algorithm 
for ICA 

)(]})([''{]})(['{)1( kwzkwGEzkwzGEkw i
T
i

T
ii −=+

                                                                              (13)                                                                                                                  

To estimate several independent components, we 
need to run any of the one-unit algorithms several 
times (possibly using several units) with vectors 
w1, ,…,wm. To prevent different vectors from 
converging to the same maxima, it is necessary to 
orthogonalize the vectors w1,…,wm after every 
iteration.  

Based on w, the independent signal si is obtained 
by yi(k)=wi

T z. 
From the preceding calculation, the FastICA 

algorithm can be described as follows : 
(1) Center the data to make its mean zero, and 

whiten the data to provide z. 
(2) Choose N, the number of ICs. Set counter 

p←1. 
(3) Choose an initial (e.g., random) vector w of 

unit norm. 
(4) Let p

T
p

T
pp wzwGEzwzGEw ]}[''{]}['{ −← . 

(5) Do the following orthogonalization:  

j

p

j
jppp wwwww ∑

−

=

−←
1

1

,  

(6) Normalize: 

 
p

p
p w

w
w ← . 

(7) If convergence is not achieved, go back to 
step (4). 

(8) Let 1+← pp  (increment the counter). If p is 
not greater than the desired number of independent 
components N, go back to step (3). 

(9) Based on w, the independent signal sj is 
obtained by zwky T

ii =)( . 
The FastICA algorithm has a couple of properties 

that make it clearly superior to the gradient-based 
algorithms in most cases. First of all, the 
convergence of this algorithm is cubic. This means 
very fast convergence. Second, contrary to gradient-
based algorithms, there is no learning rate or other 
adjustable parameters in the algorithm, which makes 
it easy to use, and more reliable [2].  
 
 
3 Recognition of the vibration pulse  

It has been shown that neural networks compared 
well to statistical classification methods in 
classification of multisource remote sensing data 
and very-high-dimensional data [8][9]. The neural 
network models were superior to the statistical 
methods in terms of overall classification accuracy 
of training data.  
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3.1 Neural network learning algorithms 
based on Particle Swarm optimization 

Particle Swarm optimization (PSO) is a search 
method for optimization of nonlinear functions 
based on the group behavior similar to that of a bird 
flock or a fish school [10]. A swarm consists of a set 
of particles, where each particle represents a 
potential solution. The changes to the position of a 
particle and its operation in a swarm are influenced 
by the experience and the knowledge of its 
neighbors. 

It has been shown that the PSO algorithm may 
reduce the training time of neural network, and 
doesn’t have the disadvantages of the back-
propagation (BP) algorithm, such as slow 
convergence and vulnerability with respect to 
convergence towards the local minima [11]. Its key 
concept is that potential solutions are moved 
through the hyperspace (search space of the possible 
solutions) and the search is accelerated towards 
better, or more optimal, solutions. The search is 
more thorough when each particle (solution 
candidate) is directed towards exploring the new 
regions of the search space. 

Initially a set of random solutions or a set of 
particles are considered. A random velocity is given 
to each particle and they are flown through the 
problem space. Each particle has memory which is 
used to keep track of the previous best position and 
corresponding fitness. The best value of the position 
of each individual is stored as ‘pid’. In other words, 
‘pid’ is the best position acquired by an individual 
particle during the course of its movement within 
the swarm. It has another value called the ‘pgd’, 
which is the best value of all the particles ‘pid’ in the 
swarm. The basic concept of the PSO technique lies 
in accelerating each particle towards its ‘pid’ and 
‘pgd’ locations at each time step. Fig. 1 illustrates 
briefly the concept of PSO [10]. 

 

 
Fig. 1 PSO particle update process illustrated for a 

two dimensional case 
where, xid (k) is the current position of ith particle 

with d dimensions at instant k; xid (k+1) is the 

position of ith particle with d dimensions at instant 
k+1; vid (k) is the initial velocity of ith particle with 
d dimensions at instant k; vid (k+1) is the velocity of 
ith particle with d dimensions at instant k+1; w is 
inertia weight; Vmax is the maximum velocity for 
the particles; c1 is the cognition acceleration 
constant; c2 is the social acceleration constant. 

The PSO algorithm can be described as follows : 
(1) Initialize a population of particles with 

random positions and velocities in the problem 
space; 

(2) For each particle, evaluate the desired 
optimization fitness function. 

(3) Compare the particles fitness evaluation with 
the particles pid. If current value is better than the pid 
then set pid value equal to the current location. 

(4) Compare the best fitness evaluation with the 
population’s overall previous best. If the current 
value is better than the pgd, then set pgd to the 
particle’s array and index value. 

(5) Update the particle’s velocity and position 
according to the equations shown below. 

The velocity of the ith particle of d dimension is 
given equations (7). 

1 1

2 2

( 1) ( ) ( ( ) ( ))
( ( ) ( ))

id id id id

gd id

v k wv k c rand p k x k
c rand p k x k

+ = + − +
−

 

(14)   
The position vector of the ith particle of d 

dimension is updated based on equations (7). 
                                                                            

( 1) ( ) ( 1)id id idx k x k v k+ = + +                               (15) 
(6) Repeat the step (2) until a criterion is met, 

usually a sufficiently good fitness or a maximum 
number of iterations or epochs. 

In case the velocity of the particle exceeds Vmax 
then it is reduced to V max. Thus, the resolution and 
fitness of search depends on the V max. If V max is too 
high, then particles will move in larger steps and so 
the solution reached may not be as good as expected. 
If V max is too low, then particles will take a long 
time to reach the desired solution [10]. 

Let us define particle swarm’s positions. An 
element of vector xr  is the connection power value 
and the threshold value between BP neural network 
levels. The adaptation value function is chosen to be 
the mean square error target of the BP neural 
network, the formula is: 

∑∑
= =

−=
N

i

C

k
ikik pt

N
J

1 1

2)(1

                               (16)         
where tik and pik are the target output and predicted 
values, respectively; N is the number of training 
samples; and C is the number of output neurons. 
The neural network is trained by minimizing the 
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above adaptation value function in the search space 
of weighting factors (parameters of the neural 
network). 

 
3.2 The pulse extraction algorithm based on 
the adaptive threshold 

The background noise and some other 
interference signals are variable and change 
frequently, and the vibration pulses caused by 
different people, or occurring in different locations 
on towers will be different. It is therefore crucial to 
suppress the interference and extract the integrity 
pulse signals to enhance the reliability of 
identification. Compared with the method based on 
hard-threshold, the advantage of adaptive pulse 
extraction algorithm is to confirm the onset of every 
pulse and extract each integrity pulse in 
consideration of the background noise, amplitude 
and minimum width of the pulse.  

Because the extraction algorithm is in the 
threshold-adaptive mode, it could extract each 
integrity pulse and preserve the original waveform’s 
characteristics. It is a very important part of the 
noise suppression process. 
 
3.3 Recognition experiments 

Artificial Neural Networks (ANN) is 
computational model that try to emulate the 
behavior of the human brain [12][13]. They are 
based on a set of simple processing elements, highly 
interconnected, and with a massive parallel structure. 
ANNs are characterized by their learning, adapting 
and generalization capabilities, which make them 
particularly suited for tasks such as function 
approximation.  

Feed-Forward Neural Networks (FFNN) is a 
special class of ANNs [14], in which all the nodes in 
some layer l are connected to all the nodes in layer 
l-1 (shown in Fig.2). Each neuron receives 
information from all the nodes in the previous layer 
and sends information to all the nodes in the 
following layer. A FFNN is composed of the input 
layer, which receives data from the exterior 
environment, typically one hidden layer (though 
more layers may be used) and the output layer, 
which sends data to the exterior environment.  

 

 
Fig.2 Architecture of the multilayer feed-forward 

neural networks 
The links connecting each pair of neurons are 

given some weight. This attribution of weights to 
links is the job of any training algorithm. Each 
neuron computes an output value based on the input 
values received the weights of the links from the 
neurons in the previous layer and the neuron’s 
transfer function. Usually, sigmoid functions are 
used. The capability of the FFNN for mapping input 
values into output values depends on the link 
weights. Their optimal determination is still an open 
problem. Therefore, iterative hill-climbing 
algorithms are used. Their main limitation comes 
from the fact that only local optima are obtained: 
only occasionally the global optimum can be found. 
In the context of ANNs, these iterative optimization 
algorithms are called training algorithms  

Here, we used PSO-based feed forward neural 
network  algorithm equipped with the adaptive pulse 
extraction algorithm for canceling the noise 
interference and identifying the required vibration 
pulse. The flowchart is shown in Fig.3. The 
characteristics of the extracted pulses can be 
classified into four categories, such as the shape of 
the pulse waveforms, frequency, energy, and 
correlation coefficient of the signal [15][16]. To 
classify the pulses, 22 characteristics have been 
chosen as input parameters. Accordingly, the three 
output layer nodes of the neural network represent 
the pulse categories. To achieve flexibility of 
identification, ten hidden layers have been adopted 
for the model of FFNN.  

615 samples are used for the pulse analysis. A 
total of 615 samples were divided into two groups: 
Table 1   Recognition results comparison of training 
algorithms  

 

Recognition numbers Testing sample accuracy Testing sample numbers 
(Pulse classes)  PSO-based BP PSO-

based BP 

156 (by human-generated force) 156 149 100% 93.6% 
90 (by transmission line galloping) 88 82 97.7% 91.1% 
120 (noise pulses) 118 109 96.6% 90.8% 
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 249 training samples and 366 samples in the 
classification procedure. Set particle swarm 
optimization parameters as follows: the size of the 
swarm is 25, and the accelerarion constants are c1= 
c2 = 2. The inertia weight decreases from 0.8 to 0.2 
linearly. The maximum velocity is chosen to be Vmax 
= 2. Table 1 shows comparative analysis of the 
recognition results obtained by training with PSO 
and BP neural networks, respectively. 

 

 
Fig.3 Flowchart for recognition of the vibration pulse 

using PSO-based FFNN with an adaptive pulse extraction 
algorithm 

It is noted that the identification precision using 
PSO-based FFNN algorithm is more than 96%, 
while that of the BP algorithm is about 91%. 
Furthermore, the algorithm is a suitable tool for fast 
and adaptive real-time identification because of its 
optimization efficiency and global convergence rate. 

 
 

4 Test and Analysis 
In the anti-theft monitoring system of 

transmission tower, a three-axis accelerometer  
sensor is installed on the transmission tower to 
identify and measure the vibration caused by the 
application of a typical human-generated force 
consistent with the theft-related activities. In the 
test, “knock on” and “saw” actions were applied to  

different locations on the tower. Examples include 
application of the reinforcing steel bar under the 
sensor, adjacent angle iron and the angle iron on the 
cross, etc. Fig.4 shows the observed signal along the 
two accelerometer axes (x-axis and y-axis) in the 
field test. 
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Fig.4 Waveforms of the observed signals 

The result of the separation with FastICA is 
depicted in Fig.5.  

 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Source separation based on ICA. (a) The 
reconstructed knocking signal. (b) The reconstructed 

sawing signal. 
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Fig.6 The spectrum of the vibration signal shown in 

Fig.5 (b) 
From the Fig.5 we can see that the independent 

components (the sawing signal and the knocking 
signal) could be separated successfully. Though 
knocking signal has some interference in Fig.5 (a), it 
possesses distinct peak value in the time domain, 
while there is no evident change in the frequency 
domain except for the rising energy in the low 
frequency end of the spectrum. The sawing signal 
possesses high amplitude, and vibrates evidently. 
The sawing signal in the test has an obvious peak 
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value between 100Hz-150Hz in the frequency 
domain (Fig.6), and it is consistent with the result 
tested in the lab where there was no interference 
present in the signal. Though the amplitude of the 
waveform could change after processed by the ICA, 
the signal can still be extracted  successfully. The 
practical tests demonstrate that FastICA is effective 
in solving the Blind Source Separation (BSS), and is 
an efficient computation method.   

 
 
 
 
 
 
 
Fig.7 Independent source signal separated by ICA and 

the computed threshold 
 
 
 
 
 
 
 

Fig.8 The result using PSO-based FFNN algorithm 
Let us now apply the pulse extraction algorithm 

based on the adaptive threshold to the separated 
signal shown in Fig.5 (a), and obtain the computed 
threshold shown in Fig.7. 

The pulse extraction algorithm and the PSO 
algorithm are used to process the data shown in 
Fig.7. The noise pulses can be identified according 
to the pulse classes and be eliminated finally. Fig.8 
shows the results after suppressing the noise pulses. 
The result shows that the PSO algorithm achieves 
good performance in real time identification and 
suppresses most noise pulses effectively. The 
processed result is in accordance with the test. 
 
 
5 Conclusion 

The proposed theft monitoring system separates 
the vibration signals successfully from the saught 
signature signals (knocking and sawing) thanks to 
the FastICA using negentropy. The paper proposes 
an adaptive threshold pulse extraction method, 
which is capable of effectively extracting the 
integrity pulses. Following that, and according to 
the characteristics of the identified  pulses, the PSO-
based FFNN algorithm classifies the pulses, and 
suppresses the noise in the observed signals.  

Field tests have been used to demonstrate that the 
method proposed in the paper is effective in 
separating, extracting and classifying the vibration 

signals. The system is therefore capable of detecting 
the desired classes of signals accurately, monitor the 
actions of the people under the tower and 
differentiate it from the measured signals of 
galloping of the transmission lines. The proposed 
monitoring scheme could enhance the reliability and 
safety of the power grid operation, and it would be a 
welcome feature of the state maintenance for 
transmission lines. 
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