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Abstract: - In this paper, identification of a continuous-time linear time-varying (LTV) system is proposed, where
Haar wavelet with unit energy is employed. For that purpose, an algebraic equation is derived by expanding the
input-output data and the time-varying impulse response using normalized Haar wavelets. Unknown wavelet
coefficients for the a LTV system’s impulse response can be effectively estimated by solving the algebraic
equation. Finally, the time-varying impulse response of a LTV system can be synthesized from the estimated

wavelet coefficients.
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1 Introduction

The wavelet transform has been effectively applied
to many fields such as neural networks,
communication, and image processing [1]-[3]. More
specipically, system identification utilizing the
wavelet transforms has received attention in control
engineering and signal processing fields. In
particular, wavelet-based approaches for
identification of linear time-varying (LTV) systems

have been addressed in a continuous-time domain [4].

For example, Daubechies wavelet was applied as an
orthogonal basis. However, since no analytic
expression exists for Daubechies wavelet, high
computational burden is required for the system
identification. On the other hand, system
identification of a continuous-time LTV state-space
model by Haar wavelet was reported, requiring less
computational burden than that by Daubechies
wavelet [5]. In particular, some properties of Haar
wavelets were established [6] and utilized for state
analysis and parameter estimation of bilinear systems
[7].

In this paper, a new approach for an effective
estimation of the impulse response of a
continuous-time LTV system is proposed, requiring
relatively low computational burden. More
specifically, (i) an algebraic equation is firstly
derived by expanding the input-output data and the
time-varying impulse response using normalized
Haar wavelets, then, (ii) unknown wavelet
coefficients for the a LTV system’s impulse response
can be estimated by solving the algebraic equation,
and finally, (iii) the time-varying impulse response of

ISSN: 1109-2734

382

a LTV system can be synthesized from the estimated
quanties. The proposed approach is different from
conventional ones [5]-[7] in that a computationally
efficient expression for multiplication of Haar
wavelets is utilized by employing Haar wavelet with
unit energy (i.e.,, normalized), which leads to
efficient recursive identification of a linear
time-varying system.

This paper is organized as follows: Firstly, basic
properties of normalized Haar wavelet are
considered in Section 2. In Section 3, the proposed
approach for identification of a causal LTV system is
described. Section 4 provides some simulation
results, and, finally, the conclusion is drawn in
Section 5. Also, two appendices are included for the
proof of some equations utilized in the proposed
approach.

2 Basic properties of Haar wavelet

2.1 General properties of Haar wavelet

Orthogonal basis functions including Haar wavelet
has been utilized for the system identification [5]. In
particular, the amplitude of the Haar wavelet is
+2'(j=0.12,---) in some finite intervals and zeros
elsewhere (i.e., see (1)-(2)), leading to effective
reduction of the calculation [7]. If the scaling
function and the prototype Haar wavelet are denoted
by h,(t) and h(t), respectively, all other wavelet

bases (i.e., h, (t) ) can be generated from dilations and
translations of h (t), and each base is normalized
with unit energy [8]:
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1 OSt<1

h(t)=1 0<t<l  h(t)= . 2 ()
—1,E§t<1

h(t)=2""h(2't-q), n=2'+q>2 j>1 0<q<2' (2)

Let’s defineh  (t) as a group of the Haar wavelets:

he,®=[h®, h@), - h. O, m=2, i>0(3)

Also, a digital representation of h_ (t) is defined by

(m)

1 3
H(m):|:h<m)(%)’ h(m>(_)'

2m-1
h Rmxm 4
L )}e *

When m Haar bases are taken, the largest sampling
time without aliasing is 1/m [5]. In general, a signal
usually has some finite support, and thus, without
loss of generality, the signal duration can be
normalized as the time interval t [0,1) as in [5].

Accordingly, any square-integrable function y(t) in
the interval 0 <t <1can be expressed by using the
orthogonal bases {h,(t), h(t),...,h (t), n=12,...,0}
[5]:i.e,

YO=Yeh®. o =[yohon @)

In practice, the approximation of y(t) using only m
Haar wavelets is as follows:

y(t)chnhﬂ(t):C(Tm)hm)(t),m:2‘, i>0  (6)

where
c =[C0 c Cmf1]T

(m) 1
2.2 Multiplication of Haar wavelet

A recursive formula for the Haar product matrix
can be expressed as in [7].

h,®Oh,, =M, 1), M O=h® @)

M, (©  H,diagh, (]

M, 1= diag[h:(t)]H:E) diag[H(’;)ha(t)] ®)
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h,(t)= _ho (t), h(), hl1 (t)} c R(?m

h®=[h.0, h_@ hm(t)} R
When (7) is multiplied by a vectorc e R™, the

following matrix C,, € R™" can be obtained from
the following recursive formula:

h(m) (t)h(Tm) (t)C(m) = C(m)h(m) (t) (9)
C(E) H(E)diag[cb]
Com = diaglc,]H’, ~ diag[cH , ] (10)
C,=¢,
[ ! () x1
c,=|C,, C, C"‘J eR?
[ ! S
C,=[Cps Cp le} eR”

In (7)-(10), the recursive formula is determined by

not-normalized Haar wavelet [7]. The matrixC
related to the multiplication of two Haar wavelets,
has an inverse termof H . in(8)and (10). However,

due to the normalized Haar wavelet, the inverse term
H”w2inC,, of (8) and (10) can be expressed by

H™ w2 (See the Appendix A).

he,®Oh,®O=P,0,  P,O=h® (11

P, H,diaglh, (V)]

0O diagin, phy, - diaglHy, b1 *?

h,(t)= _ho (t), h(t), hml(t)}T <R

M1

hml(t)} cR"”

h,@®=|h,®, h, ©,
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Also, when the P

(m)

C,, €R™, a matrix T eR™" can be drived from

the following recursive formula (See the Appendix
B):

(t) in (11) is multiplied by a vector

h, ®Ohg, M, =T,he, © (13)
o H(m)diag[cb]
T =) diagle,HT,  diagictH 7| 9
T, =¢,
I ! Q)1
c,=|C,, C, cl} eR”?
i ! (5)x1
C,=|Cnr Cy le} eR”?
Accordingly, C = can be obtained with lower

computational burden. In particular, (13) and (14) are
utilized in this paper for identification of the impulse
response of an LTV system.

2 ldentification of a causal LTV system

In the previous work, the identification of a linear
autonomous system is performed by using a state
space model [5]-[7]. However, in this paper, we
consider the problem of identifying a causal LTV
system expressed in an integral convolution form.
Consider a continuous-time LTV system whose
input- output relationship is given by

y) = [ht.)x(?)dz,  tre[0))  (15)

In (15), x(z) and h(t,z) denote the input and the

impulse response of the LTV system [9]. Suppose
that input and output data are given and the impulse
response of a LTV system is unknown. Let the time
t be fixed at an arbitrary timet, €[0,1).

y(t) = [, )x(@)de (16)

When h(t,z) is projected onto m Haar bases, the

impulse response of the LTV system can be
expressed as follows [10]:

(1) eR™(17)

ht,,7) = a;,!kh(m)(r), a,, eR™, N
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In (17), a,, and h

Haar wavelet coefficients at t <[0,1) and Haar
wavelet bases, which implies that h(t,z) is not

necessarily separable with respect to t andz . In
addition, the input signal x(z) can be expanded in a

similar way by Haar bases.

m (7) correspond respectively to

b,.h

(m)~ "(m)

x(z) = (z), b, €R™, h,  eR™ (18)

Now, consider the problem of estimating the
unknown impulse response h(t,, z) . For that purpose,

unknown coefficients a, (or see (17)) should be

estimated first. Also, the output y(t,) can be
expressed from (16)-(18) as

T
V() = [ 8 Ny (7) by i (7) dr (19)

Since b/,,h,(z) is ascalar, (19) can be written by

1,
V() = [ a5, Ny () (D) A7

. (20)
:a;,tk L h(m) (T)h(Tm) () b(m) dr

Note that h, (z)h, (z) in (20) is a function of z and
can be described by Haar bases [6]. That is, from
(13)-(14), there exists ©, (0O, R™") satisfyin

Ny (DN iy (2) By = Oy Ny (7) . Then, (20) becomes
Ty
V() =an, O [Ny (D)7 (21)

Since the Haar wavelet possesses finite points of
discontinuity on the bounded time domain, the Haar

wavelet can be integrable over the interval
Let P, be calculated from the following integration

of the Haar wavelet.

Po, =[ h,(D)dr, P, eR™ (22)

By substituting (22) into (21), we have
yt)=a,,0.P, (23)
For a simple notation, let’s denote ® P = by

w,, € R™" . From (17), we can see that m unknown
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coefficients in a should be estimated to

m,tg

identify h(t,z) , but we have only one equation (23).

To solve such problem, m different inputs are
applied to the LTV system, producing m outputs
observed at t, and leading to the following m

equations to solve munknown coefficients ina,,
y1 (tk) = J:k h(tk ' z-))(1 (T)dT = am,lk @ m)lP(m W(m)l am o
y.()=["ht,.Ix (Ddr=a,, 0, P a

'm,tg (m),2 (m) m m, tg

: (24)
ym(tk)ZJ:kh(tk,T)Xm(r)dr a . ® P =w a

m, ty (m)m" (m) (m),m™~"m, ty

Furthermore, (24) can be described in the following
matrix form:

Y(t)=Wg, a (25)

m, ty

where

ym(tk) ]T € RmX:l
W(m),m ] c Rmxm

Y(t)=[ i), y.(t),
W(m):[W(m),lv Wim,2»

Accordingly, h(t,,z) can be achieved from (25) and

(17) if w, is of full rankm. When W, is not of

full rank, we need to set up input data until mcolumn

vectors of W, are linearly independent.

4 Simulation results

To demonstrate the performance of the proposed
approach, three LTV systems with different (or not
necessarily separable with respect to its arguments)
impulse responses are considered.

Example 1: Consider an LTV system whose impulse
response is given by

h(t,7) =cos(27z(z* +171)) (26)

For this simulation, a piecewise-constant function
was applied as the input to the LTV system (26) and
the output was obtained from (15). Fig. 1 illustrates
the true impulse responses (at t=0.7 andt=0.3)
and their approximations estimated by the proposed
Haar wavelet-based approach (here, m =32).

Example 2: Consider another LTV system whose
impulse response is given by

h(t, z) =sin(L07z(z + t))e ™ 27)
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Note that while the impulse response changes rapidly
with 7 than that of Example 1, the same input data as
in Example 1 were used in this simulation. In Fig. 2,
the exponentially damped sinusoids (i.e., true ones
and their respective approximations at t=0.9 and
t=0.4: here,m=32) are presented, verifying that
the proposed approach leads to a high-quality
impulse response estimate even in case of rapidly
time-varying linear systems.

impulse response
— — —approximation

h(1 tau)
o

h{0.5 tau)

2 i I i :
i] 005 01 015 02 02 03 035 04 045 05

Fig. 1. The time-varying function and its
approximation: (a) t=1 and (b) t=0.5

hi1.2 tau)

h{0.7 tau)

Fig. 2. A time-varying function and its
approximation: (a) t=1.2 and (b) t=0.7
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Example 3: Consider the problem of estimating the
impulse response of an LTV system by varying the
resolution. More specifically, Haar wavelets with
different numbers of bases (m=8, 16, and 32) are
utilized for the system identification, and an LTV
system with the following impulse response is
considered:

h(t,z) = e (28)
As in Example 1 and Example 2, the same input data
are also utilized. In Fig. 3, the true impulse response
at t=0.7 and its approximation (obtained by the
proposed approach) are shown, from which it can be
seen that multiresolution analysis by Haar wavelet
with larger number of bases (e.g., m=32) yields a
better approximation to the true impulse response
than ones by Haar wavelet with smaller number of
bases (e.g., m=8, 16)).

tau

tau

i i i 1 tau
i 01 0z 03 o 04 04 06 07

Fig. 3. Approximations and multiresolution analysis
by Haar wavelet with (a) m=8, (b) m=16, and (c)
m=32.

5 Conclusions

In this paper, the problem of identifying a LTV
system from input and output data is considered,
whereby Haar wavelet is employed to form an
algebraic equation for the system identification, from
which Haar wavelet coefficients for the impulse
response are estimated. Also, since the Haar wavelet
posses a finite value in a bounded time-domain and
with unit energy, the proposed approach yields better
computational efficiency than that by other wavelet
or by square functions such as Walsh’s. Future
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research includes further extension of the proposed
approach to the identification of nonlinear LTV
systems.

Appendix A

(11)-(12) can be proved by using the following
mathematical induction:

) m=2(.e., i=1)

h
OO ) [0 1)

z[ho ® h (t)} )

h(t) h(t)

When m is2, P

', (t) is derived from (12) as follows:

(30)

P_() {ho (®) hl(t)}

h(t) h(t)

Since the right side of (29) and (30) is exactly same,
(11)-(12) is true when m is 2.

2) m=2"(ie., i=k)
We suppose that (11)-(12) is true when m is 2".

h,. (N, ©=P, O (31)
h,®=h® h® -~ h, Of
h,®=h,.® h_, ® - h Of

3) m=2""(i.e., i=k+1)
When m is 2, the left side of (11) is represented
by following form:

h,.(Oh

(2k+1)

RO
(t)= {hb (t)}[ha ® h)]

_[h,(OhI® h O
“Lh,(OhI®)  h,Oh ()

(32)

h,®=h® he® - h ©f

h=h,® h ® - h, Of

i ) Multiplication of h_(t) and h(t)
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In (32), h, (t) is the same for h(zk)(t) in (31).
Therefore, h_(t)h!(t) and h(zk)(t)h;k)(t) are the

same so that h_(t)hI(t) s
assumption of 2) as following:

represented by

h,®OhI (1) =P, () (33)
ii) Multiplication of h_(t) and h(t)

The multiplication of h_(t) and h;(t) is
represented as following:

Ch()
hono= : o - h, o
h, ()
- (34)
h©Oh© - hOh. O
_hzk 4 (t;hzk (t) o h2k71 (t) r‘12k+171 (t)

The multiplication of h_(t) and h] (t) is the same as
the multiplication between h;(t)and the sampling
of h.(t).

h OO
ROLO = A0, 0
T om0 - n om0
_mzkl)hzk() h0<2k1)h 0 - nCin.,0 @)
_ hl(zm)h © hl(zm)hzk 0 - nEn. 0
zkl(zkl) 0 0, G0 - h G, 0
1, GO N GO k(z;f)zm(t)}

The right hand side of (35) is rewritten by the digital
representation H(Zk) and h, (t):

h, (h; (1)

1 2k+1
:[h(zk)(F) h(zk)( ok
=H_, diag[h, (t)]

)}dlag [h, (D] (36)

iii) Multiplication of h,(t) and h!(t)
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The multiplication of h,(t) and hl(t) is
represented as following
h, ()
hono= : [ho - h o
h t
: 2k+171() (37)
h . (O)h, (t) h,(®h, ()
h,e., (Oh (1) h..,®h, )

In similar way, the multiplication of h, (t) and
h!(t) is same as multiplication of h, (t) and the
sampling of h!(t).

hONO
[ 1 1 1, ]
LORGH  hOhED - hGh G
3 3o - (38)
%m%)h()w. N0
i
. G0 n G -, En, 0

The right hand side of (38) is represented by h,(t)
and H

o 88 following:

L1
h(zk)(2k+1)
.3
h(zk)(F)

: 2.k+l _1
) (?)

= diag[h, (O]H",

h, (Hh, (t) = diag[h, (t)]
(39)

iv) Multiplication of h, (t)and h; (t)
The multiplication of h,(t) and h](t) is
represented as following:

he@w 0 - 0
h’, ()

2K

h, (®h, () = (40)

0 e R

(t)

For simple derivation, let h’(t) be 2" p (t), and the
function p,_(t) is defined as following:
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p,)=h(2t-q), n=2"+q, g=012..,2 -1 (41)

Therefore, (40) is represented as following:

P, 1) 0 0
noro=| ° 2P0 @)
0 2 p ()
Also, (42) can be expressed by diagnol matrix.
h, (©h] (1) = diag[p , 1,
b, 20,0 20, 0 (43)

By properties of the Haar wavelet transform, P

can be expressed by the linear combination of h,_(t)

[5].

To find the matrix F e R** | p

P, =Fh.(t)
2'p, (1)

2'p,

2k p2k+171 (t)

h, (t)
h,(t) (44)
0

(zk)(t) and h_(t) are

sampled by the same sampling rate as following:

1 3
2k k
,0 X (2k+1) pzk (2k+1)
1 3
2 2
Pl 200G
: 1 : 3 .
a o
i sz(zm) pZMA(ZM)
(2 0 0 - 0]
020 -0
= 0 O Zk e :{h(zk)(
0 0 - 0 2]
- @)
Since H

obtained as following:

H , = (diag[r]H
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2p (——
Py i

k 2k+1 _l)

2k+1
k 2k+1_
1 2
F) h(zk( > ])}(45)

is always invertable, the inverse matrix is

o) (46)
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2k/2 2k/2

r=h 142 V2 2222

H(Zk)an is digital representation of abnormalized

Haar wavelet and has inverse matrix [7].

5 =(diaglrH , )*

=2—1kH:zk)andiag[r1]diag[r2]
(47)
:y (zk)a g[r]
_ 1 T
T
r=[l 122 44 44 2 2]
B I S S O S S S
J2 2 2 2 2 2 o2 o2
Therefore, the matrix F is obtained as following:
2 0 0 0 |
0 2 0 0
0 0 2 |=FH
0 0 0 2]
o 2k IH(’;) =F, I(e R*?)is identity matrix (46)
©2HY =HT, =F
2°) (2°)

Therefore, P (t) is expressed as

P, O=H h, (1) (47)
Also, h, (t)h” (t) is represented as following:
h, (Hh; (t) = diaglp , 1= diag[H' h,(®]  (48)
From (33)-(48), (32) is expressed as follows:
N e, O ©
ZPLM%a)hxmgm} 49)
h, (DI () h, O ®)

P, (1
dlag[h (t)]HT

hxﬂ=ha)hﬁ)

H , diag[h, (1]
diag[H’, h, (t)]

h, ©f
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h,®=h,® h, ® h., ®f

Therefore, (11)-(12) are proved.

Appendix B

Proof of (13)-(14) can be obtained by using the
following mathematical induction:

Dm=2(e., i=1)
h,, Oht, O, = [h " )}[h ® h (t)]{ }

_ Co 1 ho(t)
e o lh®
The right hand side of (50) is equal to that of

(13)-(14) when mis 2.

Co C1
T(Z) = ’T(l) = Co' Ca = Co’ Cb = C1 (51)
Cl Co

(50)

Therefore, (13)-(14) is true when mis 2.
2) m=2"(i.e., i=k):
We suppose that (13)-(14) is true when m is 2".

h, O, O, =T
c.()=|c.) c@®

(Zk)(t) (52)

ol

c.®=lc, .0 c. O -~ c, ®f

@)

3) m=2""(i.e., i=k+1):
When m is 2", the left side of (11) is represented by
following form:

h (2k+1) (t)h-(rzkA) (t)C(2k+1)

_ | ® ] Ca 53
- |:hb(t)j|[ha (t) hh (t){cbi| ( )

_[h.hI)e, +h,mh] M),
|, (h](t)c, +h, (Hh] 1),

c, 0f
c,.. 0

c.®=l,® c®
M=l ® c, ®

i ) Analysis of h_(t)h!(t)c,
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For similar reason in i) of Appendix A,
h, (t)h] (t)c, is represented by following:

h ®h’@)c, =T . h _ (t) (54)

@) (@

i) Analysis of h_(t)h] (t)c,

For similar way in ii) of Appendix A, h_(t)h; (t)c,
is represented by following:

h, (Hh; (t)c,
1 2k+1_1
= |:h(2k) (F)hZK oo h(zk) (T) h2k+1_1:|Ch
B (55)
“ih, G e b (B diagle I, O
- e 2k+1 (24 2k1 g
= H,, diag[c,Jn, (t)
iii) Analysis of h, (t)h!(t)c,:
h, (Hh; (t)c,
- h, () c,
-l ¢ he - on o] (56)
h2k+171 (t) Czkil
- h, (O, +--+h, (ON, O,
h o, (O (H)C, +- +hM (Mh, (Mc,
Also, (56) can be expressed as
h, (tHh; (t)c,
h t)h --+h (Hh
(®) (2H>c +ethy () 2k1<2“)H
- 1 ' 2“1
N, ()h( —)C, +-+h . ()hzkfl(T)Czk,l
I 1 1. ]
h(—) ... h (—
O(ZM) | (2) h, ('t)co
- 2k'+1_1 ’ ék+1_1 :
h(—~7) - h (=) |h., Oc,
I o( 2k+1 ) 2k,l( 2k+1 )__ 2 71() 21
o1 1
h, (F) ey (F)
= : : diaglc_h, (t) (57)
2k+1_1 2k+1_1
h(cs—) ... h (&
i 0( 2k+1 ) Zk,l( 2k+1 )_
=H, diagic, Jn, (1)
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iv) Analysis of h, (t)h; (t)c,:

From (42), h,(t)h;(t)c, can be expressed as
follows:

h, (Hh; (t)c,
2kp2k (t) 0 0
0 Ze0 0 c, (58)
0 kazku,l(t)
2p, (1)
= diag[c,] kazf*l(t)

2k p2k+17 (t)

1

By (44), (58) is represented as

2 p, (1)
2p, (1)

2°p (1)

h, (h; (t)c, = diag[c,] =Fh, (1) (59)

In the same way as (45), (59) can be written as

20 0 - 0
0 2 0 - 0

diagc,] 0 0 2 .. i|=FH (60)
0 0 - 0 2

< diag[c,]2" IH(’;) =F
I(e R**) is identity matrix

< diag[c,]2" H(’;) = diag[cb]H(Tzk) =F

Therefore, h, (t)h;(t)c, can be expressed as
following:

h, (h; (t)e, = diag[c,1H , h, (t) (61)

Zk) a

From (54)-(61), (53) can be represented by
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h o (ONT,, ()C .,

h,®hI®)c, +h, O] W),

Lh, (Oh, (), + hh(t)hl(t)cb}

[ T,,h.®+H  diag[c,]h, ()
diag[c;H , In,(t) +diag[c,]H , h,(t)

T(z") H(zk)diag[cb]:||:ha(t):|

} (62)

diag[c,JH |, diag[c;H , 1] h,(t)
c.®=l,® c® - c, Of
e.=,® c, ® - c,., ®Of

Therefore, (13)-(14) is proved by mathematical
induction.
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