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Abstract: - In this paper, identification of a continuous-time linear time-varying (LTV) system is proposed, where 
Haar wavelet with unit energy is employed. For that purpose, an algebraic equation is derived by expanding the 
input-output data and the time-varying impulse response using normalized Haar wavelets. Unknown wavelet 
coefficients for the a LTV system’s impulse response can be effectively estimated by solving the algebraic 
equation. Finally, the time-varying impulse response of a LTV system can be synthesized from  the estimated 
wavelet coefficients. 
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1 Introduction 
 

The wavelet transform has been effectively applied 
to many fields such as neural networks, 
communication, and image processing [1]-[3]. More 
specipically, system identification utilizing the 
wavelet transforms has received attention in control 
engineering and signal processing fields. In 
particular, wavelet-based approaches for 
identification of linear time-varying (LTV) systems 
have been addressed in a continuous-time domain [4]. 
For example, Daubechies wavelet was applied as an 
orthogonal basis. However, since no analytic 
expression exists for Daubechies wavelet, high 
computational burden is required for the system 
identification. On the other hand, system 
identification of a continuous-time LTV state-space 
model by Haar wavelet was reported, requiring less 
computational burden than that by Daubechies 
wavelet [5]. In particular, some properties of Haar 
wavelets were established [6] and utilized for state 
analysis and parameter estimation of bilinear systems 
[7]. 
In this paper, a new approach for an effective 
estimation of the impulse response of a 
continuous-time LTV system is proposed, requiring 
relatively low computational burden. More 
specifically, (i) an algebraic equation is firstly 
derived by expanding the input-output data and the 
time-varying impulse response using normalized 
Haar wavelets, then, (ii) unknown wavelet 
coefficients for the a LTV system’s impulse response 
can be estimated by solving the algebraic equation, 
and finally, (iii) the time-varying impulse response of 

a LTV system can be synthesized from  the estimated 
quanties. The proposed approach is different from 
conventional ones [5]-[7] in that a computationally 
efficient expression for multiplication of Haar 
wavelets is utilized by employing Haar wavelet with 
unit energy (i.e., normalized), which leads to 
efficient recursive identification of a linear 
time-varying  system.  

This paper is organized as follows: Firstly, basic 
properties of normalized Haar wavelet are 
considered in Section 2. In Section 3, the proposed 
approach for identification of a causal LTV system is 
described. Section 4 provides some simulation 
results, and, finally, the conclusion is drawn in 
Section 5. Also, two appendices are included for the 
proof of some equations utilized in the proposed 
approach. 
 
2 Basic properties of Haar wavelet 
 
2.1 General properties of Haar wavelet 
 
Orthogonal basis functions including Haar wavelet 
has been utilized for the system identification [5]. In 
particular, the amplitude of the Haar wavelet is 

),2,1,0(2 L=± jj  in some finite intervals and zeros 
elsewhere (i.e., see (1)-(2)), leading to effective 
reduction of the calculation [7]. If the scaling 
function and the prototype Haar wavelet are denoted 
by )(0 th  and )(1 th , respectively, all other wavelet 
bases (i.e., )(thn ) can be generated from dilations and 
translations of ),(1 th and each base is normalized 
with unit energy [8]: 
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Let’s define )()( tmh  as a group of the Haar wavelets: 
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When m  Haar bases are taken, the largest sampling 

time without aliasing is m/1  [5]. In general, a signal 
usually has some finite support, and thus, without 
loss of generality, the signal duration can be 
normalized as the time interval )1,0[∈t as in [5]. 
Accordingly, any square-integrable function )(ty  in 
the interval 10 <≤ t can be expressed by using the 
orthogonal bases },,2,1),(,),(),({ 10 ∞= KK nththth n  
[5]: i.e., 
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In practice, the approximation of )(ty using only m  
Haar wavelets is as follows: 
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2.2 Multiplication of Haar wavelet 
 

A recursive formula for the Haar product matrix  
can be expressed as in [7].  
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When (7) is multiplied by a vector 1

)(
×∈ m

m Rc , the 
following matrix mm

m RC ×∈)(  can be obtained from 
the following recursive formula: 
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In (7)-(10), the recursive formula is determined by 
not-normalized Haar wavelet [7]. The matrix )(mC , 
related to the multiplication of two Haar wavelets, 
has an inverse term of )2/(mH in (8) and (10). However, 
due to the normalized Haar wavelet, the inverse term 

)2/(
1

m
−H in )(mC  of (8) and (10) can be expressed by 

)2/(
T

mH  (See the Appendix A).  
 

)()(),()()( 0)1()(
T

)()( thtPtPtt mmm =≅hh        (11) 
 

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
= )]([)]([

)]([)(
)( T

)
2

(

T

)
2

(

)
2

()
2

(

)( tdiagtdiag

tdiagtP
tP

ammb

bmm

m hHHh

hH
      (12) 

 
 

1)
2

(
T

1
2

10 )(),(),()(
×

−
∈⎥⎦

⎤
⎢⎣
⎡=

m

ma Rthththt Lh  

 

   

1)
2

(
T

11
22

)(),(),()(
×

−
+

∈⎥⎦
⎤

⎢⎣
⎡=

m

mmmb Rthththt Lh
 

 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS S.J. Park, K.J. Kim and S.W. Nam

ISSN: 1109-2734 383 Issue 5, Volume 7, May 2008



Also, when the )()( tPm in (11) is multiplied by a vector 
1

)(
×∈ m

m Rc , a matrix mm
m RT ×∈)( can be drived from 

the following recursive formula (See the Appendix 
B): 
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Accordingly, )(mC can be obtained with lower 
computational burden. In particular, (13) and (14) are 
utilized in this paper for identification of the impulse 
response of an LTV system. 
 
2 Identification of a causal LTV system 

 
In the previous work, the identification of a linear 
autonomous system is performed by using a state 
space model [5]-[7]. However, in this paper, we 
consider the problem of identifying a causal LTV 
system expressed in an integral convolution form. 
Consider a continuous-time LTV system whose 
input- output relationship is given by 
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t

o
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In (15), )(τx and ),( τth denote the input and the 
impulse response of the LTV system [9]. Suppose 
that input and output data are given and the impulse 
response of a LTV system is unknown. Let the time 
t  be fixed at an arbitrary time )1,0[∈kt . 
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When ),( τth  is projected onto m  Haar bases, the 
impulse response of the LTV system can be 
expressed as follows [10]: 
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In (17), T

, ktma and )()( τmh  correspond respectively to 
Haar wavelet coefficients at )1,0[∈kt  and Haar 
wavelet bases, which implies that ),( τth  is not 
necessarily separable with respect to t  and τ . In 
addition, the input signal )(τx  can be expanded in a 
similar way by Haar bases. 
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Now, consider the problem of estimating the 
unknown impulse response ),( τkth . For that purpose, 
unknown coefficients 

ktm ,a (or see (17)) should be 
estimated first. Also, the output )( kty  can be 
expressed from (16)-(18) as 
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Note that )()( T

)()( ττ mm hh in (20) is a function ofτ and 
can be described by Haar bases [6]. That is, from 
(13)-(14), there exists )(mΘ  ( mm
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Since the Haar wavelet possesses finite points of 

discontinuity on the bounded time domain, the Haar 
wavelet can be integrable over the interval 

),0[ kt [11].  
Let )(mP  be calculated from the following integration 
of the Haar wavelet. 
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By substituting (22) into (21), we have 
 

)()(
T

,)( mmktmkty Pa Θ=                              (23) 
 

For a simple notation, let’s denote )()( mm PΘ  by 
1
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coefficients in 
ktm ,a should be estimated to 

identify ),( τth , but we have only one equation (23). 
To solve such problem, m  different inputs are 
applied to the LTV system, producing m outputs 
observed at kt and leading to the following m  
equations to solve m unknown coefficients in

ktm,a . 
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Furthermore, (24) can be described in the following 
matrix form: 
 

ktmmkt ,
T

)()( aWY =                               (25) 
 

where 
 

[ ] 1T
21 )(),(),()( ×∈= m

kmkkk Rtytytyt LY  
[ ] mm

mmmmm R ×∈= ),(2),(1),()( ,, wwwW L  
 
Accordingly, ),( τkth  can be achieved from (25) and 
(17) if )(mW  is of full rank m . When )(mW is not of 
full rank, we need to set up input data until m column 
vectors of )(mW are linearly independent. 

 
4 Simulation results 
 
To demonstrate the performance of the proposed 
approach, three LTV systems with different (or not 
necessarily separable with respect to its arguments) 
impulse responses are considered. 
 
Example 1: Consider an LTV system whose impulse 
response is given by 
 

))(2cos(),( 2 ττπτ tth +=                    (26) 
 

For this simulation, a piecewise-constant function 
was applied as the input to the LTV system (26) and 
the output was obtained from (15). Fig. 1 illustrates 
the true impulse responses (at 7.0=t and 3.0=t ) 
and their approximations estimated by the proposed 
Haar wavelet-based approach (here, 32=m ). 
 
Example 2: Consider another LTV system whose 
impulse response is given by  
 

)())(10sin(),( ttetth +−+= ττπτ                   (27) 

Note that while the impulse response changes rapidly 
with τ  than that of Example 1, the same input data as 
in Example 1 were used in this simulation. In Fig. 2, 
the exponentially damped sinusoids (i.e., true ones 
and their respective approximations at 9.0=t  and 

4.0=t : here, 32=m ) are presented, verifying that 
the proposed approach leads to a high-quality 
impulse response estimate even in case of rapidly 
time-varying linear systems. 
 

 
Fig. 1. The time-varying function and its 
approximation: (a) t=1 and (b) t=0.5 
 

 
 
Fig. 2. A time-varying function and its 
approximation: (a) t=1.2 and (b) t=0.7 
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Example 3: Consider the problem of estimating the 
impulse response of an LTV system by varying the 
resolution. More specifically, Haar wavelets with 
different numbers of bases ( m =8, 16, and 32) are 
utilized for the system identification, and an LTV 
system with the following impulse response is 
considered: 
 

)(10),( tteth +−= τττ                              (28) 
 

As in Example 1 and Example 2, the same input data 
are also utilized. In Fig. 3, the true impulse response 
at 7.0=t and its approximation (obtained by the 
proposed approach) are shown, from which it can be 
seen that multiresolution analysis by Haar wavelet 
with larger number of bases (e.g., m =32) yields a 
better approximation to the true impulse response 
than ones by Haar wavelet with smaller number of 
bases (e.g., m =8, 16)).  
 

 
Fig. 3. Approximations and multiresolution analysis 
by Haar wavelet with (a) m=8, (b) m=16, and (c) 
m=32. 
 
5 Conclusions 
 
In this paper, the problem of identifying a LTV 
system from input and output data is considered, 
whereby Haar wavelet is employed to form an 
algebraic equation for the system identification, from 
which Haar wavelet coefficients for the impulse 
response are estimated. Also, since the Haar wavelet 
posses a finite value in a bounded time-domain and 
with unit energy, the proposed approach yields better 
computational efficiency than that by other wavelet 
or by square functions such as Walsh’s. Future 

research includes further extension of the proposed 
approach to the identification of nonlinear LTV 
systems. 
 
Appendix A  
 
(11)-(12) can be proved by using the following 
mathematical induction: 
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When m  is 2, )()2( tP is derived from  (12) as follows: 
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Since the right side of (29) and (30) is exactly same, 
(11)-(12) is true when m  is 2. 
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When m  is 12 +k , the left side of (11) is represented 
by following form: 
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ⅰ)  Multiplication of )(tah and )(T tah  
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The multiplication of )(tah  and )(T tbh is the same as 
the multiplication between )(T tbh and  the sampling 
of )(tah . 
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The right hand side of (35) is rewritten by the digital 
representation 

)2( kH  and )(tbh : 
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ⅲ)  Multiplication of )(tbh  and )(T tah  

  The multiplication of )(tbh  and )(T tah is 
represented as following 
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In similar way, the multiplication of )(tbh  and 

)(T tah is same as multiplication of )(tbh  and the 
sampling of )(T tah . 
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The right hand side of (38) is represented by )(tbh  
and 

)2( kH as following: 
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ⅳ) Multiplication of )(tbh and )(T tbh  
The multiplication of  )(tbh and )(T tbh is 

represented as following: 
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For simple derivation, let )(2 thn  be )(2 tn

k ρ ,  and the 
function )(tnρ  is defined as following: 
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)2()( 0 qtht k
n −=ρ ,  qn k += 2 , 12,,2,1,0 −= kq K  (41) 

 
Therefore, (40) is represented as following: 
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Also, (42) can be expressed by diagnol matrix. 
 

][)()(
)2(

T
kbb diagtt ρhh = , 
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By properties of the Haar wavelet transform, 

)2( kρ  

can be expressed by the linear combination of )(tah  
[5].  
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To find the matrix kkR 22 ×∈F , )(

)2(
tkρ  and )(tah  are 

sampled by the same sampling rate as following: 
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(45) 

 
Since 

)2( kH is always invertable, the inverse matrix is 

obtained as following: 
 

1

),2(

1

)2(
)][( −− =

ankk diag HrH                    (46) 

[ ]2/2/ 2222222211 kk LL=r
 

ank ),2(
H  is digital representation of abnormalized 

Haar wavelet and has inverse matrix [7].  
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[ ]kk 22444422111 LL=r  
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Therefore, the matrix F  is obtained as following: 
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Therefore, )(

)2(
tkρ  is expressed as 

      )()( T

)2()2(
tt akk hHρ ≅                            (47) 

 
Also, )()( T tt bb hh  is represented as following: 
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From  (33)-(48), (32) is expressed as follows: 
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[ ]T
1210 )()()()( thththt ka −

= Lh  
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[ ]T
112122

)()()()( thththt kkkb −++
= Lh  

 
Therefore, (11)-(12) are proved. 
 
Appendix B  
 
Proof of (13)-(14) can be obtained by using the 
following mathematical induction:  
 
1) 2=m (i.e., 1i = ) 
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The right hand side of (50) is equal to that of 
(13)-(14) when m is 2. 
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⎡
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10
)2( cc
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T , 0)1( cT = , 10 , cc ba == cc       (51) 

 
Therefore,  (13)-(14) is true when m is 2. 
 
2) km 2= (i.e., k=i ): 
 
 We suppose that (13)-(14) is true when m  is k2 . 
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)2()2()2()2()2(

tTtt kkk
T

kk hchh =            (52) 

[ ]T
11210 )()()()( tctctct ka −−= Lc  

 
[ ]T

1211212
)()()()( tctctct kkkb −+−−= Lc  

 
3) 12 += km (i.e., 1i += k ): 
When m  is 12 +k , the left side of (11) is represented by 
following form: 
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[ ]T

1210 )()()()( tctctct ka −
= Lc  

[ ]T
112122

)()()()( tctctct kkkb −++
= Lc  

 
ⅰ) Analysis of aaa tt chh )()( T  

 For similar reason in ⅰ) of Appendix A, 

aaa tt chh )()( T  is represented by following: 
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T tTtt kkaaa hchh =                  (54) 

 
ⅱ) Analysis of bba tt chh )()( T  

For similar way in ⅱ) of Appendix A, bba tt chh )()( T  
is represented by following: 
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ⅲ) Analysis of aab tt chh )()( T : 
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Also, (56) can be expressed as 
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ⅳ) Analysis of bbb tt chh )()( T : 
 
 From (42), bbb tt chh )()( T  can be expressed as 
follows: 
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 (58) 

 
By (44), (58) is represented as  
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In the same way as (45), (59) can be written as  
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Therefore, bbb tt chh )()( T  can be expressed as 
following: 
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From (54)-(61), (53) can be represented by 
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[ ]T

1210 )()()()( tctctct ka −
= Lc  

 
[ ]T

112122
)()()()( tctctct kkkb −++

= Lc  
 
Therefore, (13)-(14) is proved by mathematical 
induction. 
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