
Embedded Real-Time Video Encryption Module on UAV
Surveillance Systems

CIPRIAN RĂCUCIU, NICOLAE JULA, CONSTANTIN BĂLAN, COSMIN ADOMNICĂI

Communications Department
Military Technical Academy

B-dul George Coşbuc 81-83, Sector 5, Bucharest, ROMANIA
ciprian.racuciu@gmail.com, nicolae.jula@gmail.com, constantin.balan@yahoo.com, ado_atm@yahoo.com

Abstract: - A real-time video encryption module, developed to be used on an electrical accelerated mini-helicopter
(UAV), is presented in this paper. The surveillance system is composed from six modules: image capture, encryption,
two radio link modules, decryption and display module. The hart of the encryption system is the CV700C motherboard
and it’s VIA C7 microprocessor with ultra low power consumption and efficient heat dissipation. For encryption,
Rijndael algorithm was used.

Key-Words: - Encryption, Rijndael, DirectShow, Real-time, Wireless, Embedded

1 Introduction
An UAV1 is an airborne system, without a pilot, which
flies by means of a remote control or by using an
autopilot installed on board and carries sensors or
weapons. It can be used only once or reused many times.
Comparing an UAV with a classical airplane, most of
the times, the UAV is small and light and the load is
composed from sensors used in reconnaissance and
surveillance missions, or in target acquisition missions.
Now, there are new mission for UAV, like combat,
intelligence, and civil applications [6]. Because any
transmission from a military UAV must be secured it’s a
must to use an encryption method to protect de
confidentiality of the transmitted data. Because of the
restrictions applied to weight, dimensions and power
consumption of any UAV module, it was chosen the
CV700C motherboard manufactured by Lex Inc. which
is 200 mm long and 150 mm wide. For an increased
endurance to vibrations, the hard disk was replaced with
a Compact Flash memory card. To maximize the
encryption speed and to reduce the footprint the
Windows XP Embedded operating system was used. The
program was written in C++ programming language
using the DirectShow API2 which has the whole support
for buffering and frame dropping.

2 Problem Formulation
Because any transmission from a military UAV must be
secured it’s a must to use an encryption method to
protect de confidentiality of the transmitted data.
Because of the restrictions applied to weight, dimensions
and power consumption of any UAV module, it was
chosen the CV700C motherboard manufactured by Lex

1 Unmanned Aerial Vehicle
2 Application Interface

Inc. which is 200 mm long and 150 mm wide. For an
increased endurance to vibrations, the hard disk was
replaced with a Compact Flash memory card. To
maximize the encryption speed and to reduce the
footprint the Windows XP Embedded operating system
was used [13]. The program was written in C++
programming language using the DirectShow API3
which has the whole support for buffering and frame
dropping.

3 Problem Solution
The system is composed of:
• Digital video camera with USB interface;
• CV700C motherboard;
• RF modules;
• Notebook.

Device Weight[g] Price[€]
CV700C 500g 320€

Gigabyte 802.11b/g 15g 20€
Canion video 20g 10€

Table 1 Weight and price of used components

System control

Input video
interface

Encryption
module Transceiver Optional video

output

Transceiver Decryption
module

Radio Link

Output video
interface

Comandă şi control

System input

System output

Fig. 1 The system

3 Application Interface

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 368 Issue 5, Volume 7, May 2008

Fig. 2 CV 700C motherboard

The motherboard is based on VIA C7

microprocessor which operates at a frequency of 1 GHz.
The microprocessor is built for applications with low
power consumption requirements. On full load, the
consumption of the microprocessor is 11 W and of the
entire board is 25 W. To the motherboard are connected
a video camera which takes pictures at a rate of 25
frames/second and an 802.11 wireless radio module
which operates in the public spectrum. On this
motherboard runs the airborne encryption subsystem.
The other component of the system is the base station
which runs on an Intel based microprocessor notebook.
It receives data from the integrated 802.11 wireless
module and feeds the data to the decryption module and
displays the decrypted images on the monitor. The
airborne encryption module can be controlled via radio
link and there can be changed the encryption keys and
the encryption modes.

Fig. 3 An UAV built by Professor Nicolae Jula

Fig. 4 Attached video camera details

Fig. 5 Aspect of an UAV flying

3.1 The operating system
Windows XP Embedded is a modular version Windows
XP Professional and the developer can choose which
components are included in the distribution, making the
Windows XP operating system flexible to developer’s
specific needs.

Fig. 6 Windows XP Professional versus Windows XP

Embedded

The advantages of choosing which components
to install are speed and a small footprint. In the case of a
small footprint the mechanical hard drive can be

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 369 Issue 5, Volume 7, May 2008

replaced with a Compact Flash memory card, making the
system more resilient to vibrations. This will also reduce
the power consumption of the system which is very
important in the case of a battery driven system. Also,
eliminating useless components, drivers, programs and
services that slow down the operating system can leave
free resources available to the encryption software.
A particular set of components that Windows XP
Embedded has and Windows XP Professional doesn’t is
the Enhanced Write Filter which is designed especially
for Compact Flash drives.

Enhanced Write Filter is composed of three
components:

 EWF Manager Console application;
 Enhanced Write Filter;
 EWF NTLDR.

EWF reduces the number of write operations to
the minimum. This is done by implementing a RAM
buffer of the write operations. So, only one operations of
writing operation is done for many write operation
requested.

The first component, EWF Manager Console
application, is the configuration console for EWF. The
second component, EWF, is the core of the module. The
third component, EWF NTLDR, is the boot loader used
for a EWF configured drive.
The only disadvantage of EWF is the extra RAM needed
for it.

Fig. 7 EWF overview

3.2 DirectShow API
To benefit from the full power of Windows operating
system, the DirectShow framework was used.
DirectShow is part of Microsoft Platform SDK and it is
the most complex API that Microsoft ever created.
The DirectShow framework is a filter based framework,
in which the processing modules are organized in a filter
graph. Every processing module is named a filter. There
can be created several independent filter graphs, which
can or cannot be linked. Every multimedia device that is

installed in a Windows environment can be accessed
through the DirectShow API. Basically, every filter is a
COM object which has to obey specific rules. Depending
on the filter type, there are methods that have to be
implemented. The developed has only the task of writing
the code used for video processing only. The rest is
leaved in the hands of the API. The synchronization
between the filters, frame buffering, frame dropping are
done by the API [10].

The basic power and flexibility of DirectShow
derives directly from its modular design. DirectShow
defines a standard set of Component Object Model
(COM) interfaces for filters and leaves it up to the
programmer to arrange these components in some
meaningful way. Filters hide their internal operations;
the programmer doesn’t need to understand or appreciate
the internal complexities of the Audio Video Interleaved
(AVI) file format, for example, to create an AVI file
from a video stream. All that‘s required is the
appropriate sequence of filters in a filter graph.

Filters are atomic objects within DirectShow,
meaning they reveal only as much of themselves as
required to perform their functions.
Because they are atomic objects, filters can be thought of
and treated just like puzzle pieces. The qualities that
each filter possesses determine the shape of its puzzle
piece, and that, in turn, determines which other filters it
can be connected to. As long as the pieces match up,
they can be fitted together into a larger scheme, the filter
graph.

All DirectShow filters have some basic
properties that define the essence of their modularity.
Each filter can establish connections with other filters
and can negotiate the types of connections it‘s willing to
accept from other filters. A filter designed to process
MP3 audio doesn’t have to accept a connection from a
filter that produces AVI video and probably shouldn’t.
Each filter can receive some basic messages run, stop
and pause that control the execution of the filter graph.
That‘s about it; there‘s not much more a filter needs to
be ready to go. As long as the filter defines these
properties publicly through COM, DirectShow will treat
it as a valid element in a filter graph.

This modularity makes designing custom
DirectShow filters a straightforward process. The
programmer‘s job is to design a COM object with the
common interfaces for a DirectShow filter, plus
whatever custom processing the filter requires.

The modularity of DirectShow extends to the
filter graph. Just as the internals of a filter can be hidden
from the programmer, the internals of a filter graph can
be hidden from view. When the filter graph is treated as
a module, it can assume responsibility for connecting
filters together in a meaningful way. It‘s possible to
create a complete, complex filter graph by adding a

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 370 Issue 5, Volume 7, May 2008

source filter and a renderer filter to the filter graph.
These filters are then connected with a technique known
as Intelligent Connect. Intelligent Connect examines the
filters in the filter graph, determines the right way to
connect them, adds any necessary conversion filters, and
makes the connections all without any intervention from
the programmer. Intelligent Connect can save an
enormous amount of programming time because
DirectShow does the tedious work of filter connection.

There is a price to be paid for this level of
automation: the programmer won‘t know exactly which
filters have been placed into the filter graph or how
they‘re connected. With Intelligent Connect, the
programmer won‘t know which filter DirectShow has
chosen to use (at least, when a choice is available). It‘s
possible to write code that will make inquiries to the
filter graph and map out the connections between all the
filters in the filter graph, but it ‘s more work to do that
than to build the filter graph from scratch. So,
modularity has its upsides ease of use and extensibility
and its downsides hidden code.

Filters are the basic units of DirectShow
programs, the essential components of the filter graph. A
filter is an entity complete unto itself. Although a filter
can have many different functions, it must have some
method to receive or transmit a stream of data. Each
filter has at least one pin, which provides a connection
point from that filter to other filters in the filter graph.
Pins come in two varieties: input pins can receive a
stream, while output pins produce a stream that can be
sent along to another filter.

There are three basic classes of DirectShow
filters, which span the path from input, through
processing, to output (or, as it‘s often referred to,
rendering). All DirectShow filters fall into one of these
broad categories. A filter produces a stream of data,
operates on that stream, or renders it to some output
device.

Any DirectShow filter that produces a stream is
known as a source filter. The stream might originate in a
file on the hard disk, or it might come from a live device,
such as a microphone, webcam, or digital camcorder. If
the stream comes from disk, it could be a pre-recorded
WAV (sound), AVI (movie), or Windows Media file.
Alternately, if the source is a live device, it could be any
of the many thousands of Windows-compatible
peripherals. DirectShow is closely tied in to the
Windows Driver Model (WDM), and all WDM drivers
for installed multimedia devices are automatically
available to DirectShow as source filters. So, for
example, webcams with properly installed Windows
drivers become immediately available for use as
DirectShow source filters. Source filters that translate
live devices into DirectShow streams are known as
capture source filters.

Transform filters are where the interesting work gets
done in DirectShow. A transform filter receives an input
stream from some other filter (possibly a source filter),
performs some operation on the stream, and then passes
the stream along to another filter. Nearly any imaginable
operation on an audio or video stream is possible within
a transform filter. A transform filter can parse (interpret)
a stream of data, encode it (perhaps converting WAV
data to MP3 format) or decode it, or add a text overlay to
a video sequence. DirectShow includes a broad set of
transform filters, such as filters for encoding and
decoding various types of video and audio formats.
Transform filters can also create a tee in the stream,
which means that the input stream is duplicated and
placed on two (or more) output pins. Other transform
filters take multiple streams as input and multiplex them
into a single stream. Using a transform filter multiplexer,
separate audio and video streams can be combined into a
video stream with a soundtrack.

A renderer filter translates a DirectShow stream
into some form of output. One basic renderer filter can
write a stream to a file on the disk. Other renderer filters
can send audio streams to the speakers or video streams
to a window on the desktop. The Direct in DirectShow
reflects the fact that DirectShow renderer filters use
DirectDraw and DirectSound, supporting technologies
that allow DirectShow to efficiently pass its renderer
filter streams along to graphics and sound cards. This
ability means that DirectShow‘s renderer filters are very
fast and don ‘t get tied up in a lot of user-to-kernel mode
transitions. (In operating system parlance, this process
means moving the data from an unprivileged level in an
operating system to a privileged one where it has access
to the various output devices.)

A filter graph can have multiple renderer filters.
It is possible to put a video stream through a tee, sending
half of it to a renderer filter that writes it to a file, and
sending the other half to another renderer filter that puts
it up on the display. Therefore, it is possible to monitor
video operations while they‘re happening, even if they‘re
being recorded to disk.

All DirectShow filter graphs consist of
combinations of these three types of filters, and every
DirectShow filter graph will have at least one source
filter, one renderer filter, and (possibly) several
transform filters. In each filter graph, a source filter
creates a stream that is then operated on by any number
of transform filters and is finally output through a
renderer filter. These filters are connected together
through their pins, which provide a well-defined
interface point for transfer of stream data between filters.
Although every DirectShow filter has pins, it isn’t
always possible to connect an input pin to an output pin.
When two filters are connecting to each other, they have
to reach an agreement about what kind of stream data

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 371 Issue 5, Volume 7, May 2008

they‘ll pass between them.
The pins on a DirectShow filter handle the

negotiation between filters and ensure that the pin types
are compatible before a connection is made between any
two filters. Every filter is required to publish the list of
media types it can send or receive and a set of transport
mechanisms describing how each filter wants the stream
to travel from output pin to input pin.

When a DirectShow filter graph attempts to
connect the output pin of one filter to the input pin of
another, the negotiation process begins. The filter graph
examines the media types that the output pin can
transmit and compares these with the media types that
the input pin can receive. If there aren’t any matches, the
pins can‘t be connected and the connection operation
fails.

Next the pins have to agree on a transport
mechanism. Once again, if they can‘t agree, the
connection operation fails. Finally one of the pins has to
create an allocator, an object that creates and manages
the buffers of stream data that the output pin uses to pass
data along to the input pin. The allocator can be owned
by either the output pin or the input pin; it doesn‘t
matter, so long as they‘re in agreement.

If all these conditions have been satisfied, the
pins are connected. This connection operation must be
repeated for each filter in the graph until there‘s a
complete, uninterrupted stream from source filter,
through any transform filters, to a renderer filter. When
the filter graph is started, a data stream will flow from
the output pin of one filter to the input pin of the other
through the entire span of the filter graph.

One of the greatest strengths of DirectShow is
its ability to handle the hard work of supporting multiple
media formats. Most of the time it‘s not necessary for
the programmer to be concerned with what kinds of
streams run through a filter graph. Yet to connect two
pins, DirectShow filters must have clear agreement on
the media types they‘re handling. Intelligent Connect
automates the connection process between two pins.
Two pins can be connected directly, so long as their
media types agree. In a situation in which the media
types are not compatible, the programmer often need one
(or several) transform filters between the two pins so that
they can be connected together. Intelligent Connect does
the work of adding and connecting the intermediate
transform filters to the filter graph.

For example, a filter graph might have a source
filter that produces a stream of DV data perhaps it‘s
connected to a camcorder. This filter graph has a
renderer filter that writes a file to disk. These two filters
have nothing in common. They don‘t share any common
media types because the DV data is encoded and
interleaved and must be decoded and de-interleaved
before it can be written to a file. With Intelligent

Connect, the filter graph can try combinations of
intermediate transform filters to determine whether
there‘s a way to translate the output requirements of the
pin on the source filter into the input requirements of the
render filter. The filter graph can do this because it has
access to all possible DirectShow filters. It can make
inquiries to each filter to determine whether a transform
filter can transform one media type to another which
might be an intermediate type transform that type into
still another, and so on, until the input requirements of
the renderer filter have been met. A DirectShow filter
graph can look very grotesque by the time the filter
graph succeeds in connecting two pins, but from the
programmer‘s point of view, it‘s a far easier operation.
And if an Intelligent Connect operation fails, it‘s fairly
certain there‘s no possible way to connect two filters.
The Intelligent Connect capability of DirectShow is one
of the ways that DirectShow hides the hard work of
media processing from the programmer.

The DirectShow filter graph organizes a group
of filters into a functional unit. When connected, the
filters present a path for a stream from source filters,
through any transform filters, to renderer filters.
However, it isn’t enough to connect the filters; the filter
graph has to tell the filters when to start their operation,
when to stop, and when to pause. In addition, the filters
need to be synchronized because they‘re all dealing with
media samples that must be kept in sync. For this reason,
the filter graph generates a software-based clock that is
available to all the filters in the filter graph. This clock is
used to maintain synchronization and allows filters to
keep their stream data in order as it passes from filter to
filter. Available to the programmer, the filter graph clock
has increments of 100 nanoseconds. (The accuracy of the
clock on the system might be less precise than 100
nanoseconds because accuracy is often determined by
the sound card or chip set on the system.)

When the programmer issues one of the three
basic DirectShow commands run, stop, or pause the
filter graph sends the messages to each filter in the filter
graph. Every DirectShow filter must be able to process
these messages.

For example, sending a run message to a source
filter controlling a webcam will initiate a stream of data
coming into the filter graph from that filter, while
sending a stop command will halt that stream. The pause
command behaves superficially like the stop command,
but the stream data isn‘t cleared out like it would be if
the filter graph had received a stop command. Instead,
the stream is frozen in place until the filter graph
receives either a run or stop command. If the run
command is issued, filter graph execution continues with
the stream data already present in the filter graph when
the pause command was issued.

There were developed several filters:

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 372 Issue 5, Volume 7, May 2008

• Encryption and decryption filter;
• Data link interface modules (client and server);
For video capture and video rendering pre-programmed
filters were used.

The video input and output filters are contained
in the DirectShow API. The main program initialises the
filters and controls different parameters like:
• Image resolution
• Bit depth
• Encryption mode;
• Encryption key;
In this case, a resolution of 320x240 pixels and a bit
depth of 24 bits/pixel were used. So the entire image
contained 230400 bytes without the header used to pass
the image parameters between filters, which added extra
data [8].

3.3 The encryption module
Rijndael is a symmetric block cipher that can process
data blocks of 128, 192 or 256 bits, using cipher keys
with lengths of 128, 192 or 256 bits. In the AES
standard, the block cipher can only process data blocks
of 128 bits and the key lengths are 128, 192 or 256 bits
[7].
An intermediate result of the encryption process is called
“State”. The “State” can be pictured as a rectangular
array of bytes with four rows and Nb columns. If N is
the block size, then Nb = N/32.

The Cipher Key is similarly pictured as a
rectangular array with four rows. If M is the key size,
then the number of columns is Nk = M/32.

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

Fig. 8 Example of State (with Nb=4)

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

Fig. 9Example of the Cipher Key (with
Nk=4)

Each individual element of the matrices shown in Fig.8
and Fig. 9 is 4-byte vector or word.

In the actual algorithm, the input and output at
the external interface are considered to be one-
dimensional array of 8 bytes numbered upwards from 0
to 4*Nb-1. These blocks have lengths of 16 bytes and
array index in the range 0…15.

The cipher key is considered to be a one-

dimensional array of 8 bytes numbered upwards from 0
to 4*Nk-1. These blocks have lengths of 16, 24 or 32
bytes and array indices in the ranges 0…15, 0…23 or
0…31.

If the one-dimensional array index of a byte
within block and the two dimensional index is (i, j), we
have:

i=n mod 4
j=[n/4]
n=i+4*j

The number of rounds is denoted by Nr. The value of Nr
depends of Nb and Nk and it is shown in Table 2.

Nr Nb=4
Nk=4 10
Nk=6 12
Nk=8 14

Table 2 Number of rounds Nr

 At the start of the Cipher, the input is copied into the
State array. After an initial Round Key addition, the
State array is transformed by implementing a round
function for Nr times, with the final round differing
slightly from the first Nr-1 rounds. The final State is then
copied to the output.

The encryption module is based on the Rijndael
algorithm in which the block and key size are limited at
128 bits. This limitation appeared to meet the encryption
speed requirements. The algorithm is composed from
four major operations made to the data block:
• SubBytes
• ShiftRows
• MixCollumns
• AddRoundKey
Rijndael algorithm uses the finite field GF(28). The input
bytes are considered polynomials and the addition,
multiplication and other operations are done in GF(28).
Without improvements, these operations would take a lot
of time to compute and the algorithm could not be used
in a real-time environment. In FIPS-197, logarithms
tables are provided to simplify the multiplication
operations. Instead of working from the low order
terms, and repeatedly multiplying by x1 the speed can
be improved by table lookup and polynomial addition:

public byte FFMul(unsigned byte a, unsigned byte b)
{
int t = 0;;
if (a == 0 || b == 0) return 0;
t = L[a] + L[b];
if (t > 255) t = t - 255;
return E[t];
}

The SubBytes transformation is defined as a non-linear

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 373 Issue 5, Volume 7, May 2008

byte substitution which operates on the State. It’s
composed of two transformations:
• The multiplicative inverse in GF(28) is taken;
• The result is modified according to the fallowing

transformation:

Fig. 10 SubBytes transformation

 For AES the irreducible polynomial is x8+x4+x3+x+1.
This polynomial is used to generate GF(28) used in
finding the multiplicative inverse mentioned above.
 The non-linearity of this transformation comes from
multiplicative inverse in GF(28). Everything else in this
transformation is linear.
 In SubBytes, the calculation of the
multiplicative inverse can be efficiently done using a
"table lookup" method: a small table of 28 = 256 pairs of
bytes can be built once and used forever (the table can be
"hardwired" into hardware or software implementations).
In this table of pairs, the zero byte is paired with the zero
byte; the rest of the 255 entries in the table are the 255
cases of the pair (x, x–1) where inversion is performed in
the field. The "table lookup" method not only is
efficient, but also prevents a timing analysis attack
which is based on observing the operation time
difference for different data which may suggest whether
an operation is performed on bit 0 or bit 1. The "table
lookup" method can actually include the whole
transformation altogether.

Fig. 11 The lookup table (Sbox) in hexadecimal format

 The InvSubBytes is obtained by using the inverse table

shown below:

Fig. 12 The inverted lookup table (InvSbox) in

hexadecimal format

In FIPS-197 (AES standard released by NIST)

the substitution box and its inverse used in SubBytes are
computed and can be used as they are [9].

Fig. 13 Rijndael algorithm block scheme

In ShiftRows, the rows of the state are cyclically

shifted over different offsets. The first row is not shifted,
the second row is shifted over one byte, the third row is
shifted over two bytes and, finally, the fourth row is
shifted over three bytes.

The MixColumns transformation operates on the
State column-by-column, treating each column as a four-
term polynomial. The columns are considered as
polynomials over GF(28) and multiplied modulo x4+1
with the fixed polynomial: 3x3+x2+x+2.

The AddRoundKey operation consists in the
simple addition of the round key with the State. The
Round Key is generated by means of the key schedule.
The algorithm uses the cipher key to generate an
extended key. This key is used by the AddRoundKey
operation. This entire process is called Key Schedule.
Key Schedule consist in two components:
• Key Expansion;
• Round Key selection.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 374 Issue 5, Volume 7, May 2008

KeyExpansion (byte key[4*Nk], word w[Nb*(Nr+1)],
Nk)

begin
word temp
i = 0
while (i < Nk)
w[i] = word(key[4*i], key[4*i+1], key[4*i+2],

key[4*i+3])
i = i+1

end while
i = Nk
while (i < Nb * (Nr+1)]
temp = w[i-1]
if (i mod Nk = 0)
temp = SubWord(RotWord(temp)) xor

Rcon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)
temp = SubWord(temp)

end if
w[i] = w[i-Nk] xor temp
i = i + 1
end while

end

SubWord() is a function that takes a four-byte
input word and applies the S-box to each of the four
bytes to produce an output word. The function
RotWord() takes a word [a0,a1,a2,a3] as input, performs
a cyclic permutation, and returns the word [a1,a2,a3,a0].
The round constant word array, Rcon[i], contains the
values given by [xi-1,{00},{00},{00}], with x i-1 being
powers of x (x is denoted as {02}) in the field GF(28), as
(i starts at 1, not 0).

The first Nk words of the expanded key are filled
with the Cipher Key. Every following word, w[i], is
equal to the XOR of the previous word, w[i-1], and the
word Nk positions earlier, w[i-Nk]. For words in
positions that are a multiple of Nk, a transformation is
applied to w[i-1] prior to the XOR, followed by an XOR
with a round constant, Rcon[i]. This transformation
consists of a cyclic shift of the bytes in a word
(RotWord()), followed by the application of a table
lookup to all four bytes of the word (SubWord()).

The Key Expansion routine for 256-bit Cipher
Keys (Nk = 8) is slightly different than for 128 and 192-
bit Cipher Keys. If Nk = 8 and i-4 is a multiple of Nk,
then SubWord() is applied to w[i-1] prior to the XOR.
The algorithm was implemented using three modes of
operation: ECB4, CBC5, and CFB6. In this application
the ECB mode was implemented for testing purposes

4 Electronic CodeBook
5 Cipher Block Chaining
6 Cipher FeedBack

because of the security problems caused by the image
redundancy. This mode can only be used in tandem with
a compression module.

The encryption and decryption filters contain an
interface that the main program uses to connect to these
filters and command the encryption keys and the
encryption modes. The five keys are built-in and the user
can only choose which key to use at a given moment.
This solution was chosen to avoid key interception
during the transmission. The input and output buffer are
twice the size of a frame. The data in processed in RGB
mode with a 24 bits colour depth. The secure channel
can be created in three ways:
• at the application layer;
• at the network layer;
• at the data link layer.
In this case, the encryption is done at application layer
and the only thing that is encrypted is the video
transmission.

3.4 RF modules
These modules handle the data link layer. They are built
around Winsock 2.0. The receiver filter is responsible
with the compensation in the variations of frame rate
caused by the auto exposure function of the camera. To
do this, a circular buffer was implemented to reassemble
the incoming fames. This buffer doesn’t forward a frame
until it is complete. If only a part of a frame is receiver,
the filter waits for the rest before it forwards the frame.
The same socket is used for transmitting the changes in
encryption modes and encryption keys. The main
program access the filter every two seconds through a
particular interface and checks for a change. If a change
in encryption method or encryption key is detected, the
main program commands the change to the decryption
filter through another particular interface. In the first
frames after the change, the received frames are
scrambled. After that the system resynchronises itself.
The protocols used for feeding the data to the wireless
device were TCP and IP in stream mode. Another way of
connecting is the datagram mode, but this mode uses
UDP and it’s unreliable. The TCP protocol handled
packet retransmission and the 802.11 RF module
handled error corrections. The radio link could not be
used at its full potential because of minimum delay
required and the synchronization that was taking place in
background. IP is a routable protocol and user at the
ground can view transmissions from multiple UAV.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 375 Issue 5, Volume 7, May 2008

3.4 Static image encryption example

Fig. 14 Original image

Fig. 15 Encrypted image in ECB mode

Fig. 16 Encrypted image in CBC mode

Fig. 17 Encrypted image in CFB mode

Fig. 18 Histogram of original image

Fig. 19 Histogram of encrypted image in ECB mode

Fig. 20 Histogram of encrypted image in CBC mode

Fig. 21 Histogram of encrypted image in CFB mode

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 376 Issue 5, Volume 7, May 2008

3.5 Real-time encryption example

Fig. 22 Plain image

Fig. 23 Encrypted image in ECB mode

Fig. 24 Encrypted image in CBC mode

Fig. 25 Encrypted image in CFB mode

Fig. 26 Histogram of plain image

Fig. 27 Histogram of encrypted image in ECB mode

Fig. 28 Histogram of encrypted image in CBC mode

Fig. 29 Histogram of encrypted image in CFB mode

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 377 Issue 5, Volume 7, May 2008

Fig. 30 Plain image

Fig. 31 Encrypted image in ECB mode

Fig. 32 Encrypted image in CBC mode

Fig. 33 Encrypted image in CFB mode

Fig. 34 Histogram of plain image

Fig. 35 Histogram of encrypted image in ECB mode

Fig. 36 Histogram of encrypted image in CBC mode

Fig. 37 Histogram of encrypted image in CFB mode

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 378 Issue 5, Volume 7, May 2008

Fig. 38 Plain image

Fig. 39 Encrypted image in ECB mode

Fig. 40 Encrypted image in CBC mode

Fig. 41 Encrypted image in CFB mode

Fig. 42 Histogram of plain image

Fig. 43 Histogram of encrypted image in ECB mode

Fig. 44 Histogram of encrypted image in CBC mode

Fig. 45 Histogram of encrypted image in CFB mode

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 379 Issue 5, Volume 7, May 2008

 Fig. 46 Link load

Conclusion
In the three modes of operation (ECB, CBC, CFB) the
achieved standard deviation is between 49.36 and 49.41.
From the statistical point of view de difference is very
small. Although ECB mode is the fastest, there are
problems in using this mode because it doesn’t use the
process of chaining and that is why ECB mode has
problems; a continuous area of the same color has the
same encrypted result [1, 2]. This can be resolved using
an image compression module witch eliminates the
redundancy [3, 4].

The key length was limited at 128 bits because
of the limitations imposed by the processing power and
the power consumption. Although the key is small, there
are 340282366920938463463374607431768211456
possible combinations. If the key is created using a good
pseudo-random generator, the key length shouldn’t be a
problem [9].

Encryption

mode Average link load Average
frames/second

ECB 39%↔2,304 Mbps 10
CBC 40%↔2,073 Mbps 9
CFB 40%↔2,073 Mbps 9

Table 3 Performance of the encryption modes used

Encryption mode Std. Dev.
Original image 35.52
ECB 49.39
CBC 49.41
CFB 48.36

Table 4 Standard deviation of the images in different
encryption modes

The histograms show that most of the values are

gathered near the median.
The encryption algorithm was implemented in

software and because of that the frame rate was around
10 frames / second. The VIA C7 microprocessor has a
built-in hardware encryption block. The encryption
process can be made in hardware at a speed around
2Gbps, leaving enough free resources for image
processing tasks, like compression, object recognition,

path estimation etc. Although the helicopter runs on
batteries, the power consumption of the processor is
small (1W in idle mode and 12 W in full load mode).

Table 5 Standard deviations of real-time examples

The histograms show that most of the values are
gathered near the median.

The encryption algorithm was implemented in
software and because of that the frame rate was around
10 frames / second. The VIA C7 microprocessor has a
built-in hardware encryption block. The encryption
process can be made in hardware at a speed around
2Gbps, leaving enough free resources for image
processing tasks, like compression, object recognition,
path estimation etc. Although the helicopter runs on
batteries, the power consumption of the processor is
small (1W in idle mode and 12 W in full load mode).

There is a background communication between
the DirectShow filters. The base system can command
the change of encryption modes and encryption keys of
the airborne system while running, increasing the
strength of the encryption system. The keys are not
transmitted via radio link; instead they are built-in and
can be programmed before a mission.

DirectShow’s big advantage is that the video
software chain is modular. In this chain other filters can
be added, filters like video compression. The filter chain
is constructed and controlled by the main program. If in
a moment another type of video processing is needed,
the entire chain can be stopped and reconstructed
accordingly [7].

The helicopter is silent and small. It can be used
in tasks where is necessary to approach the objective
without being seen or heard. The disadvantage is that the
range is reduced in comparison with a fuel driven
helicopter. Being small, it can be transported easily on the
field using a small car.

Real-time
encryption
example
number

Mode Std. Dev.

Plain image 61.6
ECB 49.46
CBC 49.43 1st

CFB 49.35
Plain image 67.12

ECB 49.35
CBC 49.43 2nd

CFB 49.46
Plain image 83.85

ECB 49.31
CBC 49.36 3rd

CFB 49.24

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 380 Issue 5, Volume 7, May 2008

References:

[1] Ciprian Răcuciu, Nicolae Jula, Constantin Bălan,
Cosmin Adomnicăi, Aspects of Airborne Continuous
Surveillance Systems. Practical Image Encryption
Module, Computational Methods and Inteligent Systems,
WSEAS Press, 2008, pg. 167-172, ISBN 978-960-6766-
60-2; ISSN 1790-5117.

[2] Ciprian Răcuciu, Nicolae Jula, Cosmin Adomnicăi,
About an image encryption solution adapted for
surveillance flying systems, International Journal Of
Mathematical Models And Methods In Applied Sciences,
North Atlantic University Union Press, Issue 1, Volume
2, 2008, pg. 130-135, ISSN 1998-0140.

[3] Ciprian Răcuciu, Nicolae Jula, Florin Marius Pop,
Aspects of Mobile Continuous Monitoring Systems.
Optimized Image Compression Algorithm. Circuits,
Systems, Signal & Communications, WSEAS Press,
2008, pg. 181-185, ISBN: 978-960-6766-34-3, ISSN
1790-5117.

[4] Ciprian Răcuciu, Nicolae Jula, Florin-Marius Pop,
About an adapted image compression algorithm for
surveillance flying systems, International Journal Of
Mathematical Models And Methods In Applied Sciences
Issue 2, Volume 1, 2007, pg. 41- 45, ISSN 1998-0140.

[5] Ciprian Racuciu, Lecture of Information Theory,
Military Technical Academy Bucharest, 2004.

[6] Romanian Space Agency, AEROSPATIAL program,
Contract no. 60/2002, Electrical Accelerated mini-
helicopter used for monitoring.

[7] Mark D. Pesce, Programming Microsoft DirectShow
for digital video and television, Microsoft Press, 2003.

[8] Andreas Uhl, Andreeas Pommer, Image and video
encryption - From Digital Rights Management to
Secured Personal Communication, Springer 2004.

[9] Joan Daemen, Vincent Rijmen – The Design of
Rijndael, Springer, 2002.

[10] Microsoft Platform SDK Help.
[11] A. Menezes, P. van Oorschot, S. Vanstone,

Handbook of Applied Cryptography, by CRC Press,
1996.

[12] Neal R. Wagner The Laws of Cryptography
with Java Code, EBook.

[13] Microsoft Windows XP Embedded Help.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Racuciu, Nicolae Jula,
 Constantin Balan and Cosmin Adomnicai

ISSN: 1109-2734 381 Issue 5, Volume 7, May 2008

