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Abstract: - A real-time video encryption module, developed to be used on an electrical accelerated mini-helicopter 
(UAV), is presented in this paper. The surveillance system is composed from six modules: image capture, encryption, 
two radio link modules, decryption and display module. The hart of the encryption system is the CV700C motherboard 
and it’s VIA C7 microprocessor with ultra low power consumption and efficient heat dissipation. For encryption, 
Rijndael algorithm was used. 
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1   Introduction 
An UAV1 is an airborne system, without a pilot, which 
flies by means of a remote control or by using an 
autopilot installed on board and carries sensors or 
weapons. It can be used only once or reused many times. 
Comparing an UAV with a classical airplane, most of 
the times, the UAV is small and light and the load is 
composed from sensors used in reconnaissance and 
surveillance missions, or in target acquisition missions. 
Now, there are new mission for UAV, like combat, 
intelligence, and civil applications [6]. Because any 
transmission from a military UAV must be secured it’s a 
must to use an encryption method to protect de 
confidentiality of the transmitted data. Because of the 
restrictions applied to weight, dimensions and power 
consumption of any UAV module, it was chosen the 
CV700C motherboard manufactured by Lex Inc. which 
is 200 mm long and 150 mm wide. For an increased 
endurance to vibrations, the hard disk was replaced with 
a Compact Flash memory card. To maximize the 
encryption speed and to reduce the footprint the 
Windows XP Embedded operating system was used. The 
program was written in C++ programming language 
using the DirectShow API2 which has the whole support 
for buffering and frame dropping. 
 
2 Problem Formulation 
Because any transmission from a military UAV must be 
secured it’s a must to use an encryption method to 
protect de confidentiality of the transmitted data. 
Because of the restrictions applied to weight, dimensions 
and power consumption of any UAV module, it was 
chosen the CV700C motherboard manufactured by Lex 
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Inc. which is 200 mm long and 150 mm wide. For an 
increased endurance to vibrations, the hard disk was 
replaced with a Compact Flash memory card. To 
maximize the encryption speed and to reduce the 
footprint the Windows XP Embedded operating system 
was used [13]. The program was written in C++ 
programming language using the DirectShow API3 
which has the whole support for buffering and frame 
dropping. 
 
3   Problem Solution 
The system is composed of: 
• Digital video camera with USB interface; 
• CV700C motherboard; 
• RF modules; 
• Notebook. 

Device Weight[g] Price[€] 
CV700C 500g 320€ 

Gigabyte 802.11b/g 15g 20€ 
Canion video 20g 10€ 

Table 1 Weight and price of used components 
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Fig. 1 The system 
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Fig. 2  CV 700C motherboard 

 
The motherboard is based on VIA C7 

microprocessor which operates at a frequency of 1 GHz. 
The microprocessor is built for applications with low 
power consumption requirements. On full load, the 
consumption of the microprocessor is 11 W and of the 
entire board is 25 W. To the motherboard are connected 
a video camera which takes pictures at a rate of 25 
frames/second and an 802.11 wireless radio module 
which operates in the public spectrum. On this 
motherboard runs the airborne encryption subsystem. 
The other component of the system is the base station 
which runs on an Intel based microprocessor notebook. 
It receives data from the integrated 802.11 wireless 
module and feeds the data to the decryption module and 
displays the decrypted images on the monitor. The 
airborne encryption module can be controlled via radio 
link and there can be changed the encryption keys and 
the encryption modes. 
 
 

 
Fig. 3 An UAV built by Professor Nicolae Jula 

 
Fig. 4  Attached video camera details 

 
Fig. 5 Aspect of an UAV flying  

 
3.1 The operating system 
Windows XP Embedded is a modular version Windows 
XP Professional and the developer can choose which 
components are included in the distribution, making the 
Windows XP operating system flexible to developer’s 
specific needs.  

 
Fig. 6 Windows XP Professional versus Windows XP 

Embedded 

The advantages of choosing which components 
to install are speed and a small footprint. In the case of a 
small footprint the mechanical hard drive can be 
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replaced with a Compact Flash memory card, making the 
system more resilient to vibrations. This will also reduce 
the power consumption of the system which is very 
important in the case of a battery driven system. Also, 
eliminating useless components, drivers, programs and 
services that slow down the operating system can leave 
free resources available to the encryption software. 
A particular set of components that Windows XP 
Embedded has and Windows XP Professional doesn’t is 
the Enhanced Write Filter which is designed especially 
for Compact Flash drives. 

Enhanced Write Filter is composed of three 
components: 

 EWF Manager Console application; 
 Enhanced Write Filter; 
 EWF NTLDR. 

EWF reduces the number of write operations to 
the minimum. This is done by implementing a RAM 
buffer of the write operations. So, only one operations of 
writing operation is done for many write operation 
requested. 

The first component, EWF Manager Console 
application, is the configuration console for EWF. The 
second component, EWF, is the core of the module. The 
third component, EWF NTLDR, is the boot loader used 
for a EWF configured drive.  
The only disadvantage of EWF is the extra RAM needed 
for it. 

 
Fig. 7 EWF overview 

 
3.2 DirectShow API 
To benefit from the full power of Windows operating 
system, the DirectShow framework was used.  
DirectShow is part of Microsoft Platform SDK and it is 
the most complex API that Microsoft ever created. 
The DirectShow framework is a filter based framework, 
in which the processing modules are organized in a filter 
graph. Every processing module is named a filter. There 
can be created several independent filter graphs, which 
can or cannot be linked. Every multimedia device that is 

installed in a Windows environment can be accessed 
through the DirectShow API. Basically, every filter is a 
COM object which has to obey specific rules. Depending 
on the filter type, there are methods that have to be 
implemented. The developed has only the task of writing 
the code used for video processing only. The rest is 
leaved in the hands of the API. The synchronization 
between the filters, frame buffering, frame dropping are 
done by the API [10]. 

The basic power and flexibility of DirectShow 
derives directly from its modular design. DirectShow 
defines a standard set of Component Object Model 
(COM) interfaces for filters and leaves it up to the 
programmer to arrange these components in some 
meaningful way. Filters hide their internal operations; 
the programmer doesn’t need to understand or appreciate 
the internal complexities of the Audio Video Interleaved 
(AVI) file format, for example, to create an AVI file 
from a video stream. All that‘s required is the 
appropriate sequence of filters in a filter graph. 

Filters are atomic objects within DirectShow, 
meaning they reveal only as much of themselves as 
required to perform their functions. 
Because they are atomic objects, filters can be thought of 
and treated just like puzzle pieces. The qualities that 
each filter possesses determine the shape of its puzzle 
piece, and that, in turn, determines which other filters it 
can be connected to. As long as the pieces match up, 
they can be fitted together into a larger scheme, the filter 
graph. 

All DirectShow filters have some basic 
properties that define the essence of their modularity. 
Each filter can establish connections with other filters 
and can negotiate the types of connections it‘s willing to 
accept from other filters. A filter designed to process 
MP3 audio doesn’t have to accept a connection from a 
filter that produces AVI video and probably shouldn’t. 
Each filter can receive some basic messages run, stop 
and pause that control the execution of the filter graph. 
That‘s about it; there‘s not much more a filter needs to 
be ready to go. As long as the filter defines these 
properties publicly through COM, DirectShow will treat 
it as a valid element in a filter graph. 

This modularity makes designing custom 
DirectShow filters a straightforward process. The 
programmer‘s job is to design a COM object with the 
common interfaces for a DirectShow filter, plus 
whatever custom processing the filter requires. 

The modularity of DirectShow extends to the 
filter graph. Just as the internals of a filter can be hidden 
from the programmer, the internals of a filter graph can 
be hidden from view. When the filter graph is treated as 
a module, it can assume responsibility for connecting 
filters together in a meaningful way. It‘s possible to 
create a complete, complex filter graph by adding a 
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source filter and a renderer filter to the filter graph. 
These filters are then connected with a technique known 
as Intelligent Connect. Intelligent Connect examines the 
filters in the filter graph, determines the right way to 
connect them, adds any necessary conversion filters, and 
makes the connections all without any intervention from 
the programmer. Intelligent Connect can save an 
enormous amount of programming time because 
DirectShow does the tedious work of filter connection. 

There is a price to be paid for this level of 
automation: the programmer won‘t know exactly which 
filters have been placed into the filter graph or how 
they‘re connected. With Intelligent Connect, the 
programmer won‘t know which filter DirectShow has 
chosen to use (at least, when a choice is available). It‘s 
possible to write code that will make inquiries to the 
filter graph and map out the connections between all the 
filters in the filter graph, but it ‘s more work to do that 
than to build the filter graph from scratch. So, 
modularity has its upsides ease of use and extensibility 
and its downsides hidden code. 

Filters are the basic units of DirectShow 
programs, the essential components of the filter graph. A 
filter is an entity complete unto itself. Although a filter 
can have many different functions, it must have some 
method to receive or transmit a stream of data. Each 
filter has at least one pin, which provides a connection 
point from that filter to other filters in the filter graph. 
Pins come in two varieties: input pins can receive a 
stream, while output pins produce a stream that can be 
sent along to another filter. 

There are three basic classes of DirectShow 
filters, which span the path from input, through 
processing, to output (or, as it‘s often referred to, 
rendering). All DirectShow filters fall into one of these 
broad categories. A filter produces a stream of data, 
operates on that stream, or renders it to some output 
device. 

Any DirectShow filter that produces a stream is 
known as a source filter. The stream might originate in a 
file on the hard disk, or it might come from a live device, 
such as a microphone, webcam, or digital camcorder. If 
the stream comes from disk, it could be a pre-recorded 
WAV (sound), AVI (movie), or Windows Media file. 
Alternately, if the source is a live device, it could be any 
of the many thousands of Windows-compatible 
peripherals. DirectShow is closely tied in to the 
Windows Driver Model (WDM), and all WDM drivers 
for installed multimedia devices are automatically 
available to DirectShow as source filters. So, for 
example, webcams with properly installed Windows 
drivers become immediately available for use as 
DirectShow source filters. Source filters that translate 
live devices into DirectShow streams are known as 
capture source filters. 

Transform filters are where the interesting work gets 
done in DirectShow. A transform filter receives an input 
stream from some other filter (possibly a source filter), 
performs some operation on the stream, and then passes 
the stream along to another filter. Nearly any imaginable 
operation on an audio or video stream is possible within 
a transform filter. A transform filter can parse (interpret) 
a stream of data, encode it (perhaps converting WAV 
data to MP3 format) or decode it, or add a text overlay to 
a video sequence. DirectShow includes a broad set of 
transform filters, such as filters for encoding and 
decoding various types of video and audio formats. 
Transform filters can also create a tee in the stream, 
which means that the input stream is duplicated and 
placed on two (or more) output pins. Other transform 
filters take multiple streams as input and multiplex them 
into a single stream. Using a transform filter multiplexer, 
separate audio and video streams can be combined into a 
video stream with a soundtrack. 

A renderer filter translates a DirectShow stream 
into some form of output. One basic renderer filter can 
write a stream to a file on the disk. Other renderer filters 
can send audio streams to the speakers or video streams 
to a window on the desktop. The Direct in DirectShow 
reflects the fact that DirectShow renderer filters use 
DirectDraw and DirectSound, supporting technologies 
that allow DirectShow to efficiently pass its renderer 
filter streams along to graphics and sound cards. This 
ability means that DirectShow‘s renderer filters are very 
fast and don ‘t get tied up in a lot of user-to-kernel mode 
transitions. (In operating system parlance, this process 
means moving the data from an unprivileged level in an 
operating system to a privileged one where it has access 
to the various output devices.) 

A filter graph can have multiple renderer filters. 
It is possible to put a video stream through a tee, sending 
half of it to a renderer filter that writes it to a file, and 
sending the other half to another renderer filter that puts 
it up on the display. Therefore, it is possible to monitor 
video operations while they‘re happening, even if they‘re 
being recorded to disk. 

All DirectShow filter graphs consist of 
combinations of these three types of filters, and every 
DirectShow filter graph will have at least one source 
filter, one renderer filter, and (possibly) several 
transform filters. In each filter graph, a source filter 
creates a stream that is then operated on by any number 
of transform filters and is finally output through a 
renderer filter. These filters are connected together 
through their pins, which provide a well-defined 
interface point for transfer of stream data between filters. 
Although every DirectShow filter has pins, it isn’t 
always possible to connect an input pin to an output pin. 
When two filters are connecting to each other, they have 
to reach an agreement about what kind of stream data 
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they‘ll pass between them. 
The pins on a DirectShow filter handle the 

negotiation between filters and ensure that the pin types 
are compatible before a connection is made between any 
two filters. Every filter is required to publish the list of 
media types it can send or receive and a set of transport 
mechanisms describing how each filter wants the stream 
to travel from output pin to input pin. 

When a DirectShow filter graph attempts to 
connect the output pin of one filter to the input pin of 
another, the negotiation process begins. The filter graph 
examines the media types that the output pin can 
transmit and compares these with the media types that 
the input pin can receive. If there aren’t any matches, the 
pins can‘t be connected and the connection operation 
fails. 

Next the pins have to agree on a transport 
mechanism. Once again, if they can‘t agree, the 
connection operation fails. Finally one of the pins has to 
create an allocator, an object that creates and manages 
the buffers of stream data that the output pin uses to pass 
data along to the input pin. The allocator can be owned 
by either the output pin or the input pin; it doesn‘t 
matter, so long as they‘re in agreement. 

If all these conditions have been satisfied, the 
pins are connected. This connection operation must be 
repeated for each filter in the graph until there‘s a 
complete, uninterrupted stream from source filter, 
through any transform filters, to a renderer filter. When 
the filter graph is started, a data stream will flow from 
the output pin of one filter to the input pin of the other 
through the entire span of the filter graph. 

One of the greatest strengths of DirectShow is 
its ability to handle the hard work of supporting multiple 
media formats. Most of the time it‘s not necessary for 
the programmer to be concerned with what kinds of 
streams run through a filter graph. Yet to connect two 
pins, DirectShow filters must have clear agreement on 
the media types they‘re handling. Intelligent Connect 
automates the connection process between two pins.  
Two pins can be connected directly, so long as their 
media types agree. In a situation in which the media 
types are not compatible, the programmer often need one 
(or several) transform filters between the two pins so that 
they can be connected together. Intelligent Connect does 
the work of adding and connecting the intermediate 
transform filters to the filter graph. 

For example, a filter graph might have a source 
filter that produces a stream of DV data perhaps it‘s 
connected to a camcorder. This filter graph has a 
renderer filter that writes a file to disk. These two filters 
have nothing in common. They don‘t share any common 
media types because the DV data is encoded and 
interleaved and must be decoded and de-interleaved 
before it can be written to a file. With Intelligent 

Connect, the filter graph can try combinations of 
intermediate transform filters to determine whether 
there‘s a way to translate the output requirements of the 
pin on the source filter into the input requirements of the 
render filter. The filter graph can do this because it has 
access to all possible DirectShow filters. It can make 
inquiries to each filter to determine whether a transform 
filter can transform one media type to another which 
might be an intermediate type transform that type into 
still another, and so on, until the input requirements of 
the renderer filter have been met. A DirectShow filter 
graph can look very grotesque by the time the filter 
graph succeeds in connecting two pins, but from the 
programmer‘s point of view, it‘s a far easier operation. 
And if an Intelligent Connect operation fails, it‘s fairly 
certain there‘s no possible way to connect two filters. 
The Intelligent Connect capability of DirectShow is one 
of the ways that DirectShow hides the hard work of 
media processing from the programmer. 

The DirectShow filter graph organizes a group 
of filters into a functional unit. When connected, the 
filters present a path for a stream from source filters, 
through any transform filters, to renderer filters. 
However, it isn’t enough to connect the filters; the filter 
graph has to tell the filters when to start their operation, 
when to stop, and when to pause. In addition, the filters 
need to be synchronized because they‘re all dealing with 
media samples that must be kept in sync. For this reason, 
the filter graph generates a software-based clock that is 
available to all the filters in the filter graph. This clock is 
used to maintain synchronization and allows filters to 
keep their stream data in order as it passes from filter to 
filter. Available to the programmer, the filter graph clock 
has increments of 100 nanoseconds. (The accuracy of the 
clock on the system might be less precise than 100 
nanoseconds because accuracy is often determined by 
the sound card or chip set on the system.) 

When the programmer issues one of the three 
basic DirectShow commands run, stop, or pause the 
filter graph sends the messages to each filter in the filter 
graph. Every DirectShow filter must be able to process 
these messages. 

For example, sending a run message to a source 
filter controlling a webcam will initiate a stream of data 
coming into the filter graph from that filter, while 
sending a stop command will halt that stream. The pause 
command behaves superficially like the stop command, 
but the stream data isn‘t cleared out like it would be if 
the filter graph had received a stop command. Instead, 
the stream is frozen in place until the filter graph 
receives either a run or stop command. If the run 
command is issued, filter graph execution continues with 
the stream data already present in the filter graph when 
the pause command was issued. 

There were developed several filters: 
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• Encryption and decryption filter; 
• Data link interface modules (client and server); 
For video capture and video rendering pre-programmed 
filters were used. 

The video input and output filters are contained 
in the DirectShow API. The main program initialises the 
filters and controls different parameters like: 
• Image resolution  
• Bit depth  
• Encryption mode; 
• Encryption key; 
In this case, a resolution of 320x240 pixels and a bit 
depth of 24 bits/pixel were used. So the entire image 
contained 230400 bytes without the header used to pass 
the image parameters between filters, which added extra 
data [8]. 
 
3.3 The encryption module 
Rijndael is a symmetric block cipher that can process 
data blocks of 128, 192 or 256 bits, using cipher keys 
with lengths of 128, 192 or 256 bits. In the AES 
standard, the block cipher can only process data blocks 
of 128 bits and the key lengths are 128, 192 or 256 bits 
[7]. 
An intermediate result of the encryption process is called 
“State”. The “State” can be pictured as a rectangular 
array of bytes with four rows and Nb columns. If N is 
the block size, then Nb = N/32. 

The Cipher Key is similarly pictured as a 
rectangular array with four rows. If M is the key size, 
then the number of columns is Nk = M/32. 
 

a0,0 a0,1 a0,2 a0,3 
a1,0 a1,1 a1,2 a1,3 
a2,0 a2,1 a2,2 a2,3 
a3,0 a3,1 a3,2 a3,3 

Fig. 8 Example of State (with Nb=4) 
 

k0,0 k0,1 k0,2 k0,3 
k1,0 k1,1 k1,2 k1,3 
k2,0 k2,1 k2,2 k2,3 
k3,0 k3,1 k3,2 k3,3 

Fig. 9Example of the Cipher Key (with 
Nk=4) 

Each individual element of the matrices shown in Fig.8 
and Fig. 9 is 4-byte vector or word. 

In the actual algorithm, the input and output at 
the external interface are considered to be one-
dimensional array of 8 bytes numbered upwards from 0 
to 4*Nb-1. These blocks have lengths of 16 bytes and 
array index in the range 0…15. 

The cipher key is considered to be a one-

dimensional array of 8 bytes numbered upwards from 0 
to 4*Nk-1. These blocks have lengths of 16, 24 or 32 
bytes and array indices in the ranges 0…15, 0…23 or 
0…31. 

If the one-dimensional array index of a byte 
within block and the two dimensional index is (i, j), we 
have: 

i=n mod 4 
j=[n/4] 
n=i+4*j 

The number of rounds is denoted by Nr. The value of Nr 
depends of Nb and Nk and it is shown in Table 2. 

Nr Nb=4 
Nk=4 10 
Nk=6 12 
Nk=8 14 

Table 2 Number of rounds Nr 

 At the start of the Cipher, the input is copied into the 
State array. After an initial Round Key addition, the 
State array is transformed by implementing a round 
function for Nr times, with the final round differing 
slightly from the first Nr-1 rounds. The final State is then 
copied to the output. 

The encryption module is based on the Rijndael 
algorithm in which the block and key size are limited at 
128 bits. This limitation appeared to meet the encryption 
speed requirements. The algorithm is composed from 
four major operations made to the data block: 
• SubBytes 
• ShiftRows 
• MixCollumns 
• AddRoundKey 
Rijndael algorithm uses the finite field GF(28). The input 
bytes are considered polynomials and the addition, 
multiplication and other operations are done in GF(28). 
Without improvements, these operations would take a lot 
of time to compute and the algorithm could not be used 
in a real-time environment. In FIPS-197, logarithms 
tables are provided to simplify the multiplication 
operations. Instead of working from the low order 
terms, and repeatedly multiplying by x1 the speed can 
be improved by table lookup and polynomial addition: 

 
public byte FFMul(unsigned byte a, unsigned byte b) 
{ 
int t = 0;; 
if (a == 0 || b == 0) return 0; 
t = L[a] + L[b]; 
if (t > 255) t = t - 255; 
return E[t]; 
} 
 

The SubBytes transformation is defined as a non-linear 
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byte substitution which operates on the State. It’s 
composed of two transformations: 
• The multiplicative inverse in GF(28) is taken; 
• The result is modified according to the fallowing 

transformation: 

 
Fig. 10 SubBytes transformation 

 For AES the irreducible polynomial is x8+x4+x3+x+1. 
This polynomial is used to generate GF(28) used in 
finding the multiplicative inverse mentioned above. 
 The non-linearity of this transformation comes from 
multiplicative inverse in GF(28). Everything else in this 
transformation is linear. 
  In SubBytes, the calculation of the 
multiplicative inverse can be efficiently done using a 
"table lookup" method: a small table of 28 = 256 pairs of 
bytes can be built once and used forever (the table can be 
"hardwired" into hardware or software implementations). 
In this table of pairs, the zero byte is paired with the zero 
byte; the rest of the 255 entries in the table are the 255 
cases of the pair (x, x–1) where inversion is performed in 
the field. The "table lookup" method not only is 
efficient, but also prevents a timing analysis attack 
which is based on observing the operation time 
difference for different data which may suggest whether 
an operation is performed on bit 0 or bit 1. The "table 
lookup" method can actually include the whole 
transformation altogether. 
 

 
Fig. 11 The lookup table (Sbox) in hexadecimal format 

 The InvSubBytes is obtained by using the inverse table 

shown below: 

 
Fig. 12 The inverted lookup table (InvSbox) in 

hexadecimal format 
 
In FIPS-197 (AES standard released by NIST) 

the substitution box and its inverse used in SubBytes are 
computed and can be used as they are [9]. 

 
 

 
 

Fig. 13 Rijndael algorithm block scheme 
 
In ShiftRows, the rows of the state are cyclically 

shifted over different offsets. The first row is not shifted, 
the second row is shifted over one byte, the third row is 
shifted over two bytes and, finally, the fourth row is 
shifted over three bytes. 

The MixColumns transformation operates on the 
State column-by-column, treating each column as a four-
term polynomial. The columns are considered as 
polynomials over GF(28) and multiplied modulo x4+1 
with the fixed polynomial: 3x3+x2+x+2. 

The AddRoundKey operation consists in the 
simple addition of the round key with the State. The 
Round Key is generated by means of the key schedule. 
The algorithm uses the cipher key to generate an 
extended key. This key is used by the AddRoundKey 
operation. This entire process is called Key Schedule. 
Key Schedule consist in two components: 
• Key Expansion; 
• Round Key selection. 
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KeyExpansion (byte key[4*Nk], word w[Nb*(Nr+1)], 
Nk) 

begin 
word temp 
i = 0 
while (i < Nk) 
w[i] = word(key[4*i], key[4*i+1], key[4*i+2], 

key[4*i+3]) 
i = i+1 

end while 
i = Nk 
while (i < Nb * (Nr+1)] 
temp = w[i-1] 
if (i mod Nk = 0) 
temp = SubWord(RotWord(temp)) xor 

Rcon[i/Nk] 
else if (Nk > 6 and i mod Nk = 4) 
temp = SubWord(temp) 

end if 
w[i] = w[i-Nk] xor temp 
i = i + 1 
end while 

end 
 

SubWord() is a function that takes a four-byte 
input word and applies the S-box to each of the four 
bytes to produce an output word. The function 
RotWord() takes a word [a0,a1,a2,a3] as input, performs 
a cyclic permutation, and returns the word [a1,a2,a3,a0]. 
The round constant word array, Rcon[i], contains the 
values given by [xi-1,{00},{00},{00}], with x i-1 being 
powers of x (x is denoted as {02}) in the field GF(28), as 
(i starts at 1, not 0). 

The first Nk words of the expanded key are filled 
with the Cipher Key. Every following word, w[i], is 
equal to the XOR of the previous word, w[i-1], and the 
word Nk positions earlier, w[i-Nk]. For words in 
positions that are a multiple of Nk, a transformation is 
applied to w[i-1] prior to the XOR, followed by an XOR 
with a round constant, Rcon[i]. This transformation 
consists of a cyclic shift of the bytes in a word 
(RotWord()), followed by the application of a table 
lookup to all four bytes of the word (SubWord()). 

The Key Expansion routine for 256-bit Cipher 
Keys (Nk = 8) is slightly different than for 128 and 192-
bit Cipher Keys. If Nk = 8 and i-4 is a multiple of Nk, 
then SubWord() is applied to w[i-1] prior to the XOR. 
The algorithm was implemented using three modes of 
operation: ECB4, CBC5, and CFB6. In this application 
the ECB mode was implemented for testing purposes 

                                                           
4 Electronic CodeBook 
5 Cipher Block Chaining 
6 Cipher FeedBack 

because of the security problems caused by the image 
redundancy. This mode can only be used in tandem with 
a compression module. 

The encryption and decryption filters contain an 
interface that the main program uses to connect to these 
filters and command the encryption keys and the 
encryption modes. The five keys are built-in and the user 
can only choose which key to use at a given moment. 
This solution was chosen to avoid key interception 
during the transmission. The input and output buffer are 
twice the size of a frame. The data in processed in RGB 
mode with a 24 bits colour depth. The secure channel 
can be created in three ways: 
• at the application layer; 
• at the network layer; 
• at the data link layer. 
In this case, the encryption is done at application layer 
and the only thing that is encrypted is the video 
transmission. 
 
3.4 RF modules 
These modules handle the data link layer. They are built 
around Winsock 2.0. The receiver filter is responsible 
with the compensation in the variations of frame rate 
caused by the auto exposure function of the camera. To 
do this, a circular buffer was implemented to reassemble 
the incoming fames. This buffer doesn’t forward a frame 
until it is complete. If only a part of a frame is receiver, 
the filter waits for the rest before it forwards the frame. 
The same socket is used for transmitting the changes in 
encryption modes and encryption keys. The main 
program access the filter every two seconds through a 
particular interface and checks for a change. If a change 
in encryption method or encryption key is detected, the 
main program commands the change to the decryption 
filter through another particular interface. In the first 
frames after the change, the received frames are 
scrambled. After that the system resynchronises itself. 
The protocols used for feeding the data to the wireless 
device were TCP and IP in stream mode. Another way of 
connecting is the datagram mode, but this mode uses 
UDP and it’s unreliable. The TCP protocol handled 
packet retransmission and the 802.11 RF module 
handled error corrections. The radio link could not be 
used at its full potential because of minimum delay 
required and the synchronization that was taking place in 
background. IP is a routable protocol and user at the 
ground can view transmissions from multiple UAV.  
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3.4 Static image encryption example 
 

 
Fig. 14 Original image 

 
Fig. 15 Encrypted image in ECB mode 

 
Fig. 16 Encrypted image in CBC mode 

 
Fig. 17 Encrypted image in CFB mode 

 
 
 

 
Fig. 18 Histogram of original image 

 
 

 
Fig. 19 Histogram of encrypted image in ECB mode 

 
 

 
Fig. 20 Histogram of encrypted image in CBC mode 

 
 

 
Fig. 21 Histogram of encrypted image in CFB mode 
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3.5 Real-time encryption example 

 
Fig. 22 Plain image 

 
Fig. 23 Encrypted image in ECB mode 

 
Fig. 24 Encrypted image in CBC mode  

 
Fig. 25 Encrypted image in CFB mode 

 

 

 

 
Fig. 26 Histogram of plain image 

 
 

 
Fig. 27 Histogram of encrypted image in ECB mode 

 
 

 
Fig. 28 Histogram of encrypted image in CBC mode 

 
 
 

 
Fig. 29 Histogram of encrypted image in CFB mode 
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Fig. 30 Plain image 

 

 
Fig. 31 Encrypted image in ECB mode 

 

 
Fig. 32 Encrypted image in CBC mode 

 

 
Fig. 33 Encrypted image in CFB mode 

 
 

 
Fig. 34 Histogram of  plain image 

 
 
 
 

 
Fig. 35 Histogram of encrypted image in ECB mode 

 
 
 

 
Fig. 36 Histogram of encrypted image in CBC mode 

 
 
 
 

 
Fig. 37 Histogram of encrypted image in CFB mode 
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Fig. 38 Plain image 

 

 
Fig. 39 Encrypted image in ECB mode 

 

 
Fig. 40 Encrypted image in CBC mode 

 

 
Fig. 41 Encrypted image in CFB mode 

 
 

 
Fig. 42 Histogram of  plain image 

 
 
 
 

 
Fig. 43 Histogram of encrypted image in ECB mode 

 
 
 

 
Fig. 44 Histogram of encrypted image in CBC mode 

 
 
 
 

 
Fig. 45 Histogram of encrypted image in CFB mode 
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                                 Fig. 46 Link load 

Conclusion 
In the three modes of operation (ECB, CBC, CFB) the 
achieved standard deviation is between 49.36 and 49.41. 
From the statistical point of view de difference is very 
small. Although ECB mode is the fastest, there are 
problems in using this mode because it doesn’t use the 
process of chaining and that is why ECB mode has 
problems; a continuous area of the same color has the 
same encrypted result [1, 2]. This can be resolved using 
an image compression module witch eliminates the 
redundancy [3, 4]. 

The key length was limited at 128 bits because 
of the limitations imposed by the processing power and 
the power consumption. Although the key is small, there 
are 340282366920938463463374607431768211456 
possible combinations. If the key is created using a good 
pseudo-random generator, the key length shouldn’t be a 
problem [9].   

 
Encryption 

mode Average link load Average 
frames/second

ECB 39%↔2,304 Mbps 10 
CBC 40%↔2,073 Mbps 9 
CFB 40%↔2,073 Mbps 9 

Table 3 Performance of the encryption modes used 
 

Encryption mode Std. Dev. 
Original image 35.52 
ECB 49.39 
CBC 49.41 
CFB 48.36 

Table 4 Standard deviation of the images in different 
encryption modes 

 
The histograms show that most of the values are 

gathered near the median. 
The encryption algorithm was implemented in 

software and because of that the frame rate was around 
10 frames / second. The VIA C7 microprocessor has a 
built-in hardware encryption block. The encryption 
process can be made in hardware at a speed around 
2Gbps, leaving enough free resources for image 
processing tasks, like compression, object recognition, 

path estimation etc. Although the helicopter runs on 
batteries, the power consumption of the processor is 
small (1W in idle mode and 12 W in full load mode).  

Table 5 Standard deviations of real-time examples 

The histograms show that most of the values are 
gathered near the median. 

The encryption algorithm was implemented in 
software and because of that the frame rate was around 
10 frames / second. The VIA C7 microprocessor has a 
built-in hardware encryption block. The encryption 
process can be made in hardware at a speed around 
2Gbps, leaving enough free resources for image 
processing tasks, like compression, object recognition, 
path estimation etc. Although the helicopter runs on 
batteries, the power consumption of the processor is 
small (1W in idle mode and 12 W in full load mode).  

There is a background communication between 
the DirectShow filters. The base system can command 
the change of encryption modes and encryption keys of 
the airborne system while running, increasing the 
strength of the encryption system. The keys are not 
transmitted via radio link; instead they are built-in and 
can be programmed before a mission. 

DirectShow’s big advantage is that the video 
software chain is modular. In this chain other filters can 
be added, filters like video compression. The filter chain 
is constructed and controlled by the main program. If in 
a moment another type of video processing is needed, 
the entire chain can be stopped and reconstructed 
accordingly [7].  

The helicopter is silent and small. It can be used 
in tasks where is necessary to approach the objective 
without being seen or heard. The disadvantage is that the 
range is reduced in comparison with a fuel driven 
helicopter. Being small, it can be transported easily on the 
field using a small car. 

Real-time 
encryption 
example 
number 

Mode Std. Dev. 

Plain image 61.6 
ECB 49.46 
CBC 49.43 1st 

CFB 49.35 
Plain image 67.12 

ECB 49.35 
CBC 49.43 2nd 

CFB 49.46 
Plain image 83.85 

ECB 49.31 
CBC 49.36 3rd 

CFB 49.24 
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