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Abstract: - In this paper, we present FPGA recurrent neural network systems with learning capability using the
simultaneous perturbation learning rule. In the neural network systems, outputs and internal values are
represented by pulse train. That is, analog recurrent neural networks with pulse frequency representation are
considered. The pulse density representation and the simultaneous perturbation enable the systems with
learning capability to easily implement as a hardware system. As typical examples of the recurrent neural
networks, Hopfield neural network and the bidirectional associative memory are considered. Details of the
systems and the circuit design are described. Analog and digital examples for these Hopfield neural network
and the bidirectional associative memory are also shown to confirm a viability of the system configuration and
the learning capability.
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1 Introduction
Neural network is interesting research target also
from practical applications. Then implementation,
especially, hardware implementation is crucial
problem in connection with learning scheme.
Hardware implementation of neural networks
promotes many practical applications of neural
networks[1,2].

Back-propagation is successful learning scheme.
However, this does not match to the hardware
implementation. This learning scheme requires
complicated circuit design and wiring problem so
that the circuit size becomes large. On the other
hand, the simultaneous perturbation optimization
method is suitable learning scheme of neural
networks for hardware realization[3]. The
mechanism of learning is so simple that the circuit
design is simple and easy. Since we can economize
circuit size, we can realize larger scale of neural
networks on the same size of a chip.

Next, let us think about representation scheme of
the neural networks. We have some options such as
analog representation or digital representation[4].
The choice of the representation is also important
matter. Generally, analog approach requires smaller
circuit size but is sensitive to noise. Moreover, the
circuit design for analog system is labored task. On
the other hand, digital system is easy to design and

invulnerable to noise. EDA technique can strongly
assist the design.

If we adopt pulse representation, we can handle
analog quantity based on digital circuit design. On
the whole, pulse systems compensate these demerits
of the analog and digital systems. Pulse
representation of neural networks has many
beneficial properties.

If we combine the pulse representation and the
simultaneous perturbation method, we can easily
design a hardware neural network system with
learning capability. The network can handle
analogue problems as well.

From this point of view, in this paper, we
presents pulse density recurrent neural
networks(RNNs) with learning ability using the
simultaneous perturbation optimization method. The
recurrent neural network FPGA systems learn
digital and analog problems. Details of the systems
including learning mechanism are described. Some
results for analog and digital problems are also
shown.

2 Pulse Density Representation and
Simultaneous Perturbation Learning
Rule
2.1 Pulse Density Representation
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The pulse density representation is sometimes used
for neural systems. It is also called different names
such as stochastic logic[5,6], pulse-mode neuron[7],
bit-stream neuron[8], frequency-based network[9]
and so on[10]. We also know spiking neural
networks, which realize central pattern generator,
and their hardware implementation[11].

Totally, the pulse density type of neural networks
has attractive properties. We can summarize the
merits of pulse density neural networks as follows;
 Biological analogy
 Invulnerability to noisy environment
 Analogue system realized by digital

system
 Ease of system design assisted by the

EDA technique
 Economizing circuit area
The analogy to biological neural systems is

intriguing. A part of our nerve systems are
employing the pulse density scheme. Especially, it
is well-known that nerve impulses are transmitted
from retina to visual cortex. These systems are
invulnerable to noisy conditions. Limited noises do
not result in serious malfunction of the overall
system. Moreover, we can handle quantized analog
quantities, based on the digital technology that is
relatively effortless to design and implement.
Recent EDA technique can assist trouble-free design
of overall system. In addition, pulse system
simplifies arithmetic circuit. For example,
multipliers are realized by the AND operation. This
results in economization of the circuit design.

The learning capability is the most important
factor of artificial neural network systems. Even
when we consider hardware implementation of
neural network systems, realizing the learning
ability is essential. In other words, it is crucial to
adopt suitable learning scheme for hardware
implementation.

Eguchi et al. reported a pulse density neural
system[12]. They used the back-propagation method
as a learning rule. However, the learning scheme
requires complicated circuitry, since the learning
rule uses derivatives of an error function to update
weights. This results in larger area on chip or
difficulty in circuit design. Particularly, it seems
impossible to realize large scale of neural network
system.

On the other hand, the simultaneous perturbation
learning scheme[3] is an option. Because of its
simplicity, the learning rule is suitable for hardware
implementation[3,13,14]. The learning scheme is
applicable to recurrent neural networks as well[15].

Moreover, if we adopt pulse density representation,
we can take advantage of the simultaneous
perturbation effectively[16].

The combination of the pulse density system and
the simultaneous perturbation learning rule results in
an easy configuration which can be implemented in
the hardware neural network system. In our
hardware implementation, pulse density is used to
represent the weight values, outputs and inputs.

2.2 Analog recurrent neural network
Compared with the feed forward neural networks,
recurrent neural networks(RNNs) have inherent and
interesting properties such as dynamics. As a typical
example of RNN, let us think about Hopfield neural
network(HNN)[17]. HNNs are used to store patterns
or to solve combinatorial optimization problems like
the traveling salesman problem. For these problems,
the weights in the network are typically determined
by patterns to be memorized based on Hebbian
learning rule[18] or an energy function based on the
problem. If our patterns are analogue or if we cannot
find a proper energy function, it will be impossible
to apply these techniques to find the optimal weight
values of the network.

Hebbian learning is widely used for the HNN
type of neural networks including the bidirectional
associative memories. However, this learning rule
can cope with only binary values; +1 and -1 for
bipolar representation, +1 and 0 for unipolar one.

Since the HNNs can handle analog quantities as
same as the other ordinary neural networks, it is
important to contrive a new learning scheme and
suitable representation of analog quantities.

The simultaneous perturbation learning scheme
is applicable to the analog problems[13]. Moreover,
when we combined this with the pulse density
representation of analog quantities, the simultaneous
perturbation learning scheme increases in value.

2.3 Learning via simultaneous perturbation
When we use a RNN for a specific purpose, we
need to determine the proper values of the weights
in the RNN. That is, the so-called learning of RNNs
is necessary.

In many applications of RNNs, we know the
ideal output for the network. Using this information,
we can evaluate how well the network performs.
Such an evaluation function gives us a clue for
optimizing the weights of the network. Of course,
like Hebbian learning, we can determine the weight
value through off-line learning. However, on-line
learning scheme for RNNs is interesting.
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Thus we consider a recursive learning scheme
for RNNs. Then back-propagation through
time(BPTT) is typical example. In order to use the
BPTT, the error quantity must propagate through
time from a stable state to an initial state. This
process is so complicated. It seems difficult to use
such a method directly, because it takes a long time
to compute the modifying quantities corresponding
to all weights. At the same time, it seems practically
difficult to realize the learning mechanism as a
hardware system. In addition, BPTT is not
applicable to the situation that RNNs learn an
oscillatory outputs or trajectory solution.

On the other hand, the simultaneous perturbation
scheme is proposed[19] and it is shown that the
learning scheme is suitable for the learning of NNs
and their hardware implementation[3,13-16]. The
simultaneous perturbation optimization method
requires only values of an evaluation function as
mentioned. If we know the evaluation of a stable
state, we can obtain the modifying quantities of all
weights of the network without complicated error
propagation through time.

The simultaneous perturbation learning rule for
recurrent neural networks is described as follows;

       1t t t t   w w w s (1)

 
       

 
J t c t J t

t t
c

 
 

w s w
w s (2)

Where, w(t) denotes the weight vector of a network
at the t-th iteration. α is a positive constant, c is the
magnitude of the perturbation. Δw(t) represents a
common quantity to obtain the modifying vector for
all the weights. s(t) denotes a sign vector whose
element si (t) is 1 or -1 with zero mean. The sign of
si (t) are randomly determined. That is, E(si (t)) = 0,
moreover, si (t1) and sj (t2) are independent with
respect to different components i and j, and different
time t1 and t2. Where, E denotes the expectation.
J(w) denotes an error or an evaluation function, for
example, defined by outputs of neurons in a stable
state and a pattern to be embedded.

We can summarize the advantages of the
simultaneous perturbation learning rule for NNs as
follows;
 Applicability to RNNs
 Error back propagation through time is not

necessary
 It is simple
 Applicability to analogue problems
 Applicability to oscillatory solutions or

trajectory learning

 An energy function is not necessary

3 FPGA Implementation
3.1 Design Background
There are some ways of realizing hardware RNNs
with learning capability. For example, C.Lehmann
et al. reported a VLSI system for a HNN with on-
chip learning [20]. Also in our previous research,
the FPGA implementation based on digital circuit
design technology was used to realize the HNN[13].
On the other hand, we are considering a FPGA
implementation of a pulse density RNN with a
recursive learning capability using the simultaneous
perturbation method. Neurons in the network have
connected each other.

We adopted VHDL (VHSIC Hardware
Description Language) in basic circuit design for
FPGA. The design result by VHDL is configured on

MU200－SX60 board (Mitsubishi Electric Micro-

Computer Application Software Co., Ltd.) with
EP1S60F1020C6 (Altera) (see Fig.1). This FPGA
contains 57,120 LEs with 5,215,104 bit user
memory. The number of LE prescribes the scale of
the neural network such as number of neurons.

Fig.1 FPGA board MU200－SX60

Visual Elite (Summit) is used for the basic deign.
Synplify Pro(Synplicity) carried out the logical

synthesis for the VHDL. Finally, QuartusⅡ(Altera)

is used for wiring. The result is send to the FPGA

through BYTE-BLASTER-Ⅱ.

In this work we adopt pulse density
representation with sign bit. Maximum number of
pulses is 255. Addition to this, sign bit shows that
the signal is positive or negative. As a result, we can
handle values in the range [-1(=-255/255)
+1(=+255/255)]. As a result, resolution of the values
is 1/255.

3.2 Configuration
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Fig.2 shows overall configuration of the RNN
system. The system consists of three units of the
RNN unit, the weight modification unit and the
learning unit.

The RNN unit realizes ordinary operation of the
RNN to obtain a stable state based on certain
weights. The weight modification unit updates all
weights used in the RNN unit. The learning unit
generates modifying quantities for all the weights
using the simultaneous perturbation learning rule.

Fig.2 System configuration.

3.3 Neural network unit
Pulse density scheme enable the RNN simple, since
weighted sum of neuron operations are realized by
AND and OR operations shown in Fig.3(a). AND
operations can realize multiplication of inputs and
the corresponding weights. Next OR operation is
used for addition of the previous results. The RNN
unit consists of the neurons.

We designed the values of weights and outputs
by pulse train with sign signals. Therefore,
multiplication is replaced by Fig.3(b). Then results
of the circuit are connected up/down counter. If the
result is positive, we find pulses in the lower output.
The line is connected to up counter. If the result is
negative, we find pulse train in the upper line. The
line is connected to down counter. As a whole, this
circuit realizes a multiplication of pulses with sign
signal. We can implement multiplication and
summing up by the simple circuit configuration.
Similar idea is used in many works handling pulse-
based operation[6,9].

Input-output characteristic or activation function
is realized by saturation of pulse train. Even if
multiplication of weight value and input is too large,
the summing result is limited by the maximum
number of pulses in a certain specified period.
Between the upper and lower limitation, the result is

linearly produced. As a result, a piecewise linear
function with a certain saturation is realized as the
input-output characteristic of a neuron.

Fig.4
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Without any specific operation, we can realize
sigmoid-like property using pulse expression. In
many analog hardware neural network systems,
there are many reports for realizing the sigmoid
function and this is one of the points to correctly
realize the function of overall neural system. From
this point of view, pulse expression is beneficial.

Combining this circuit, we can implement the
operation of RNN. Repeating the operation of the
circuit, the system obtains a stable state of the
network. This procedure is relatively easy.

With pulse representation, the unit is so simple
and consumes smaller circuit size than ordinary
binary representation as a RNN system. When we
have stable outputs, these outputs signals are sent to
the learning unit to realize the recursive
modification of the weights.

3.4 Leaning unit
The learning unit achieves the so-called learning
process using the simultaneous perturbation and
sends the basic modifying quantity to the weight
modification unit, which is common to all weights.
The block diagram is shown in Fig.5.

One of the features of this learning rule is that it
requires only operations of the RNN. When the
RNN arrive at a stable state, the state, namely output
is probed by the learning unit. Based on the output
and its corresponding desired output, the learning
unit generates modifying quantities for all the
weights via the simultaneous perturbation.

Fig.5 Learning unit.

Error defined by the final states of the RNN and

their ideal ones is as follows in this work. This
absolute error makes the system simple, because a
simple counter can realize this calculation.

      j j
j

J t O t T t w (3)

Where, Oj and Tj are final output of RNN and
their teaching signal, respectively. j is index for
neuron number in the network.

In the learning process, the following quantity is
common for all weights.

   
c

tJtctJ
t

)()()(
)(

wsw
w


  (4)

To implement the above quantity easily we set
α/c as 1, 1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/256
or 1/512. This process is realized by bit shift.
Therefore, the operation becomes very easy and
simplifies the circuit design.

3.5 Weight modification unit
Fig.6 shows flowchart of the weight modification
unit. This unit controls the weight values of RNN.
In this system, perturbed operation of the RNN and
ordinary operation are required to generate basic
quantity for weights modification.

Fig.6 Flowchart of the weight modification unit.

3.6 Other technical factors
It is generally difficult for hardware system to
produce random numbers. To generate random
number, the linear feedback shift register is used.

All system requires control unit. This RNN
system also requires clock signal and many timing
signals. This system contains the circuit for this
purpose. The clock frequency is 19.5MHz for actual
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operation of the FPGA system.
Interface for LED display and ten-key, or output

for measurement is not essential from academia
point of view but important for practical experiment.
This function was also designed in this system.

4 HNN System
HNN is a typical example of recurrent NNs
proposed by Hopfield. HNN realizes auto-
association in which incomplete or corrupted initial
pattern is recovered. Output of HNN is determined
as follows;

    1t t O f WO (5)

Where O is state or output vector for neurons of
HNN. f is a output-input characteristic such as the
sigmoid function. t denotes iteration. For a certain
weight matrix W whose diagonal elements are zero,
repeating the calculation of Eq.(5) gives a stable
state. This is basic operation of HNN.

Now, we fabricate the HNN system using FPGA.
We consider examples for HNN with 25 neurons.
The HNN learns the following two examples. The
perturbation c is 7/255 and the learning coefficient α
is (7/255)×(1/26). This setting is empirically
determined through preliminary experiments.

4.1 Character problem
The first example is to memorize a character shown
in the following figure of capital A. Numbers
written in Fig.7 shows neuron number.

Fig.7 Character A.

Black pixels represent value of 1(=255/255), that
is, corresponding neuron has to produce 255 pulses
for a certain interval and white pixels are -1(=-
255/255), that is, corresponding neuron has to
produce 255 pulses with negative sign signal. This
is basically a binary problem.

Configuration result is shown in Table 1. As in
the table, 45% of logic elements are used. Some
pins are used to observe operation of the system.

Table 1 Configuration result for EP1S60F1020C6.

Fig.8 Change of error in FPGA system.

Fig.9 Recalled patterns.

Fig.8 shows change of the error defined by Eq.(4)
in learning process. As learning proceeds, the error
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decreases. After about 4000 times learning, the
system perfectly learns the character of A. Since the
simultaneous perturbation learning rule is based on
a stochastic gradient method, the learning curve
does not monotonously decrease.

Fig.9 shows change of recalled patterns. In this
figure, black pixel and white one mean that outputs
of the corresponding neuron are positive and
negative respectively. If the output of the HNN is
unstable, the pixel is depicted in grey.

From Fig.8 and Fig.9, we can see that the system
learns the pattern A. After about 4000 learning, the
system recalls the pattern perfectly from a corrupted
initial state.

4.2 Sinusoidal pattern
Next we consider an analog problem. The HNN
system must learn sinusoidal wave in the range [-
1(=-255/255) +1(=255/255)].

Fig.10 Teaching pattern for each neurons.

Fig.11 Change of error in FPGA system.

The HNN contains 25 neurons which memorize
analog values shown in Fig.10 respectively. For

example, the first neuron has to output no pulse
because the desired output is 0, the seventh neuron
has to produce 255 pulses because the output is 1
and so on.

Change of the error function in learning process
is depicted in Fig.11. Error decreases as iteration
proceeds. This figure shows that the system learns
the sinusoidal pattern as iteration proceeds.

5 BAM System
Bidirectional associative memory proposed by
Kosko in 1988 is an extension of Hopfield neural
network. The network realizes the hetero-associative
memory in which recalled patterns are different
from triggering patterns as HNN can realize auto-
association.

BAMs consist of two layers. Based on certain
weight values and initial states of neurons in the A
layer, inputs of neurons in the B layer are calculated.
And input-output characteristic determines outputs
of neurons in the B layer. Next these outputs of the
B layer and weights become inputs of neurons in the
A layer. Then outputs of the A layer determined.
That is, the following calculation is carried out
repeatedly.

 B AO f WO (6)

 A BO f WO (7)

Where OA and OB are state or output vector of
neurons in the A layer and the B layer, respectively.
f is a output-input characteristic. For a certain
weight matrix W, repeating the operations give a
stable state of neurons in the network. Then we can
obtain certain pair of output pattern of the A layer
and the B layer. This is basic operation of BAM.
Evaluation function is defined as follows;

Fig.12 BAM unit.
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Where, OA
j and OA

j denote the i-th elements of OA

and OA respectively. T means their corresponding
teaching outputs.

Now, we fabricate the BAM system with 3
neurons in the two layers respectively. The BAM
learns the following two examples. The perturbation
and the learning coefficient are determined shown in
the following tables through preliminary
experiments. The BAM unit is shown in Fig.12.

5.1 Binary pattern
The first example for BAM is to memorize a pair of
the following simple pattern shown in Fig.13. A
layer and B layer must learn three black and three
white pattern. Black and white pixels mean that
outputs of the pixels denoted 1(=255/255) or -
1(=0/255) respectively in stable state.Parameters in
the learning and learning values as the teaching
pattern are shown in Table 2.

Fig.13 Teaching pattern for BAM.

Table 2 Parameters and learning values.

Parameters

Perturbation c 0.0156 (4/255)

Learning coefficient α 0.0078 (4/2551/2)

Learning pattern for the layer A

Learning value for neuron 1 1(=255 / 255)
Learning value for neuron 2 1(=255 / 255)
Learning value for neuron 3 1(=255 / 255)

Learning pattern for the layer B

Learning value for neuron 1 -1(=255 / 255)
Learning value for neuron 2 -1(=255 / 255)
Learning value for neuron 3 -1(=255 / 255)

Change of the error is shown in Fig.14. After
about 110 learning, error decreases suddenly. About
200 learning is enough to obtain sufficient recall for
the desired pattern.

Fig.15 shows recall results under learning process.
In these results, grey pixels mean that the output of
the neuron is not stable. After 200 learning, stable

outputs are equal to the desired ones shown in
Fig.15(d).

Fig.14 Change of error in FPGA system.

Fig.15 Change of error in FPGA system.

5.2 Analogue pattern
Now, we consider an analogue problem in which
target outputs are analogue. When we handle
analogue problems, we cannot use Hebbian learning
to determine weight values of the network. Then
recursive learning scheme is important. Even for the
analogue problems, we can apply the simultaneous
perturbation learning scheme as same as digital or
binary problems.

We handle the analogue quantities shown in
Table 3. Six neurons have to learn analogue value

such as 0.59(150/255) or 0.78(200/255) and so
on. Used parameters are also written in the table.
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Table 3 Learning pattern

Parameters

Perturbation c 0.0549 (14/255)

Learning coefficient α 0.0137(14/2551/4)

Learning pattern for the layer A

Learning value for neuron 1 150 / 255
Learning value for neuron 2 200 / 255
Learning value for neuron 3 250 / 255

Learning pattern for the layer B

Learning value for neuron 1 -150 / 255
Learning value for neuron 2 -200 / 255
Learning value for neuron 3 -250 / 255

Change of the error is shown in Fig.16. After
about 50 learning, error decreases suddenly. About
200 learning, the BAM could recall the desired
pattern. The BAM system learns the analogue
problem as well.

Fig.16 Change of error in FPGA system.

6 Conclusion
In this paper, we described FPGA RNN systems
with learning capability based on pulse expression.
HNN and BAM were handled as actual systems.
The simultaneous perturbation method is adopted as
the learning scheme. We could effectively realize a
useful hardware learning mechanism. Moreover, we
confirm a feasibility of recurrent neural networks
using the simultaneous perturbation learning method.

This system could handle both analog and digital
problems as well.
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