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Abstract : -  A general mathematical method  for both the  time-domain and frequency domain analysis of 
power converters with periodic switching cuircuits is proposed .The method is based on mixed using of the 
Laúlace and modified Z-Transform in linear periodically time-varying system. The model was used for the 
analysis of three-phase voltage source inverters with Space Vector PWM feeding a three-phase static load, or 
an induction motor drive but it is applicable for all types of converters with an explicitly determined output 
voltage (converters with forced commutation) and periodical modulation..From the modulated waveforms 
we can easily obtained equations for the six step waveforms.The derived equations are validated using a 3 
kW three-phase inverter. 
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1  Introduction 
 
Several methods have been presented for the time 
analysis of linear circuits containing periodically 
operated switches in electronic opened-loop systems 
[1],[2][3].However,the approach used in these methods 
depends heavily on matrix manipulations as they require 
matrix inversion as well as exponentiation. Besides,it 
requires solution of many algebraic equations. 
Many electronic systems such as the inverters with 
Pulse Width Modulation (PWM) can be modeled with 
periodically varying parameters.In these inverters Space 
Vector  PWM (SVPWM) has attracted great interest in 
recent years [4] since the harmonic characteristics are 
better than those of the other methods. At present, most 
of AC drives use some type of SVPWM. 
Recent developments in high switching frequency 
power devices, such as IGBT, offer the possibility of 
developing high frequency PWM control techniques. 
Voltage waveforms of such modulated inverters contain 
many pulses and gaps. It is important to known current 
response for such complicated voltage waveforms in a 
drive design.In order to satisfy the required conditions 
for differential state equations  describing the circuit 
behavior the continuity conditions due to the steady-
state current at the transitions of states are used ,i.e.: 
 
 i(ts

+)=i(ts
-)                                                                  (1a) 

                                                                                 
 also, condition of periodicity must be used: 
  
  i(0+)=i(T-)                                                                (1b 
                                                                 
where ts are switching instants is a period. 

Using (1a) and (1b) for the whole period of  PWM we 
get  algebraic equations that must be solved to obtain 
steady-state solution In case of transient  solution when 
current is not periodic during T we must use (1a) and 
(1b) for the whole transient duration.The solution of the 
current response is intricate, as the number of the pulses 
is increasing. 
This paper brings a new mathematical model that uses 
the Laplace and modified Z transform (mixed p-z 
approach).The model enables one to determine both 
steady state and transient state in a relatively simple and 
lucid formula. Method for finding the Laplace transform 
of the voltage vector is also presented.The solution is 
not dependent on the number of the pulses of the PWM 
pattern.The change of the switching instants is reflected 
in the solution by a change in only two values 
 

2  Mathematical Model 
 
We are going to  investigate  the  three-phase half-
bridge voltage source inverter fed from a DC voltage 
source and feeding a balanced three-phase Y-connected 
load. Generally, voltages and currents of three-phase 
circuits are explained by three variables, respectively. In 
case of three-phase load fed from a voltage source 
inverter shown in Fig.1,the phase voltages with respect 
to neutral point are:  
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Fig.1 Three-phase VSI  feeding a static load 
 
v in(t),                  i=a,b,c                                            (2)            
and the phase currents are: ii.(t)  

 

Since the neutral point of the load is floating, the sum of 
three line currents is zero: 
 
ia(t)+ib(t)+ic(t)=0                                                         (3) 
     
From the phase voltages(currents) we can determine 
voltage(current) space vector inαβ  coordinate system 

as follows: 
 

)t(V = [ ])t(cnv.2a)t(bnv.a)t(anv
3

2 ++ =      (4) 

=Vα(t)+jVβ(t)                                                                                                                                  

2

3
jea 2

13/2j +−== π                                                                                                                                       

 
The same equations are valid for the currents and 
magnetic fluxes. 
 
2.1 Space Vector Modulation 
 
For next calculations we express time with number of 
period n and variable within the period ε as follows: 
 
t=(n+ε)T ,     n=0,1,2,...       , 0<ε≤1                           (5)   
 
To obtain the required voltage vector VAV , the 
conduction times of the selected vectors are modulated 
according to the amplitude and angle of VAV, as shown 
in Fig.2 

 
 
Fig.2  Voltage Space Vectors in complex plane 
 
The required voltage vector VAV  is within the sampling 
period T∆  modulated as follows: 

T
2T

2T
1T

1T

T
AV

je
∆

+
∆

=∆ρ VVV   ,           

0T2T1TT ∆+∆+∆=∆                                     (6)  
This type of modulation  is called the Space Vector 
Modulation (SVM). 
In (6)  ∆T1 is dwell time of vector V1, ∆T2 is dwell time 
of vector V2,and  ∆T0 is dwell time of zero vector V0,or 
V7. 
∆T is sampling interval. 
 
∆T=T/N1                                                                                                             (7)                                                                                                                                                                                                       

 
 ρ is an angle that defines position of the reference 
vector  AVV  with respect to real axis in complex αβ 

plane .V1 and V2 are adjacent to the voltage vector VAV  
in a given sector n ,and the conduction per unit times are 
given from (6) by: 
 
∆ε1=∆Τ1/Τ =ε1B-ε1A =g sin(600−ρ)/ N1     

          
∆ε2=∆Τ2/Τ= ε2B-ε2A  =g sinρ/ N1                                (8 )                                                                                             
 
∆ε0=∆Τ0/Τ=1/Ν1−g sin(600+ρ)/ N1  
                                                                                                     
ε1A and ε1B are respectively, the beginning and end of 
duration of vector V1, ε2A and ε2B are respectively, the 
beginning and end of duration of vector V2.  ∆ε1,∆ε2 and 
∆ε0  are respectively, per unit dwell times(duty ratios) of 
the applied vectors . 
  

 
dcV32

AVV
g =                                                             (9)                                                                                                                        

g  is the transformation (modulation) factor, 
Vdc is the voltage of DC bus. 
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By substituting phase voltages  for each switching state 
into (4), the following discrete space vectors are 
obtained: 

3/jne
3
dcV2

)n( π=V ,         n=0,1,2…….           (10)                                                                       

These vectors thus form vertices of hexagon as shown 
in Fig.2. 
As was mentioned, more vectors within sampling period 
are used.As the SVM  is a periodical with T,the voltage 
vector can be expressed ,in  n-th sector ,as 
 

V (n,ε)= 3/)k(j3/nj
M

1k

dc e)k,(fe
3

V2 παπ

=

ε∑               (11)    

M is number of the vectors , which are used within a 
sector T                                                                            
From (11) it can be seen, that all vectors are rotated in 
the next sector through π/3,and in each sector are 
vectors modulated with time dependency given by 
f(ε,k),  and  also with the angle dependency given 

by 3/)k(je πα . 
f(ε,k) is a switching function which takes values 1 
inside of ∆εk, or 0 outside  of ∆εk, α(k) defines the 
sequence of the phase shift of the used vectors , and for 
SVM with two adjacent vectors has value 1 or 0 
 

3  Laplace Transform of  Voltage 
Vectors 
 
To find the Laplace transform of (11) we can use  
relation between  the Laplace and modified Z transform  
[8]. Using (5) , and its derivation 
 
dt=Tdε   
 
we can write for the Laplace transform of the periodic  
voltage vector: 
 

)p(V =                                 

∫ εε−ε=εε+−ε∑
∞

=
∫

1

0
d.pTe),z(T)TdT)n(pe),n(

0n

1

0
( VV   (12)                                                  

Where is noted : z=epT ,      z is operator of Z-transform. 
                                                                                                                              

),z( εV  is the modified Z transform of ),n( εV [7],[8] 

defined by equation: 
 

∑
∞

=
−ε=ε

0n

nz),n(),z( VV                                          (13)                                                                                      

 
With regard to SVM strategy mentioned, we get from 
(12) and (13) 
 

)p(V =

∑
=

ε−ε−πα
π −

−

M

1k

pTpT3/)k(j
3/jpT

pT

p
1dc )ee(e)

ee

e
(

3

V2
kBkA

                                                                               (14) 

where εkAT and εkBT are respectively, the beginning and 
the end of  application of k-th non-zero vector. 
 

4  Current  Response 
 
Now, we suppose that voltage with the Laplace 
transform V(p) is feeding load with admittance: 
 

Y(p)=
)p(B

)p(A
=

s

L

1s s

s

pp

1

)p´(B

)p(As

−∑
=

                        (15a)                         

where:

spp

s dp

dB
)p´(B

=








=          ,and                    (15b)                              

ps are roots of the equation:  
 
B(p)=0   
                                                                                                                                                                 
Ls is a order of the polynomial B(p). 
Thus, using (2) and (3) the Laplace transform   of the 
load current can be expressed as: 
 
I (epT,p)=V (p)Y(p)=R(epT)Q(p)                             (16)                                                                                                         
                                                                                                          
As can be seen from (16),the Laplace transform of the 
current vector consists of two multiplicative parts.One    
(R(epT )) is a function of z-operator,the other (Q(p)) is  a 
function of p-operator .  

3/jepTe

pTe
)pTe(R π−

=                                  (17)                                                                                                                                                                                                                                                            

Q(p)= )pTepTe(
M

1k

3/)k(je
)p(B

)p(A

p3
dcV2

kBkA ε−−ε−
∑
=

πα                                                                        

By transforming ( 16) into modified z -space  we get: 
 
I (z,ε)=R(z).Zm{Q(p)}                                              (18)       
                                                                                                                                   
In order to find Zm transform of Q(p) we must use the 
translation theorem in Z-transform which holds 
 
Zm{e-p.a.F(p)} = z-x.F(z,ε-a+x)                                   (19)   
                                                                                                   
with Zm{ } denoting the modified Z transform operator. 
 
And where parameter x is given by  
 

            
            1     for  0≤ε<a 

x =   {                                                                       (20)                                                                                                                                               

0 for  a≤ε<1      
 
If we want to express translation for k-th  pulse,with the 
beginning  εkA and the end εkB , 
(pulse-width ∆εk= εkB - εkA ) we can use two parameters, 
namely mk and nk to determine per unit time for 
prepulse,inside-pulse and postpulse,respectively. 
mk is a parameter that defines the beginning of k-the 
pulse εkA,   nk  is a parameter that defines the end of the 
k-pulse εkB .According to (20) we can write: 
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         1    for 0≤ε<εkA                  1         for 0≤ε<εkB 
mk={                                    nk={                               (21)                                                                                    
         0    for εkA ≤ε<1                  0        for  εkB ≤ε<1 
 
 
 Using   parameters mk,nk  , and Heaviside theorem (15a) 

we can express (18) with help of (21) and (11) in the 
modified Z-space: 

                                                                                (22)  

∑
=

































































−−−

−−

∑
=

−

+−−

−
−

−

=
M

1k

εT(np
enz

εT(mp
emz

L

1s

Tpez

Tεpze

3

jππα(k

e
)sB´(psp

)sA(p

)nz

m(z
1z

z3

jππα(k

e
B(0)

A(0)

)3

jπ

e(z

z

3
dc2V

ε)(z,I

kB)ksk

kA)ksk

s

s

s

k

k

                                                                                            
                                                                                            
Equation (22) has simple poles  ejπ/3, 1 ,eps

T.The inverse 
Z transform of (22) can be found using the residua 
theorem . 

I( dz1nz),z(I
j2

1
),n ∫

−ε=
π

ε                                    (23)                                                                                            

 
If doing so, we can express the time dependency of the 
load current by the following formula: 
 
 

i(n,ε)= ∑
=









































++π































∑
=

ε−+π−−

−ε−+π−
−π

ε

+
−π

π−−π−

παM

1k

)1n(3/je

L

1s

)n(Tp3/nje

)m(Tp3/mj
e(

)Tpe3/je)(sp´(B.sp

.Tpe)sp(A

)13/je)(0(B

)3/nje3/mje)(0(A

3/)k(je
3
dcV2

s

kBksk

kAks

s

s

kk

 

                        
 

∑
=





























∑
=

ε+ε−−

−ε−
−π

πα+
M

1k

L

1s

)n(Tpe)Tpe

Tpe(

)Tpe3/je(

Tpe

)sp´(Bsp

)sp(A

3/)k(je
3
dcV2 s

skAs

kBs

s

s

 

 
 
                                                                          (24)                                                                                    
                                                                                             

=iS(n,ε)+iT(n,ε) 
 
The solution  contains two parts. 
Since ps includes a negative real part (we consider stable 
systems), the second portion of (24) consisting ep

s
T(n+ε) 

attenuates, for n→∞, forming the transient  component 
of the current space vector iT(n,ε).The term 

 
ejπ(n+1)/3 =cosπ(n+1)/3+j.sinπ(n+1)/3                                                                           
 
therefore, the first part of  (24) is the steady-state 
component of the current space vector iS(n,ε). 
As an example ,let us  consider three-phase R,L series 
load. Equation (24) has only one simple root: 

L

R
1p

−=                                                              (25)                                                                                                                                     

 

By substituting 1p  into (14) we can write for the load 

current components: 
 

a)steady-state component: 
                                                                (26) 

iS(n,ε)=



































+πε−−π−−

ε−−π−

−−π

ε−

−
−π

π−−π−

∑
=

πα=

3/)1n(je)L/)n(RT3/nje

L/)m(RT3/mje(

)
L/RTe3/je

L/RTe
(

)
13/je

3/nje3/mje
(

R

1M

1k

3/j
e

3
dcV2

kBkk

kkAkk

kk

k    

                                                                                                                                                           
b)transient component: 

                                                                 
iT(n,ε)= 

{

}L/)n(RTe)
L/RTe3/je

L/RTeL/RTe
(

L/RTe
M

1k R

13/je
3
dcV2

kBkA

k

ε+−
−−π

ε−ε

−∑
=

πα=

   (27) 

 
Fig.3 shows trajectory of the steady-state current vector 
in complex αβ  plane. This trajectory is given by 

(26).The parameters of the modulation are:N1=7,g=0.8 
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Fig.3 Trajectory of stator current space vector-steady 
state  
.Fig.4 shows the phase A steady-state current given by 
the real part of Fig.3 and phase A voltage given by real 
part of 11. 

 
  Fig.4  Phase A current (upper trace) and phase A 
voltage(bottom trace)-steady state 
 
 From (24) we can  derive easily the solution for six-
step waveform (without modulation). 
Analytical expressions for the steady-state currents of 
the system with a three-phase VSI  with six-step 
waveform feeding a three-phase static inductive load 
were presented in [9] (Equations (1)-(8)).These 
expressions were derived by existing methods using 
(1a) and (1b), which necessitates solving algebraic 
equations to express the initial value of the load phase 
current i0. From the proposed mathematical model we 
can determine the solution in a very simple form. 
In  Eq (26), which is valid for the steady-state, we  
substitute: 
M=1 (one pulse per sector) ,ε1A=0, ,ε1B=1,m1=0,n1=1. 
By substituting these values into (26) we obtain  for the 
steady-state  vector current of the RL load: 
 

iS(n,ε)=    





















−

−

π
−

π

ε−

π
−

)

L

RT

e3

j

e

13

j

e
(e13

nj

e
R3
dcV2

L
RT

              (28)                                       

 
Putting n=0 and 0<ε≤1 ,we get solution for the first 
sixth of the period,for n=1 and 0<ε≤1 , we get solution 
for the second sixth of the period ,etc. 

 
Fig.5 Phase A voltage  and current-steady-state ,six step 
waveforms   
The A-phase current is given by real part of (28) 
 
iA(n,ε)=Re{ iS(n,ε)}                                                  (29)  
                                                                                                                            
For the voltage vector with six-step waveform we can 
write : 

 
V (n,ε)=2/3(Vdc.e

jnπ/3)= V (n)                                  (30)                                                                                     
              
 And the A phase voltage is given by a real part: 
 
vA (n,ε)=vA(n) = Re{V (n,ε)}=2/3(Vdc.cosπ.n/3)     (31)   
 
Fig.5 shows phase A current given by (29) and phase A 
voltage  ),for six-step waveforms (without modulation) 
 If we compare Fig.5 with the waveforms in [9].we can 
see that the results are identical. But  the presented. 
mathematical model contains only one equation (28) 
which is valid for the whole output period 
(n=0,1,2,3,4,5, , 0<ε≤1 )  The model in [9] necessitates 
solution for every sixth of the period, which means  six 
equations per one period . Besides, it requires solving 
the initial value of the load phase current. 
 

5  Experimental Results 
 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Jiri Klima

ISSN: 1109-2734 315 Issue 5, Volume 7, May 2008



Validation of the derived analytical equations was also 
carried out using measurements with a 3 kW three-
phase inverter supplying RL load. A three-phase static 
inductive load  has the parameters: R=623Ω,ω1L=502Ω. 
 An  IGBT inverter utilized Space Vector PWM with 
sampling intervals N1=7,modulation factor g=0,8,and 
with a fundamental frequency of the output voltage of 
50 Hz. 
Fig.6 shows experimental waveforms of the phase A 
steady-state load  current (upper trace)and the phase A 
load voltage (lower trace). 

 
Fig.6 Experimental results.Phase A current and voltage-
steady-state 
 
The corresponding  theoretical phase A steady-state 
current  and phase voltage given  are shown in Fig.4.As 
can be seen, there is very good agreement between 
measured and theoretical results, with correlation being 
better than 5% over most of the load range. 
Fig.7 shows phase A voltage and current measured in 
the inverter without modulation-six step waveforms. 
If we compare Fig.7 with theoretical waveforms given 
in Fig.5 we can see very high correlation. 
The simple form of equations (28) and (31) can be used 
directly to assess the system performance. 
All the dependencies were graphical visualized by the 
programme MATHCAD [11] 
 
 

 
Fig.7 Experimental results.Phase A voltage and current-
six step waveforms 
 
6 Frequency-domain analyze64.a  
 
6.a) Fourier series for the stator voltage vectors  

 
We shall calculate the Fourier series of the periodic 
variation of the stator voltage space vector [6]: 

[ ]ε)T(n(jkωe
k

kε)(n, 1 +
∑
∞

−∞=
= CV            (33)                       

where 1ω =2π/T1  is the angular frequency of the 
fundamental harmonic. From (33) , the phase 
voltages can be expressed as: 
 













∑
∞

∞=ν

ε+νω
ν=ε

-

)T(n1je(RenAnv )C),(

                                                                         (33a)                                                             
 













∑
∞

∞=ν

ε+νω
ν

π=ε
-

)T(n1je(34jeRenBnv )C/),(

                                                                         (33b)                                                      













∑
∞

∞=ν

ε+νω
ν

π=ε
-

)T(n1je(32jeRenCnv )C/),(

                                                                          (33c)                                                            
To derive the coefficients of the Fourier series, we 
can use the relationship between the Laplace 
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transform of the periodic waveform and Fourier 
coefficients: 
 

[
1

1 kjpppTe1
1T

1
k ω=

−−= )V()(C (34)                                                                                                                                             

V(p) is given by (28). 
By substituting (28) into (44) we obtain the Fourier 
coefficients as follows:                                                                             

νC = (1 6 )C + ν =                                                

    

[

]

k

k

M ( (1 6 )( (k)/3)dc 3

k 1

( (1 6 )
3

2V
e e

3 j(1 6 )

e

A

B

jj

j

π− + ν επα

=

π− + ν ε

=
π + ν

−

∑
(35) 

where 
                                               (36)                                                                                                                            

                       
6. b Fourier series for the phase voltages 
 
From voltage-space expression (35) we obtain the 
phase voltages as a real part of the complex 
equation (35) as: 
 

[
]

M
dc

k
k 1

An 1 kA kB

2V
sin (1 6 )

3(1 6 ) 6

v (n, ) (n )T ( )
6sin (1 6 )

(k)
2 /3

3

=
∞

ν=−∞

 π + υ∆ε  π + ν   
 π ε = ω +ε − ε +ε +  
 + ν  

πα  − π    

∑

∑  

                                                                           (37) 
 
As an example we can see from Fig.8 the Fourier 
approximation of the voltage space-vector with 
space-vector modulation. We take into account 
first 10 harmonics 
 
 
 

 

 
 
 
Fig.8 Fourier series approximation of the voltage space 
vector 

 
Fig.9 Voltage space vectors and harmonic spectrum.  
g=0.3,N1=4 (fSW=1200 Hz) ,f1=50 Hz. Top: Fourier 
series approximation of voltage space vectors for 
ν=20.Middle: Ideal voltage space vectors. Bottom: 
Harmonic voltage spectrum. 
 
From Fig.9 we can see the Fourier series 
approximation of the voltage space-vector (upper 
trace); ideal trajectory (middle trace) and Fourier 
spectrum (bottom trace) again for the space-vector 
PWM modulated voltage. 

,...,, 210 ±±=ν
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Fig.10 Voltage space vector and phase voltages 

 
 
Fig.11 Phase voltage and its approximation 

 
Fig.10 shows the voltage-space vector given by the 
proposed analytical model and its phase-voltage 
approximation. 
Again,phase voltage and its analytical 
approximation are shown in Fig.11.As we can 
see,there is good correlation between 
analytical and theoretical results. 

 
 
6  Conclusion 
 
An approach for the analysis of linear system 
containing periodically operated switches is 
described. The approach was demonstrated  for  
the inverter with Space Vector PWM ,but it is 
applicable for all types of converters with 
explicitly determined output voltage. The 
mathematical model uses the Laplace and modified 
Z transforms.The steady -state and transient  
components of the load current are determined in a 
simple and lucid form that it avoids involved 
matrix inversion as well as exponentiation. 
Experimental results prove the feasibility of the 
proposed mathematical model as compared with 
the conventional methods. The theory is based on a 
relatively simple model,but correlation between 
measurements and calculations is very good. 
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