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Abstract: - This paper focuses on benchmarking, which is the main experimental approach to the design 
method and EDA-tool analysis, characterization and evaluation. We discuss the importance and difficulties of 
benchmarking, as well as the recent research effort related to it. To resolve several serious problems related to 
quality of benchmarking and use of practical industrial benchmarks, we proposed an adequate benchmarking 
methodology based on the statistical experimental design approach, and developed corresponding digital 
circuit benchmark generators. These benchmark generators enable research, evaluation and fine-tuning of 
circuit synthesis methods and EDA-tools largely independent of the actual industrial benchmarks, and much 
better than having only some industrial benchmarks. Using the results of extensive experiments that involved 
large sets of diverse benchmarks generated with our FSM benchmark generator, we discuss several crucial 
problems of benchmarking and demonstrate how to resolve them. 
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1   Introduction 
The recent spectacular progress in microelectronics 
enabled implementation of a complex system on a 
single chip, autonomous and mobile computing, 
wire-less communication, global networking, and 
facilitated a fast progress in these areas. A big 
stimulus has been created towards development of 
various kinds of embedded and high-performance 
systems. On the other hand however, the spectacular 
advances introduced unusual silicon and system 
complexity, and created many new difficult to solve 
issues. The opportunities created by modern 
microelectronics cannot effectively be exploited 
without adequate methods and electronic design 
automation (EDA) tools for designing of high-
quality circuits and systems. Therefore, the quality 
of the EDA methods and tools, as well as of the 
methods and means for their quality analysis is of 
crucial importance. 

Two basic approaches are used to study 
performance of objects (e.g. methods or tools): 
analytical and experimental. The analytical approach 
is based on (mathematical) models and use of the 
logical analysis and proof methods. The 
experimental approach is based on performing sets 
of tests, collecting and processing data from the 
tests, and drawing logical conclusions from the 
collected and processed data. 

This paper is related to experimental performance 
analysis of the digital circuit design methods used in 
EDA-tools. It focuses on benchmarking that is one 
of the main and most difficult issues of the design 
method and EDA-tool analysis, characterization and 
evaluation. A benchmark is a design problem that 
constitutes a point of reference against which 
methods or tools can be measured, analyzed, 
characterized or compared in order to assess their 
(relative) performance. Benchmarking is the process 
in which, using benchmarks, various aspects of a 
methods or tools are measured, analyzed, 
characterized, evaluated or compared. In this paper, 
we discuss several crucial problems of 
benchmarking, specifically related to the adequacy 
of the benchmark set and evaluation of 
benchmarking results, and demonstrate how to 
resolve them. 

While some benchmarking problems related to 
combinational circuit design were addressed by 
researchers in recent years, and both an approach 
and several particular solutions have been proposed 
(see e.g. [6][22][33][18][29][30]), the benchmarking 
in sequential design is a much less recognized 
territory. The paper [26] authored by the first author 
of this paper and [23] belong to unique works in this 
field. Therefore, in this paper we focus on 
benchmarking in sequential design. Despite this fact, 
a large part of the discussion of the paper and its 
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more general conclusions are not limited to the 
sequential design, but can be extended through 
analogies to the whole field of digital circuit design, 
and some of them even to a larger area of electronic 
design automation. 

The main aim of the paper is to discuss several 
crucial benchmarking problems, such as the complex 
problem of the benchmark set quality or the lack of 
satisfactory academic and industrial benchmark sets, 
and to propose and discuss their adequate solutions. 
The sequential synthesis methods implemented in 
the contemporary EDA-tools are used here rather in 
the role of examples. However, the realization of the 
main aim includes demonstration that an adequately 
performed benchmarking is in state to reveal 
strengths and weaknesses of the benchmarked 
methods. Therefore, we will also briefly comment 
on the quality of the sequential circuit synthesis 
methods implemented in the contemporary EDA-
tools, and show a big room for their improvement. 

In recent years a growing fraction of the 
electronic systems is implemented using the FPGA-
technology. Several reasons of this trend are 
explained [28]. We therefore performed our 
experimental research using as test bed methods and 
EDA-tools for FPGA-targeted circuit synthesis. To 
resolve serious problems related to the use of 
practical industrial benchmarks and ensuring the 
adequate quality of the benchmark set, we developed 
and implemented sequential and combinational 
benchmark generators. These benchmark generators 
make it possible for us to efficiently construct well-
characterized circuit specifications with different 
characteristics, including specifications 
representative to various typical industrial 
application areas. The generators greatly reduce the 
necessity of having the actual industrial benchmarks 
and enable research, comparison, evaluation and 
fine-tuning of circuit synthesis methods and tools 
largely independent of the industry, and much better 
than having only some industrial benchmarks. In this 
paper, the discussion of several benchmarking issues 
and their solutions is performed and illustrated using 
the results of our experimental research that 
involved several sequential circuit synthesis methods 
implemented in the contemporary academic and 
commercial EDA-tools, and large sets of diverse 
FSM benchmarks generated with our Finite State 
Machine (FSM) Benchmark Generator BenGen 
[32]. 

The contributions of the research reported in this 
paper include amongst others: 
- discussion of the importance and difficulties of 

benchmarking in the EDA field, as well as of the 
recent research effort related to it; 

- proposal of an adequate benchmarking 
methodology based on the statistical experimental 
design approach, as well as an appropriate 
generation and application of the high-quality 
representative benchmark sets; 

- the first published finite state machine (FSM) 
benchmark generator that enables an efficient 
construction of various well-characterized 
sequential circuit specifications and 
representative FSM benchmark sets; 

- experimental analysis of several FSM state 
assignment methods using large sets of 
benchmarks from this generator that 
demonstrated several important benchmarking 
issues, mainly related to the benchmark set 
representativeness and statistical processing of 
the benchmarking results; 

- demonstration that using only a single statistic on 
the whole benchmark set the information 
obtained and conclusions are very limited, while 
considering more statistics and/or narrower 
benchmark classes gives more, more precise and 
more useful information and conclusions; 

- demonstration of the trade-off between the 
benchmarking time, the amount and preciseness 
of information obtained from a benchmarking 
experiment, and the confidence level of the 
statistical conclusions; 

- demonstration that an inadequately performed 
benchmarking, and specifically performed when 
using a non-representative benchmark set, can 
easily result in faulty conclusions and this way 
mask important quality issues, while an 
adequately performed benchmarking is able to 
reveal significant quality concerns; 

- demonstration that the pragmatic FSM state 
assignment approaches commonly applied in 
today’s commercial circuit synthesis tools for 
FPGAs are effective in only some special cases. 

 
 
2   Benchmarking issues in EDA 

In this section, we will briefly discuss some of 
the major benchmarking issues in the EDA field, 
when focusing on benchmarking of digital circuit 
design methods used in the EDA-tools. The main 
problems in digital circuit design are 
computationally complex (NP-hard [16]), including 
the FSM state assignment problem discussed further 
in this paper [26][27]. In general, finding a strictly 
optimal solution to such a problem requires a 
solution time that exponentially grows with the 
problem dimensions. Therefore, heuristic solution 
methods are used for such problems. The heuristic 
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methods, although not guaranteeing the strict 
optimality, are often able to find some high-quality 
solutions in an acceptably short time and using an 
acceptable quantity of other resources. In 
consequence, in most of the practical cases, the 
strictly optimal solutions remain unknown. Even if 
one of them is actually obtained, it is usually 
unknown that the obtained solution is optimal. 
Analytical performance study of the heuristic 
methods for these complex problems is also complex 
itself, and consequently, the experimental approach 
is typically used. This paper is therefore devoted to 
the experimental performance analysis of digital 
circuit design methods and tools. The experimental 
performance analysis uses some test cases 
(benchmarks) for performing the sets of tests. 

In general, a benchmark is a point of reference 
against which objects can be measured, analyzed, 
characterized or compared in order to assess their 
(relative) performance. Benchmarking is the 
process in which, using benchmarks, various aspects 
characteristics of a particular object are measured, 
analyzed, characterized, evaluated or compared in 
relation to values of the same characteristics of other 
similar objects serving the same or similar purposes, 
or in relation to the best (actual or predicted) values 
of those aspects, to their other characteristic values 
or their values’ distributions. 

In the design area, a benchmark corresponds to a 
design problem against which design methods, 
processes, techniques, algorithms, tools, etc. can be 
measured, analyzed, characterized or compared. In 
the field of digital circuit design, a benchmark 
corresponds to a circuit specification in a particular 
form (e.g. HDL, tabular, diagram, graph, net-list 
etc.) to which circuit design methods, processes, 
techniques, tools, algorithms etc. can be applied, and 
against which they can be measured, analyzed, 
characterized or compared in order to assess their 
(relative) effectiveness and/or efficiency. The 
effectiveness and efficiency are typically expressed 
through the result quality (e.g. the circuit’s area, 
speed, power dissipation, testability, 
manufacturability,…), robustness (i.e. the ability to 
steadily deliver some high-quality solutions in the 
whole range of possible input data), and use of 
resources  (e.g. computation resource use, as CPU-
time or memory use, or human resource use). 

Benchmarking is one of the main issues of the 
design method and EDA-tool development and 
quality assurance. By providing a feedback on the 
method or tool qualities, benchmarking is a major 
source of information used to control the direction of 
the method or tool development and improvement, 
and has a decisive influence on their final quality. 

Adequately performed benchmarking may reveal 
unknown inefficiencies or new issues and trigger 
work towards innovations enabling their elimination 
or resolution. Moreover, benchmarking enables the 
design method and tool users to analyse and 
compare alternative methods or tools and to decide 
which of the available alternatives best suit their 
particular needs. It is thus of primary importance for 
both the design method and tool researchers and 
developers, and the method and tool users. 

Summing up, the circuit design methods and 
tools can be thoroughly analyzed, characterized, 
compared, and evaluated by applying them to some 
sets of (practical or hypothetical) designs 
(benchmarks), and analyzing the results produced by 
them. However, the value of the experimental 
research performed when using benchmarks, as well 
as the value of the conclusions drawn based on the 
results from such research, heavily depend on the 
quality of the benchmark set used for the 
experiments, as well as the way the experiments are 
performed and their results analyzed. 

Unfortunately, the benchmarking experiments in 
the EDA area are typically performed using a 
relatively small number of isolated, unrelated, 
unsystematically collected and not characterised 
benchmarks. Processing of the results from these 
experiments is usually also extremely simplistic. In 
most cases it is limited to presenting some raw data 
on an unsystematic, not characterised and relatively 
small benchmark sets, and computing some totals or 
simple averages for such benchmark sets. If the 
benchmarks’ characteristics and their distributions 
are unknown, those totals or averages are in most 
cases meaningless. Moreover, it is impossible to 
reliably draw any more general conclusions from the 
raw data on an unsystematic, not characterised 
and/or small benchmark set. For example, in [2] the 
algorithms were tested on just a single instance of 
one particular problem, and in [41] on only four 
instances of a single problem differing in size, but 
without accounting for any other features or factors 
of the problem. This sort of experimentation may 
only be used as an example further explaining the 
algorithms, but it does not allow for any 
generalizations and any general conclusions 
regarding the algorithms’ qualities. In [15] and [35], 
the methods proposed are tested on just a few 
“standard” benchmarks. This can only give a first 
impression on how the methods behave for a few 
typical problem cases, but it does not allow for any 
reasonably reliable generalizations. It even does not 
allow for a reliable simple average computation, 
because the number of cases is not statistically 
significant and the different problem features are not 
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well covered by the experimentation. In [40] the 
benchmarking experiments were performed 
somewhat better. In parallel to a few “standard” 
benchmarks ten randomly generated benchmarks 
with different parameters were used. Results on 
these generated benchmarks show somewhat more 
on how the methods perform for different cases and 
may already allow for a computation of a reasonably 
reliable simple average. The number and diversity of 
benchmarks are however still much too low to make 
any more precise characterisation of the methods. 
Unfortunately, the cases briefly discussed above are 
not exceptional. They represent the typical 
benchmarking practice in the electronic design, EDA 
and related areas, which is far from being of an 
acceptable quality. 

Furthermore, the method (tool) evaluations made 
on isolated results obtained for isolated benchmarks 
do not provide much information on their actual 
quality, even for these isolated cases. Since in most 
cases the strictly optimal solutions for a typical 
computationally complex circuit design problem 
remain unknown, there is no reference point to 
which the isolated results could be compared, and 
even if the result of one method or tool is better than 
from another, it is still unknown how bad (or good) 
both these results are. In 1990 the first author of this 
paper proposed a technique that overcomes the 
above problems of benchmarking result analysis and 
evaluation. In particular, he demonstrated that 
distribution of solutions for the FSM state 
assignment problem can be well estimated by the 
normal (Gaussian) distribution and showed that the 
normal distribution can be used to well model many 
other complex circuit design problems having 
analogous properties [26]. He proposed to evaluate 
the performance of the design methods and tools for 
solving such problems through comparison of the 
result from a method on a particular benchmark to 
the normal distribution of results for this 
benchmark[26][27]. This result evaluation technique 
is briefly explained further in this paper. Although 
this solved in a way the problem of the result 
evaluation, the questions related to the benchmark 
set quality remained open, and we started to work on 
them. 

 
 
3 Experimental design approach to 
benchmarking 
Although this paper is devoted to benchmarking in 
EDA, and particularly in digital circuit design 
automation, the problem of an adequate 
benchmarking is very important to many areas. In 

particular, in parallel to our works in the EDA 
benchmarking, several researchers in the area of 
heuristic methods and algorithms (for different than 
EDA applications) also tried to find a satisfactory 
solution for the benchmarking in their area. We will 
briefly discuss the works in the area of heuristic 
method and algorithm benchmarking, because both 
the area and the research results are related to the 
area and results of our research presented in this 
paper. The researchers of heuristic methods and 
algorithms proposed to adapt to the benchmarking in 
their area the statistical experimental design (or 
design of experiments) paradigm pioneered by R. A. 
Fisher [14] and used in many areas, including 
physical sciences, medicine, agriculture and other 
life sciences [4][9]. The statistical experimental 
design methodology consists in an adequate 
planning and performing of an experiment which 
ensures that appropriate data is collected and 
analyzed by statistical methods to obtain meaningful 
and satisfactorily objective conclusions. In 
particular, in his paper from 1994 [19], J. N. Hooker 
argued that an empirical science of algorithms is 
needed to alleviate several benchmarking problems, 
in the sense of investigating “how algorithmic 
performance depends on problem characteristics”. 
He wrote: “Rather than agonize over whether a 
problem is representative of practice, one picks 
problems that vary along one or more parameters”, 
and suggested usage of generated benchmarks and 
adoption of the experimental design paradigm. 
Although we agree with many ideas presented in his 
paper, we do not support his suggestion that 
“whether a problem is representative of practice” is 
not so important. In our opinion, the practical 
representativeness of problems and varying of 
problems along various parameters are both 
important, and both should be taken care of when 
preparing and performing the benchmarking 
experiments. We will more extensively comment on 
this further in this paper. Our opinion is shared by 
several other researchers and practitioners, including 
R. S. Barr and his collaborators who wrote: “Real-
world problems reflect the ultimate purpose of 
heuristic methods, and are important for assessing 
the effectiveness of a given approach. Of particular 
value are instances that are representative, in some 
manner, of those encountered in a given problem 
domain” [3]. Also Hooker himself partly changed 
his opinion on this aspect, and in his next paper [20] 
wrote: “…the well-known pitfalls of this approach 
(random generation of test problems), the most 
obvious of which is that random problems generally 
do not resemble real problems.” 

To overcome some of the benchmark set 
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representativeness and result processing problems, 
he proposes to adopt a type of experimental design 
known as factorial design. An analogous proposal is 
included in the paper by R. S. Barr at al [3], who 
stressed that: “A variety of different types of 
problems should be generated to reflect the diversity 
of factors that could be encountered. Generated 
problem instances should be representative of 
problems likely to be found in the field or designed 
to explore key hypotheses. In general, the more test 
problems evaluated, the more informative the 
study”. In general, we agree with the above 
statements, but with the last one only upon the 
condition that the numerous test problems are 
divergent and their characteristic features (factor 
values) are known and taken into account by the 
statistical result analysis. 

The main ideas of factorial design are as follows. 
First a set of factors is found, such that each of them 
is an independent controllable variable that may 
substantially affect the experiment results (e.g. 
performance measures) being dependent variables. 
The factors can e.g. represent the problem size, its 
various functional or structural features, etc. For 
each factor, its several value subsets or ranges are 
distinguished (e.g. size levels, function types or 
structure types). For each possible combination of 
the factors’ value ranges a randomized problem 
(benchmark) set of statistical size is generated. For 
each such problem set meaningful average values of 
the experiment results can be computed and 
statistical analysis can be performed to reveal the 
influence of particular factors on the experiment 
result or interactions among the factors. The 
statistical factorial design of experiments is based on 
basic principles of test replication and randomization 
to offset unaccounted factors and enable a 
meaningful statistical processing. 

Our benchmarking methods and related digital 
circuit benchmark generators discussed further in 
this paper overcome the problems of the benchmark 
set representativeness and result processing bias, 
because they efficiently combine the best features of 
the two different experimental analysis techniques: 
factorial design and testing on practical designs. 
They are based on the factorial design, but they do 
not generate random benchmarks. They generate 
benchmarks whose structure and other features very 
closely resemble those of the actual practical 
designs. Moreover, our benchmarking methods are 
able to use as some of the benchmarks just the 
available practical benchmarks. 

In [21] H. Hoos and T. Stützle criticized the 
common simplistic practice of the benchmarking 
results processing: “Usually, the final performance 

measure is obtained by averaging over all instances 
from the test set. This last step, however, is 
potentially extremely problematic. …a fundamental 
problem with averaging … is the mixing of two 
different sources of randomness in the evaluation of 
algorithms: the nondeterministic nature of the 
algorithm itself, and the random selection of 
problem instances.” Further in their paper, they 
focused on the first problem being the 
nondeterministic nature of algorithms. In this paper, 
we focus on the second problem being an adequate 
selection of problem instances to ensure meaningful 
averages and other results of statistical analysis. In 
the scope of the research presented in this paper the 
first problem was inactive, as the methods of the 
FSM state assignment considered are deterministic. 

In the field of digital circuit design and its 
automation, a benchmark typically represents a 
digital circuit specification at a certain stage of the 
circuit design. Such a circuit (benchmark) has its 
own specific functional, structural and parametric 
characteristics. The experimental analysis 
(benchmarking) of the circuit design methods and 
tools is based on running them on sets of 
benchmarks, collecting and processing data from the 
tests, and drawing logical conclusions from the 
collected and processed data. The circuit 
(benchmark) characteristics relevant to a specific 
experimental performance analysis represent the 
factors of the statistical factorial design. According 
to different values of particular characteristics 
(factors) or characteristics combinations different 
benchmark classes can be distinguished. 

In parallel to our works on benchmarking in 
EDA, F. Brglez and his collaborators N. Kapur, D. 
Gosh and R. Drechsler performed research on 
scientific experimentation targeted to EDA 
benchmarking, and specifically, combinational 
circuit benchmarking, from which results were 
published in the late 1990s [7][33]. Their 
combinational circuit benchmarking method through 
analysis of equivalence class mutant circuit 
distributions is in fact a specific kind of the 
statistical factorial design. In brief, they proposed to 
consider a number of known combinational circuit 
benchmarks and for each such benchmark construct 
a large sample of mutant circuits that belong to the 
same equivalence class of signature-invariant 
circuits. The reference circuit represents a net-list of 
a known design, and the signature-invariance 
guarantees that the reference net-list and all of its 
mutants have the same number of I/Os and the same 
number of nodes distributed across the same number 
of levels [33. This corresponds to the selection of the 
number of I/Os and the number of nodes distributed 
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across the levels as the factors in factorial design, 
and setting the factor values to the same values as in 
the reference circuit. The equivalence class of 
signature-invariant circuits is in fact a randomized 
problem (benchmark) set of statistical size generated 
in a specific way for a given combination of the 
factors’ values defined by the reference circuit. This 
shows that their proposal is indeed a specific kind of 
the statistical factorial design. Moreover, Brglez and 
his collaborators stressed that: “Random graphs, a 
potentially unlimited source of benchmarks, have 
not been accepted as realistic circuit benchmarks. 
Mutants, as defined here, are not random net-lists”. 

Although their proposal was a step in a good 
direction, it did not ultimately solve the problems of 
benchmark set representativeness and of unbiased 
result processing for sets of signature invariant 
classes. In particular, it did not address the problems 
of high and uniform coverage of different possible 
combinations of the factor values by the reference 
circuits, necessary to guarantee a high benchmark set 
representativeness and unbiased result analysis and 
evaluation. Moreover, their results are limited to 
combinational circuits and they did not provide any 
hints that could suggest if or how their results could 
be used for sequential circuits. Our factorial design 
based benchmarking method and FSM benchmark 
generation tool presented in this paper resolve these 
problems. 

In the area of heuristic methods and algorithms, 
the proposal to adapt the statistical design of 
experiments approach for the algorithm 
benchmarking and analysis was relatively well 
received. In the successive years this resulted in 
several papers which further researched and 
explained this approach or reported its use. Since 
this paper is devoted to benchmarking in digital 
circuit design automation, and we will not make any 
extensive discussion of the algorithm 
experimentation bibliography, but we would like to 
recommend several relatively general papers from 
the area of algorithm experimentation supplementing 
the material presented in this paper.  McGeoch 
[36][37], Johnson [25] and Moret [38] give some 
general advice and tips related to the 
experimentation with algorithms and/or reporting the 
experimental results. Coffin at al. [11] discuss some 
statistical concepts relevant to analysis of tests 
related to algorithms and heuristics. General 
information on design of experiments in other areas 
can be found in [4][9]. 

Unfortunately, in the EDA field not many 
researchers and practitioners followed the proposal 
to adapt the statistical experimental design approach 
to the benchmarking. Some of the few follow-up 

developments were the following. In the late 1990s, 
we implemented our combinational circuit 
specification generator based on the factorial design 
approach, and used it for benchmarking related to 
our new information-driven approach to digital 
circuit synthesis [29][30]. Since the principles on 
which this combinational circuit specification 
generator is based constitute a subset of the 
principles used to develop the FSM benchmark 
generator reported in this paper, we will not further 
comment on it in this paper. S. Davidson and J. 
Harlow edited a Special Issue on Benchmarking for 
Design and Test of the IEEE Design and Test of 
Computers [13], in which amongst others, a short 
paper by Brglez was included that informally 
discusses the statistical design of experiments 
approach to CAD benchmarking [5]. Brglez and his 
collaborators used this approach later to some other 
EDA related problems, as e.g. design of experiments 
and evaluation of BDD ordering heuristics [18] and 
SAT algorithms [7][8] . In their research related to 
BDD ordering heuristics [18] they focused on 
logically equivalent isomorphism classes consisting 
of circuits that are logically identical and graph 
isomorphic instances of a reference circuit. To 
illustrate some major drawbacks of the traditional 
benchmarking approach in EDA that uses some 
relatively small collections of isolated, unrelated, not 
well characterized benchmarks, as e.g. the well 
known ISCAS or MCNC benchmark sets [17], they 
selected some specific isolated instances from the 
isomorphic classes and demonstrated that: “specific, 
isolated instances randomly selected from an 
isomorphic class cannot characterize the 
performance of an algorithm”. They concluded that: 
“Without examining statistically meaningful 
samples of such populations, any reported results on 
the benchmark sets are subject to large, unknown 
random variability.” This means that many 
differences in results and related “improvements” 
reported using the traditional benchmarking 
approach may be due to a chance related to 
benchmark selection and/or result processing, and 
not due to any actual differences in the methods, 
algorithms or tools tested. They also wrote: “… the 
principles of experimental design … are generally 
applicable over a wide range of CAD tasks, but the 
particulars of the experiments will vary, depending 
on the problem domain” and “… sequential circuit 
applications are different, and will require 
appropriate treatments … and experimental designs 
which will differ from those presented here”. 

Similarly to the works of Brglez and his 
collaborators, our research presented in this paper is 
devoted to benchmarking in digital circuit design 
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automation based on the design of experiments 
approach. However, our work in its general part is 
focused on the problems of a high benchmark set 
representativeness and unbiased result processing, 
and in its specific part on sequential circuit 
benchmarking. Our research and its results are thus 
different and complementary to those of Brglez and 
his collaborators. 
 
 
4 Motivation of our research and 
development of an FSM benchmark 
generator for experimental design 
based benchmarking 
Several recent papers reported that the available 
digital circuit synthesis tools are not effective for 
many important classes of circuits (see a. o. 
[12][30][32]). Moreover, due to the recent rapid 
progress in the microelectronic CMOS technologies, 
both the importance relationships among various 
circuit characteristics changed (e.g. the interconnects 
being of secondary importance in the past have now 
a dominating influence on the important circuit 
characteristics, the static power being negligible in 
the past technologies is becoming dominating in the 
modern nano-dimension CMOS technologies), and 
the multi-objective circuit optimization and tradeoff 
exploitation became much more important. Due to 
those changes and several other issues, the available 
circuit synthesis tools do not well address the needs 
of circuit synthesis for the modern nano CMOS 
technologies. Consequently, a new generation of 
more adequate circuit synthesis methods and tools is 
necessary. 

Unfortunately, the proliferation and absorption of 
the statistical experimental design approach in the 
EDA field is weak. The industry and most of the 
researchers and developers in EDA field still 
typically apply the traditional benchmarking 
approach, using relatively small sets of isolated, 
unrelated, unsystematically collected and not 
characterized benchmarks, and inadequately 
processing the benchmarking results. In 
consequence, many quality issues and inefficiencies 
of the circuit synthesis methods and tools remain not 
revealed. This masks the actual problems and has a 
restraining effect on innovations. It makes an 
adequate evaluation of innovations impossible, and 
disables or delays their actual industrial take-up and 
exploitation. It also makes it difficult for the design 
method and tool users to decide which of the 
available alternative methods and tools best suit 
their particular needs. In consequence, it disables or 
delays progress. The critical importance of an 

adequate benchmarking for the progress in the EDA 
methods and tools, and in the digital system area, 
confronted with the weak proliferation and 
absorption in the EDA field of the more adequate 
statistical experimental design approach to 
benchmarking, motivated us to publish this paper.  

In addition to the weak proliferation and 
absorption of the statistical experimental design 
approach in the EDA field, several other important 
factors motivated us to perform research in the 
experimental design based benchmarking and to 
develop and implement the FSM benchmark 
generator BenGen, including the following: 
- actual need to use this approach in our own 

research related to the analysis and evaluation of 
our new information-driven methodology to 
digital circuit synthesis,\ 

- inadequacy of the standard MCNC FSM 
benchmark set [17], 

- problems with the actual industrial FSM 
benchmarks, and 

- lack of any FSM benchmark generator, 
According to our knowledge BenGen is the first and 
the only FSM benchmark generator on which any 
information has been published. It is described in 
one of the successive sections of this paper. 

Similarly to the above discussed design of 
experiments methods in EDA of Brglez and his 
collaborators, our FSM benchmark generator is 
based on the principles of the statistical factorial 
design. However, the actual implementation of the 
statistical factorial design approach in our FSM 
benchmark generator very much differs from the 
methods of Brglez and his collaborators. First of all, 
the benchmarks from our generator represent the 
sequential circuit specifications and not the 
combinational circuit specifications. Differently than 
in their methods, the benchmarks from our FSM 
benchmark generator that belong to a particular 
benchmark equivalence class are not limited to only 
some mutants of a known practical design or 
logically identical circuits. In our method a 
benchmark class is defined by a particular 
combination of the factors’ value subsets. 
Benchmarks of a certain class are basically 
generated by our generator through deciding the 
value subsets for each particular factor (representing 
e.g. a certain size level, function type or structure 
type), and subsequent random generation of a 
benchmark set of a statistical size for the selected 
combination of the factors’ value subsets. This 
includes, but only as special cases, the possibility to 
generate benchmarks as mutants of a given practical 
FSM specification or sets of logically identical FSM 
specifications. The realistic character of the 
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generated FSM benchmarks is basically ensured not 
through a direct mutation of particular practical 
benchmarks, but through the covering of the 
function types, structure types, size levels and other 
characteristics of the benchmarks encountered in 
practice through the characteristics of the generated 
benchmarks. Our FSM benchmark generator enables 
an efficient, flexible generation of a different 
number of benchmark equivalence classes and 
different number of benchmarks in each class, 
dependent on the precision requirements of a 
particular experiment, as well as on the computation 
resource and experiment time limitations. 

Our FSM benchmark generator also much differs 
from the sequential circuit generator by M. Hutton 
and his collaborators [23][24]. Their sequential 
circuit generator has been constructed through an 
extension of their earlier combinational circuit 
generator [22] that generates structural 
combinational net-lists with a specific size defined 
by the number of edges and I/Os, a specific shape, 
and given edge length, fan-out and re-convergence 
distributions. Their sequential circuit generator 
generates structural net-lists of binary sequential 
circuits, where a sequential circuit is defined by 
them as “a hierarchy of two or more combinational 
circuits connected by “flip-flop-edges (FF-edges) 
and “back-edges””. Consequently, their generator 
produces specifications of binary sequential circuit 
structures as are obtained after the sequential and 
combinational synthesis of FSMs. On the contrary, 
our FSM benchmark generator BenGen generates 
just the original symbolic FSM specifications, as 
constructed by human designers or behavioral 
synthesis tools, and being input to the successive 
sequential and combinational logic synthesis. Their 
binary sequential benchmarks are unable to directly 
serve several purposes to which our symbolic FSM 
benchmarks can serve, and are unable to 
accommodate several important features that our 
FSM benchmarks can accommodate. For instance, 
their binary benchmarks cannot directly be used as 
input to all the “symbolic” tasks of sequential 
synthesis, as e.g. FSM decomposition, state 
assignment, state minimization, etc., while our 
symbolic FSM benchmarks represent the natural 
input for these tasks. After binary state encoding, our 
FSM benchmarks can be directly used as an input to 
combinational synthesis, while the Hutton’s binary 
circuit structures have to be first reverse-engineered 
before their corresponding next-state and output 
functions could be used as an input to combinational 
synthesis. Finally, the binary circuit structures 
resulting from sequential and combinational 
synthesis of our FSM benchmarks can directly be 

used for the same purposes as their binary net-lists 
of sequential circuits. While their sequential circuit 
benchmarks represent just particular binary circuit 
structures corresponding to completely specified 
binary next-state and output functions of sequential 
circuits with exclusively 2k states (where k is a 
number of flip-flops), our FSM benchmark generator 
enables construction of completely, incompletely 
and weakly specified FSMs with any given number 
of states. These are of course only some of the major 
differences. More information on the specifics of our 
FSM benchmark generator can be found in one of 
the successive sections of this paper devoted to it. 
 
 
5   Benchmark set quality 
As discussed in previous sections, the value of the 
experiments with benchmarks and conclusions 
drawn heavily depend on: 
- the quality of the benchmark set used; 
- the adequacy of the experimentation process; and 
- the adequacy of the experimental result analysis. 
Since these are three main aspects of one whole 
being an adequate benchmarking, they are 
interrelated. In this section, we focus on the first 
problem, but in combination with the third one, i.e. 
on an adequate construction of a benchmark set to 
ensure high-value conclusions, and specifically 
meaningful averages and other results of statistical 
analysis. 

To enable true and reliable conclusions, the 
benchmark set must be representative. However, 
many different aspects and their complex 
interrelationships are hidden under this notion of 
being representative, including the following: 
- the benchmark set must include design 

specifications identical or similar to the typical 
specifications of practical designs for all 
substantially different functions and their various 
relevant characteristics, from all diverse 
application fields for which the use of the 
benchmarked method or tool is predicted; 

- the values of all important characteristics of all 
benchmarks of the benchmark set must be 
known; 

- the benchmark set should include characteristic 
design specifications for all various benchmark 
classes defined by all possible combinations of 
the benchmarks’ important characteristics; 

- each benchmark class defined by a certain value 
combination of the benchmarks’ important 
characteristics should contain a statistically 
meaningful number of benchmarks, and should 
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be constructed using an unbiased random 
generation or selection of benchmarks;  

- the distribution of the benchmarks from the 
benchmark set among the various benchmark 
classes defined by all possible combinations of 
the benchmarks’ important characteristics must 
be (close to) uniform or if not (close to) uniform 
then known and taken into account by the 
statistical processing of the benchmarking results, 
to enable any useful and reliable conclusions 
from the statistical processing. 

Satisfaction of the first three of the above conditions 
is necessary to ensure an adequate representativeness 
of the benchmark set to practice, so that it well 
accounts for the real-world designs, and 
consequently, the benchmarking conclusions will be 
relevant for practice. Satisfaction of the second 
condition and of the two final conditions is required 
to ensure an adequate structure of the benchmark set 
for the meaningful statistical processing of the 
experimental data. Assuming the usage of the 
statistical factorial design approach, the values of all 
important primary benchmark characteristics 
(factors) must be known. To offset unaccounted 
(secondary) factors and enable a meaningful 
statistical processing of benchmarking results within 
each benchmark class, the principles of test 
replication and randomization have to be used. To 
enable unbiased averaging over results from 
different classes, the distribution of the benchmarks 
among the various benchmark classes must be (close 
to) uniform or if not (close to) uniform then known 
and taken into account by the statistical processing. 

In benchmarking experiments particular results 
for particular benchmark instances are directly 
measured and expressed through some measures 
related to selected effectiveness and efficiency 
aspects. In the field of electronic design and its 
automation, we are however interested not only in 
the fact how a particular method or tool behaved on 
a particular design, but we are interested as well in 
how it behaves in general or for a particular class of 
designs, or we are trying to predict how it will 
behave for some future designs. To answer questions 
of this kind, we often compute averages or other 
statistics. 

However, averaging of particular results over a 
subset of benchmark instances or computing of any 
other statistics corresponds to computation of a 
certain function defined by the statistics. Since any 
function not being a one-to-one function involves 
abstraction, i.e. loss of information compared to 
information contained in its input data, averaging or 
computation of any other statistics over a nontrivial 
sub-set of benchmark instances always involves 

abstraction, i.e. loss of information. This means that 
an average and other statistics are from their nature 
unable to faithfully reflect the behaviour of a method 
or tool on individual benchmark instances. Each 
statistic only represents a particular abstraction from 
a combination of behaviours on individual instances. 
From this it should be clear that value of an average 
or other statistics very much depends on the 
selection of the individual instances over which the 
average or other statistics is computed. Thus, to 
obtain meaningful and useful information from a 
statistic, both the statistic itself has to be adequately 
selected to well reflect the actual aim of its use, and 
the benchmark sub-sets on which the statistic is 
computed have to be properly constructed. 

In parallel to the representativeness of the 
benchmark set to practice, the proper benchmark 
sub-set construction includes such aspects as: 
- ways of grouping benchmarks into classes, 
- class granularity (generality/specifics), 
- class size, and 
- construction of particular classes and proportions 

between the classes to avoid bias towards specific 
groups of benchmarks. 

These aspects decide, correspondingly, which sort of 
conclusions, as well as, how precise 
(general/specific), how statistically correct, and how 
unbiased conclusions can be drawn from the 
benchmarking experiments using a given benchmark 
set. 

In consequence, it is not easy to construct a 
representative benchmark set that is strongly related 
to practice, actually addresses the issues of interest 
and enables true and reliable conclusions. Also, 
“representative” does not designate just a single 
point, but a degree. Different benchmark sets are 
representative to various degrees, and the quality and 
reliability of the conclusions obtained from the 
experimental research using the benchmarks 
increase with the degree. 

We had an opportunity to work with several 
industrial circuit synthesis benchmark sets from 8 
different system houses and EDA companies, 
involving from tenths to more than a thousand of 
circuits. Unfortunately, none of them was well 
representative. Most of them represented some ad 
hoc collections of non-characterized benchmarks 
with very irregular coverage of different circuit sub-
classes. Also the standard circuit synthesis 
benchmarks commonly used by researchers are not 
representative enough. Moreover, there are several 
serious problems related to the use of practical 
industrial benchmarks: 
- the industry does not want to make their 

benchmarks accessible, motivating that these are 
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their or their clients’ important designs, and thus 
they cannot be disclosed; 

- having even a large set of the actual industrial 
circuit specifications it is difficult to see how 
large and divergent parts of the actual circuit 
space do they cover: are the circuits very 
different or almost the same; do they cover the 
circuit space regularly or are just cumulated in 
some particular regions; what are their 
characteristics? 

- to be representative the industrial benchmarks 
have to involve very different functions typical to 
diverse application fields; they have thus to be 
collected from many industrial partners, but this 
results in a multitude of their formats, standards 
and/or representations. 

It should be stressed that the use of a non-
characterized or non-representative set of (industrial) 
benchmarks to research, compare or evaluate the 
synthesis methods or tools can very easily lead to 
completely wrong conclusions. In particular, even a 
large set of non-characterized benchmarks used may 
only include very similar or trivial benchmarks. 
Consequently, from the fact that a method or tool 
worked excellently for all of them one cannot 
conclude that it will work reasonably for another, 
but different and non-trivial, benchmark. In the last 
part of the paper, various cases of non-representative 
benchmark sets will be discussed and illustrated with 
experimental results. 

To resolve the serious problems related to the use 
of practical industrial benchmarks in research, 
comparison and evaluation of the electronic design 
automation methods and tools, we proposed to use 
the representative sets of generated benchmarks. The 
term representative benchmark set is used here in 
the sense discussed above in this section, and covers 
both being representative to practice and adequate 
for the statistical benchmarking result processing. Of 
course, some mixed benchmark sets involving both 
some practical industrial benchmarks (if available) 
and generated benchmarks may also be used. In this 
case however, the available industrial benchmarks 
have first to be characterized, and knowing their 
characteristics, the remaining benchmarks have to be 
carefully generated to complete the (in most cases 
not representative) industrial benchmark sub-set into 
a representative benchmark set. Additionally, to 
satisfy the requirements of the unbiased random 
construction of the benchmark subsets representing 
particular benchmark classes and uniform 
benchmark distribution among the classes, some of 
the industrial benchmarks may have to be removed, 
if they are identical or very similar to some other 
benchmarks. 

Benchmarks are particular instances of objects 
considered to be processed by a particular design 
method or tool. To characterize benchmarks or to 
generate benchmarks with particular characteristics, 
it is first necessary to find a set of all the relevant 
characteristic features of the objects considered to be 
processed, i.e. all such characteristic object attributes 
that changes in their values may substantially 
influence the processing effectiveness or efficiency 
of the methods or tools to be analysed. Each 
particular object (benchmark) can then be 
characterized by a particular vector of its attribute 
values. For instance, in the case of a circuit, the 
number of inputs, the number of outputs, the type of 
function to be implemented etc. may represent such 
characteristic attributes. Different ranges of the 
attribute values and their various possible 
combinations define the object sub-classes. To be 
representative, a benchmark set has to include a 
large enough unbiased selection of benchmark 
instances in each particular class, and uniformly 
cover all the sub-classes. If the benchmark 
distribution among the sub-classes is not (close to) 
uniform then it must be known and taken into 
account by the statistical processing of the 
benchmarking results to enable drawing of any 
useful and reliable conclusions from the statistical 
processing. It is of course possible to distinguish the 
ranges of the attribute values with lower or higher 
precision, which results in a smaller or larger 
number of the corresponding object sub-classes, and 
in a lower or higher benchmarking precision, 
correspondingly. 

Since the number of different object sub-classes 
defined by the number of various attribute ranges 
combinations may be very high, and each of the sub-
classes must be covered by a sufficient number of 
benchmarks, the representative sets of benchmarks 
may easily involve hundreds or thousands of 
benchmarks of various sizes and with various 
features. Moreover, to efficiently perform sensitivity 
analysis of EDA methods and tools to changes in the 
benchmark characteristics, it must be possible to 
quickly perform the corresponding changes in 
benchmarks. To perform the complex benchmark 
preparation efficiently, the benchmark generation 
process has to be automated. 

To resolve the serious problems related to the 
benchmark set quality and use of practical industrial 
benchmarks in research, comparison and evaluation 
of circuit synthesis methods, we developed and 
implemented sequential and combinational circuit 
benchmark generators that make it possible for us to 
efficiently construct well-characterized circuit 
specifications with various characteristics, including 
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circuit specifications representative to various 
typical industrial application areas. These 
benchmark generators greatly reduce the necessity of 
having the actual industrial benchmarks, and enable 
research, comparison, evaluation and fine-tuning of 
circuit synthesis methods and tools largely 
independent of the industry, and much better than 
having only some industrial benchmarks. One of 
them is the Final State Machine (FSM) Benchmark 
Generator BenGen. In this paper, we use some 
results of our experimental research that involved 
large sets of diverse benchmarks generated with 
BenGen and a number of sequential circuit synthesis 
methods implemented in the contemporary EDA-
tools to illustrate several crucial problems of 
benchmarking and demonstrate how to solve them. 
 
 
6   FSM benchmark generator BenGen  
Several factors explained in the previous sections 
motivated us to perform research in the experimental 
design based benchmarking and to develop and 
implement the FSM benchmark generator BenGen. 

FSMs are commonly used for specification and 
development of sequential circuits and control-
dominated systems. 
 
A sequential machine/finite state machine (FSM) 
M = (I, S, O, δ, λ) is an algebraic system, 
with:  
I - a finite nonempty set of inputs, 
S - a finite nonempty set of internal states, 

 
O - a finite set of outputs,  
δ - the next-state function: δ: S x I → S, 
λ - the output function:  
λ: S x I → O (a Mealy machine), or 
λ: S → O (a Moore machine). 

 
An FSM can be represented in the form of a state 
transition table or state transition graph, where the 
transitions between states correspond to the 
computations defined by the next-state function δ. 

Our FSM benchmark generator BenGen 
constructs the sequential circuit specifications 
originally in the form of state transition graphs. The 
state transition graphs are directly translated into the 
corresponding tabular form in KISS format used for 
the MCNC sequential benchmark set [17] and the 
corresponding Verilog representation. No 
restructuring is performed during this translation, 
and there is a one-to-one correspondence among 
these three FSM benchmark representations. 

Benchmark set generation with BenGen is based 
on the principles of the statistical factorial design. 
The first author of this paper, which has more than 
thirty years of experience in digital circuit and 
system design, and EDA, analyzed several thousands 
of FSMs from various application areas and serving 
various purposes, like e.g. controllers, protocol 
machines, or sequential data-path circuits. He 
observed that all the analysed FSMs involve various 
combinations of several basic state-transition 
patterns, and their next-state and output functions 
can be quite well reconstructed using various 
combinations of several reasonably simple basic 
function generation rules. He generalized and 
parameterized the basic state-transition patterns, 
function generation rules, and several FSM 
characteristics (e.g. the number of inputs, outputs, 
states, transitions). In this way, he constructed a set 
of factors that represent several main FSM 
characteristics related to e.g. a function type, 
structure type, size characteristics, proportions, etc., 
so that a particular combination of their 
corresponding values almost completely (but in most 
cases not completely) defines a particular FSM. This 
means in fact that a particular combination of the 
factor values defines a quite narrow FSM class, in 
which all FSMs have the same controlled 
characteristics. The remaining FSM construction 
freedom can be exploited by random generation. 
Based on these principles the first author of this 
paper designed the FSM benchmark generator 
BenGen that for a particular combination of the 
controlled factor values constructs a corresponding 
class of FSMs through instantiating a corresponding 
combination of the FSM basic elements (i.e. the sets 
of inputs, states, outputs and transitions of the 
required dimensions), basic state-transition patterns 
(each involving a corresponding number of states 
and branches), basic next-state and output function 
generation rules, etc., and exploiting the remaining 
FSM construction freedom by random generation. 

The benchmark instances form BenGen are thus 
not random, but have a clear structure and are only 
randomized within the framework of this structure. 
They represent some test cases that resemble the 
actual real-world cases, but are randomized within 
each specific (small) class. This way the FSM 
benchmarks can be generated that have the same or 
similar values of the controlled factors as the 
practical industrial FSMs, and consequently, quite 
closely resemble the practical FSMs. Moreover, the 
generated FSMs can be easily modified to even more 
closely mimic practical FSMs or more precisely 
research particular features. 
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BenGen was subsequently implemented by the 
authors of this paper and used by them to generate 
large benchmark sets exploited in numerous 
experiments related to the FSM design method and 
tool analysis, testing and benchmarking. Some of the 
benchmark sets from BenGen are also used by other 
research groups in several countries. 

From the above it can be concluded that building 
a satisfactory benchmark generator that enables a 
high representativeness of the generated benchmarks 
is a difficult task that involves an extensive analysis 
of a large number of divergent industrial 
benchmarks by an experienced designer, 
generalization of the analysis results, as well as an 
actual development of a generator based on the 
generalized and parameterized basic patterns, 
generation rules and structural characteristics. Such 
a generator however can then serve many 
researchers and developers, as well as various 
experimental analysis tasks. 

BenGen allows us to efficiently construct FSMs 
with various characteristics. This includes FSMs 
having: 
- different number of states and various transition 

patterns between the states (e.g. chains of states 
with forward and/or backward transitions, loops, 
conditional “case” structures etc. and their 
combinations); 

- different numbers of inputs and outputs, and 
different proportions between the next-state and 
output logic (state-dominated, balanced or 
output-dominated), as well as between the 
primary-input and state-input (input-dominated, 
balanced, state-dominated), and their mixtures; 

- various dependences of particular transitions and 
output variables on the number of inputs and 
input conditions; 

- completely, incompletely and weakly specified 
next-state and/or output functions. 

The possibility to generate FSMs covers the FSMs 
representative to various typical industrial 
application areas, for instance having typical 
structure of controllers or protocol machines from 
various application areas, or representing various 
sequential data-path circuits. BenGen gives us an 
efficient FSM construction, but also modification of 
the constructed or industrial FSMs, and very precise 
“fine-tuning”.  This last feature is very useful in the 
sensitivity analysis of EDA methods and tools to the 
changes in their input data, i.e. changes in the FSM 
characteristics. 

FSM benchmarks from BenGen enable us to do 
the following: 
- analysis of a wide spectrum of design cases and 

problems related to the FSM architecture and 

logic synthesis, in the space spanned by various 
FSM functions, structures and different 
implementation options, and in the light of 
various optimization constraints and objectives; 

- thorough and very precise testing of EDA 
methods and tools; 

- extensive research and precise characterization of 
EDA methods and tools regarding their 
performance and robustness in relation to FSMs 
with various known characteristics; 

- very precise sensitivity analysis of EDA methods 
and tools to changes in the FSM characteristics; 

- reliable comparison and quality evaluation of 
different EDA methods and tools in relation to 
various FSM classes 

From the above it can be concluded that BenGen 
allows us to effectively and efficiently perform 
many benchmarking tasks that would be very 
difficult to be well performed without a benchmark 
generator or having only a set of practical industrial 
benchmarks. 

Although we took a lot of care to ensure that the 
generated benchmarks have characteristics very 
similar to practical industrial benchmarks from many 
application areas, we are unable to guarantee that the 
generated benchmark sets cover each specific FSM 
type. Therefore, the industrial benchmarks can still 
be useful to ensure that the FSM types represented 
by them are actually covered by the generated 
benchmarks, and to perform some final confirmation 
checks. Another possibility is a mixed use of the 
generated and practical industrial benchmarks. As 
described in the previous section, a particular 
benchmark class is not required to contain only 
generated benchmarks, but some available and 
characterized industrial benchmarks can be included 
into the class instead of the corresponding generated 
benchmarks. The generated benchmarks are thus not 
expected to completely eliminate the need of using 
of some industrial benchmarks. It is however also 
not expected that practical industrial benchmarks can 
eliminate the need of using generated benchmarks. 
Even if one would be able to form a large collection 
of divergent industrial benchmarks (which is a 
difficult task) then the probability is very low that 
the benchmarks would to a sufficiently high degree 
and uniformly cover all the different circuit classes. 
Consequently, after the characterisation and 
selection of a subset of suitable industrial 
benchmarks, adequate generated benchmarks would 
be required to supplement the industrial benchmarks. 
Moreover, the generated benchmarks would be 
extremely difficult to replace in the tasks of 
thorough and precise testing, research, 
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characterization and sensitivity analysis of EDA 
methods and tools. 

BenGen has two work modes: batch and 
interactive mode. In the batch mode, the parameters 
of the FSM to generate are supplied in a script file. 
These parameters include: 
- the number of the FSM’s branches; 
- the branch characteristics, such as the branch start 

and end state, the number of states in the branch, 
the percentage of backward transitions and the 
percentage of loops in the branch; 

- the number of inputs and outputs of the FSM; 
- the number of inputs active for transitions from a 

given state or in a given branch; 
- the output type (Mealy or Moore); 
- the number of outputs active in a given state, for 

transitions from a given state or in a given 
branch; 

- the percentage of “don’t cares” in the next-state 
and/or output function; 

- the percentage of “0s” to “1s” in the outputs. 
Most of these parameters can be specified both as 
concrete values and in the form of a probability 
distribution to randomize their values in the specific 
instances of the generated FSMs. As a result, in the 
batch mode BenGen can be used to easily generate 
large sets of FSM benchmarks with similar 
characteristics using the same script file. The script 
file can be easily modified to generate a next batch 
of different FSMs. The interactive mode of BenGen 
provides more control over the generation process. 
The user can interactively enter any of the 
parameters available in the batch mode. 
Additionally, operations allowing modifications of 
single branches and transitions are provided. The 
interactive mode BenGen is especially useful for 
fine-tuning of the generated or industrial FSMs to 
possess some very specific characteristics, required 
for instance to analyze the behaviour or sensitivity of 
a method or tool in relation to a certain aspect. 

In both modes, BenGen organizes the benchmark 
construction process and takes away the burden of 
tedious specification of single transitions, or 
checking the consistency of the constructed FSMs. 
Instead, the user can focus on specifying the 
required high-level FSM’s characteristics. In this 
specification process, the user is guided by BenGen, 
being asked several questions, whose answers 
combined by BenGen result in the required high-
level FSM specification. Having the specification of 
the required controlled FSM’s characteristics 
BenGen generates the corresponding state chains, 
with the requested number of states, and appropriate 
backward transitions between and self-loops in the 
states, if needed. Given the state-transition behaviour 

defined in abstract terms, BenGen generates the 
input conditions for particular transitions, etc. In this 
process not only does it consider user’s requirements 
concerning the active inputs for transitions from a 
given state or for a given branch, but also ascertains 
that the machine is consistent, i.e. distinct transitions 
have disjoint input conditions and all possible input 
conditions are specified (for completely specified 
FSMs). The generator also determines the output 
values, taking into account the outputs active for a 
given state, for transitions from a given state or for a 
given branch, as well as the percentage of “don’t 
cares” and percentage of “1s” to “0s”. With the 
above characteristics, BenGen allows a very 
efficient generation of large sets of various sorts of 
well-characterized FSM benchmarks, with a 
minimized effort of the user. On the other hand, it 
also enables fine-grained control over the generation 
process and editing of the generated or industrial 
FSMs. The generation time on a PC is negligible for 
small FSMs and is in the order of tenths of minutes 
for complex FSMs with tenths of inputs and outputs 
and thousands of transitions. This is however a 
nonrecurring cost, related moreover to the time of a 
computer and not of a human designer. 

Currently, BenGen is extensively used in our 
research related to the analysis of design problems 
and use of various EDA methods and tools for the 
multi-objective optimal circuit synthesis targeted to 
modern FPGAs and re-configurable SoC platforms. 
In particular, we used large sets of diverse 
benchmarks generated with BenGen to perform an 
analysis of problems related to the quality of the 
contemporary commercial and academic methods 
and tools for the FPGA-targeted FSM state 
assignment. A part of the experimental results from 
this research is used in the following sections of this 
paper to discuss and illustrate several crucial 
problems of benchmarking and demonstrate how to 
resolve them. More information on BenGen can be 
found in [32]. 
 
 
7   Sequential circuit synthesis 
With the contemporary synthesis flows for FPGAs, 
the sequential circuit synthesis process from the 
RTL-level FSM specification to its actual circuit 
implementation is very simple, and consists of the 
two following main sub-processes: 
- assignment of a binary representation for the 

FSM’s symbolic internal states, and 
- synthesis of the FSM’s combinational binary-

logic component that results from the state 
assignment. 
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As shown it in the successive sections of this paper, 
the FSM state assignment methods used in the 
contemporary commercial FPGA-targeted circuit 
synthesis tools are very simplistic what is a reason of 
inferior results. In the sequel, we will use the 
benchmarking of the FSM state assignment 
techniques to illustrate and discuss several major 
benchmarking issues and their solutions, but the 
quality of the assignment results will be estimated 
by performing combinational component synthesis 
and getting the corresponding area, delay and power 
related data after the circuit placement and routing 
(P&R). 

Hardware implementation of an FSM requires 
two sorts of components: combinational logic 
(implementing the binary representation of the next-
state function δ and output function λ), and binary 
memory elements (implementing the state memory). 
As opposed to inputs and outputs of an FSM, which 
represent some external-world signals that are 
usually binary already in the initial FSM 
specification (i.e. pre-assigned), the internal states 
are initially in a symbolic form in most cases. To 
construct a binary logic circuit implementing an 
FSM having symbolic states, every symbolic state 
has to be implemented with a corresponding 
combination of values of the binary memory 
elements (e.g. flip-flops). The choice of binary codes 
for the FSM’s symbolic states finally decides the 
binary-level next-state function, output function and 
state memory of the FSM circuit implementation, 
and in consequence greatly affects all the main 
characteristics (e.g. area, speed, power dissipation) 
of the circuit implementation. An optimal FSM state 
assignment consists in choosing an appropriate 
binary representation for the FSM’s symbolic 
internal states, so that the resulting binary logic is 
optimal for specific objectives. Finding an optimal 
or close to optimal assignment often creates a 
significant advantage, but is computationally 
complex (NP-hard) [16][26][27]. In a strict sense, it 
has never been solved, except for exhaustive search 
that is impractical or impossible for larger machines. 
Therefore, approximate heuristic assignment 
approaches have to be used that are able to find high 
quality assignments using reasonable computation 
resources. One of the basic requirements for the use 
of heuristic methods in practical applications of 
circuit synthesis is their robustness, in the sense of 
steadily delivering high-quality solutions in the whole 
range of possible input data. 

The heuristic state assignment approaches can 
be subdivided into three main categories: 
- structural (constructive) approaches, that 

construct (near-)optimal assignments using some 

knowledge on the internal structure of an FSM 
(the representatives of this category are SECODE 
[31][39], Jedi[34] and MAXAD[27]); 

- statistical (generative) approaches that generate 
and check the assignments, but do not use any 
information about the internal structure of a 
sequential machine (e.g. genetic algorithms 
[1][10] and the best-random approach that 
consists in choosing the best from n randomly 
generated assignments); and 

- pragmatic approach, commonly used in today’s 
commercial tools for FPGAs, that consists in 
applying an assignment that is “known” as 
possessing some “nice” properties; most often 
used encoding methods in this category are: one-
hot, Gray and natural binary encoding. 

 
 
8   Benchmarking result evaluation 
The quality of benchmarking results from a 
particular method or tool can be analyzed, 
characterized, evaluated or compared in relation to 
the results from some other methods or tools for the 
same aim, or in relation to the optimal results. In 
sections 3 and 4 we explained how to construct a 
benchmark set that will ensure the adequacy of the 
statistical experimental design analysis, and 
particularly, correct and meaningful averages and 
other statistical parameters. Such a benchmark set 
enables correct and meaningful comparison of 
methods or tools to some other methods or tools. Let 
us now focus on benchmark result comparison to the 
optimal results. 

Due to the computational complexity of many 
electronic design automation problems, the strictly 
optimal solutions remain usually unknown. In 
particular this is the case of the state assignment for 
the most practical FSMs. Consequently, there are no 
reference points to which the results from a 
particular method or tool could be compared. Even if 
the result of one method or tool is better than from 
another, it is still unknown how bad (or good) both 
these results are. To resolve this problem, the first 
author of this paper proposed to compare the FSM 
state assignment result obtained for a particular 
benchmark from a particular method or tool to the 
assignment result distribution for this benchmark 
obtained by random assignment generation [26]. 
This solved in a way the problem of the 
benchmarking result analysis and evaluation. An 
extensive analysis of the state assignment solution 
space was presented by us in [26] and [27], and 
therefore only the most important considerations, 
definitions and conclusions are recalled here. 
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In [26] and [27], the first author of this paper 
demonstrated that the distribution of solutions for 
state assignment can be well estimated by a normal 
(Gaussian) distribution. For non-trivial FSMs, and 
especially for large ones, many factors influence the 
state assignment quality, but none of them is a 
deciding factor in separation. In this situation, that is 
typical to all natural or technical processes that show 
a normal distribution, there are many more 
constellations of factors that lead to medium value 
assignments than constellations that lead to very 
good or very bad assignments (arrangements of only 
the best or only the worst factors, correspondingly). 
Of course, for larger machines, on average, more 
factors decide an assignment's quality and there are 
more possible constellations of these factors, while 
each of them in isolation can decide less about the 
quality of the assignment. Therefore, the estimation 
of the distribution of solutions by the normal 
distribution is on average better for larger machines 
than for smaller ones. Very small machines may 
show substantial deviations from the normal 
distribution. Numerous examples of typical 
empirical distributions are given in [26][27]. It is 
important to notice that the benchmarking result 
analysis technique presented in this section is not 
limited to the FSM state assignment problem and 
methods of its solution. It can be used to any 
problem having a solution space that can be well 
modelled with a normal distribution, and to solution 
methods of such problems. 

A normal distribution N (m, σ) is 
defined as a distribution with the 
probability density function: 
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where: m - expected value; σ - mean square 
deviation. 

The cumulative distribution function 
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where: Φ(x) is an integral from the probability 
density function of the normalized Gaussian 
distribution N(0,1) in the integration range <0,x>. 
The values of Φ(x) are provided in tabular form in 
mathematical guides (also on the Internet). 

We must however remember that the 
random variable X describing the quality of 
a solution is a discrete variable. So, we 

must calculate P(X=Xi) as an integral from 
the probability density function f(x) in the 
integration range <Xi-0.5, Xi+0.5>: 
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To calculate the probability of a number of 
successes k in n random choices, the binominal 
distribution can be used: 

n
nn

knk
n

pSp
k
n

PSP

andpp
k
n

kSP

)1(1)0(1)0(

)1()(

−−==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=>

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== −

where: p – the probability of success for 
one random choice. 

For large instances of computationally complex 
problems (e.g. state assignment for large FSMs) a 
strictly optimal solution is relatively unknown. 
Consequently, it is virtually impossible to define the 
terms "good" or "suboptimal" in relation to the 
optimal solutions. Therefore, we proposed some 
probabilistic quality measures both for particular 
solutions and for solution methods that are based on 
the estimation of the solution distribution in the 
solution space with a normal distribution. With these 
measures, we compare the quality of a result for a 
particular benchmark (for instance of an assignment 
obtained for a particular FSM from a particular 
method) to the normal distribution of results 
(assignments) for this benchmark. In contrast to 
knowing or finding of a strictly optimal solution for 
a particular benchmark, one can always easily find 
the normal distribution of solutions for the 
benchmark. It can be simply realized through 
random generation of a statistically relevant number 
of solutions (e.g. 20) for a given benchmark, 
evaluation of their quality, and finding the 
parameters m and σ of the corresponding normal 
distribution from the experimental results or just 
drawing the graphical representation of the 
distribution from the experiment. The quality of a 
solution for a particular benchmark, and 
consequently, the quality of a particular method that 
constructed the solution, can be compared this way 
to the quality of solutions that can be obtained for 
the benchmark from random generation. The ideas 
behind this comparison are the following. If the 
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quality of a given solution is worse than the quality 
that can be on average obtained through the random 
solution generation (i.e. with the high probability of 
0.5) than this solution is bad, and consequently, the 
method which in most cases constructs such 
solutions is also bad (i.e. worse than the random 
generation). If, in contrast, the method consistently 
construct the solutions that are very difficult to be 
generated on random (i.e. the probability of their 
random generation is very low) than the method is 
actually a very good method. An extension, formal 
formulation and further discussion of these ideas are 
presented below. 

In the digital circuit design field the result quality 
is often measured through such attributes as the 
circuit area, delay or power consumption, and the 
result is better in relation to a particular attribute if 
the value of the attribute is lower. Therefore, in the 
definitions and discussions below we assumed that a 
lower attribute value means higher quality. Of 
course, in the opposite case all the definitions and 
discussions remains valid – only the inequality sign 
by the result quality comparison has to change its 
direction. 
 
Definition 1: A solution is good if, and only if, its 
quality XG is no worse than the average quality:  
XG  ≤  m (i.e. P (X ≤ XG) ≤ 0.5). 
 
In the opposite case (i.e. if X is worse than the 
average quality: X > m), a solution is bad. Thus, 
good means just no worse than the average one that 
can be obtained through random generation, or 
good means just not bad.  When XG is close to m 
then the corresponding assignment, although still 
good, is not much better than the best of the bad 
assignments. Due to the normal distribution of 
solutions and the characteristic features of its 
probability density function that has its maximum 
for X= m and is symmetrically decreasing in both 
directions with distance from m, the probability of 
randomly generating a good solution is high (0.5) 
and equal to the probability of randomly generating 
a bad solution. Thus, it is equally easy to randomly 
generate good and bad solutions, but the randomly 
generated solutions will be concentrated around the 
solution of the average quality m. Observe that it is 
difficult to randomly generate good or bad solutions 
whose quality is far from m. The probability of their 
random generation is very low, and decreases with 
the distance from m. However, our aim is to find 
some “as good as possible” solutions, and thus, 
some good solutions whose quality is as far as 
possible from m. Our aim is to find the solutions that 
can be considered as near-optimal or even of 

uniquely good quality, whose random generation 
probability is very or extremely low, 
correspondingly. The above observations motivated 
the following definitions. 
 
Definition 2: A solution is near-optimal if, and only 
if, the probability of randomly generating a solution 
with a quality X no worse than XN of the near-
optimal solution is not higher than 0.05 (P (X ≤ XN) 
≤ 0.05). 
 
Definition 3: A solution is unique if, and only if, the 
probability of randomly generating a solution with a 
quality X no worse than XU of the unique solution, is 
not higher than 0.005 (P (X ≤ XU) ≤ 0.005). 
 
To consistently find such good solutions that their 
quality is far from the average quality m, and 
consequently, their probability by random generation 
is very low, and particularly to consistently find the 
near-optimal or unique solutions, we cannot rely on 
random generation, but we must have a systematic 
method. The method will be of higher quality, if it 
will be able to consistently find better solutions, and 
thus less probable solutions. 
 
Definition 4:  A method is good (near-optimal, 
unique) if, and only if, it computes good (near-
optimal, unique) solutions in most cases. 
 
Since in the practical circuit and system design 
situations our aim is to find high-quality solutions 
that are (close to) the best possible solutions, only 
the unique or near-optimal methods are of practical 
value. For instance, the trivial random generation 
“method” is on the border between good and bad, is 
unable to find near-optimal or unique solutions in 
most cases, and therefore it is difficult to qualify it 
as an actual method. Also, it is difficult to qualify 
any solution finding activity as an actual method of a 
practical value, if it is only able to find good 
solutions, but is unable to find near-optimal or 
unique solutions in most cases, i.e. works in a 
comparable fashion to the random generation. 

It is important to notice that the probabilistic 
quality measures defined above are not limited to the 
FSM state assignment problem and methods of its 
solution. They can be used to any problem having a 
solution space that can be well modeled with a 
normal distribution, and to solution methods of such 
problems. 

Observe that due to the normal distribution of 
solutions, the solutions generated by the generative 
statistical assignments methods will be concentrated 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 302 Issue 4, Volume 7, April 2008



around the average quality assignments. For 
instance, it follows directly from the normal 
distribution that with ten random choices, the 
probability of obtaining a solution that is no worse 
than the average, is 0,999, but the probability of 
obtaining a near-optimal solution XN is 0,4012 (less 
than 0,5!) and the probability of obtaining a unique 
solution XU is only 0.0489. Thus, better than average 
assignments can be generated with high probability 
by statistical methods, but the probability of 
generating very good assignments is low, while 
generating unique assignments is very unlikely. In 
contrast, structural methods that construct 
assignments using relevant information on a given 
FSM, are able to construct near-optimal or even 
unique assignments with good probability 
[26][27][32][34][39]. Moreover, to find a very good 
solution, the generative algorithms usually need to 
evaluate tens or hundreds of solution generations, 
each composed of tens of solutions, through their 
time-consuming combinational synthesis. In 
consequence, the generative algorithms are orders of 
magnitude slower than the structural methods in 
delivering of comparable quality solutions. 
Therefore, they will not be considered further in this 
paper. 
 
 
9   Experimental research 
In our experiments reported in this paper, more than 
500 FSMs were used that exhibit various 
characteristics typical to FSMs encountered in 
different real-life applications. As more precisely 
described in Section 6, we identified a number of 
typical basic schemes of sequential behaviour 
present in a large number of real-life FSMs from 
various application areas, and generalized and 
parameterized the basic schemes and some other 
FSM characteristics. This way a set of factors has 
been constructed that represent several main FSM 
features. A particular combination of the factor 
values defines a quite narrow FSM class, in which 
all FSMs have the same controlled characteristics, 
but may differ on the remaining FSM construction 
freedom that is exploited by random generation. The 
corresponding FSM benchmark generation process 
implemented in BenGen has been used to generate 
benchmarks for the experiments. Since the number 
of different possible combinations of the controlled 
factor values is unlimited, because some of the 
factors (e.g. the number of states, inputs or outputs) 
are theoretically unlimited, we had to limit the 
benchmark generation process to the values that 
most often occur in practice. For example, in the 

experiments reported here, we did not consider 
FSMs having more than 200 states, because the 
FSMs specified by human designers or constructed 
by the behavioral synthesis tools have typically not 
so many states. Larger controllers and other 
sequential sub-systems are typically specified as a 
composition of smaller collaborating FSMs which 
are separately processed by EDA-tools. Observe 
please, that we are dealing here with the initial 
specifications of particular FSMs, and not with the 
final synthesized circuit net-lists of large systems 
after flattening of their originally modular and 
hierarchical representations. Even after limiting the 
factor values to those that most often occur in 
practice, the number of different possible 
combinations of the controlled factor values was too 
large to efficiently process a statistical number of 
FSM benchmarks for each such combination with all 
the involved circuit synthesis tools. To perform our 
experiments reasonably efficiently, when at the same 
time ensuring their acceptable quality, we first 
performed a coarse sensitivity analysis of the FSM 
synthesis results to changes in particular factors. The 
factors to which the results were less sensitive could 
be quantized more coarsely. This enabled us to 
replace the benchmark generation for all different 
possible combinations of the controlled factor values 
with the benchmark generation for a large number of 
different particular combinations of the controlled 
factor values, corresponding to a large number of the 
narrow FSM classes.  For each such narrow FSM 
class, we initially generated on random more than 40 
benchmarks (and totally more than 1000 
benchmarks), what was a satisfactory statistical 
number of benchmarks to have a very high 
confidence level for the statistical tests. However, it 
turned out that the experiments will still require a 
prohibitively long time taking into account the 
efficiency of the circuit synthesis tools used for the 
experiments. Therefore, we finally used in the 
experiments approximately 20 benchmarks for each 
narrow FSM class (and totally somewhat more than 
500 benchmarks), what is actually close to the 
lowest value of the statistical number of benchmarks 
that still ensures an acceptable confidence level, but 
enabled us to perform the experiments in a 
reasonable time. 

In the experiments, we researched several major 
benchmarking issues and effectiveness of several 
most representative industrial and academic methods 
for the FPGA-targeted sequential circuit synthesis. 
The experiments involved: 1-hot, Gray and natural 
binary encoding, that represent the pragmatic 
industrial assignment approaches prevalent in the 
contemporary commercial tools for FPGAs, and our 
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own FPGA-targeted FSM state assignment tool 
SECODE, in comparison to Jedi. JEDI and 
SECODE belong to the most advanced academic 
tools representing the constructive structural 
assignment approaches [29][34][39]. 

We performed the combinational synthesis of the 
encoded FSMs, as well as the placement and routing 
(P&R) of the synthesized circuits in the actual 
FPGA device performed with the tool of the FPGA 
vendor, and analyzed and compared the FSM 
encoding results after the synthesis and P&R. We 
analyzed and compared the results from each 
particular encoding method both in relation to the 
results from the other encoding methods (using JEDI 
as a reference method) and to the normal 
distributions of the encoding results for the 
particular benchmark FSMs. The main focus of this 
paper is on the benchmark set quality issues, and we 
can clearly demonstrate several of these issues when 
presenting the results from particular encoding 
methods in comparison to the results from JEDI. 
Moreover, the issues of analysis and comparison of 
the encoding results in relation to the normal 
distributions of the results for the particular 
benchmarks have been discussed in our previous 
papers [26][27][32]. Therefore, in this paper we 
included only some limited information on this 
useful approach mainly to enhance its proliferation, 
and to create a broader context and better 
understanding of the benchmarking related to the 
state assignment problem and similar complex 
problems in digital circuit design. 
 
 
10   Experimental results 
To compute the relative quality of a particular 
method on a particular benchmark in relation to 
JEDI, the values of each considered quality metric 
(area, delay or power-dissipation) were computed 
for each encoding by the commercial tool used for 
the experiments. Subsequently, for each benchmark, 
the percentage of difference in the value of each 
particular quality metrics for a particular encoding 
method M and JEDI (J) in relation to JEDI was 
computed according to the equation: 
 
QD(QM, M) = ((QM(M) – QM(J)) / QMmin(M, J)) * 
100% 
where: 
QD(QM, M) – the relative quality difference in % 
between a particular encoding method M and JEDI 
on a particular quality metrics QM, QM: area, delay 
or power-dissipation; 
QM(M) – the quality metrics value for the circuit 

resulting for a particular benchmark from a 
particular encoding method M, M: JEDI, SECODE, 
1-hot, Gray and natural binary encoding; 
QM(J) – the quality metrics value for the circuit 
resulting for a particular benchmark from JEDI 
encoding; 
QMmin(M, J) = min{QM(M), QM(J)} – the lower of 
the two QM values for the two methods M and J, 
used instead of QM(J) or QM(M) to avoid bias to 
any of the two compared methods M or J. 

We only included the results related to the circuit 
area in this short paper, because they are fully 
sufficient to illustrate several crucial problems of 
benchmarking. Moreover, instead of including the 
very large tables with complete raw results for all 
benchmarks, we show the results of the statistical 
processing of the raw results, i.e. the relative average 
area results from different methods in comparison to 
JEDI for various FSM classes, and distribution of 
the relative results from each method in relation to 
the average area for the method. We categorized the 
FSMs according to following three criteria: the size, 
the proportion of the number of primary input bits to 
the number of state bits, and the proportion the 
number of primary output bits to the number of state 
bits. The size criterion divides FSMs into small 
(max. 8 states), medium (9 to 32 states) and large 
(more than 32 states). The proportion of the number 
of primary input/output bits to state bits categorizes 
the FSMs as input/output dominated if the number 
of input/output bits is 50% larger than the number of 
state bits, state dominated if the number of state bits 
is larger than the number of input/output bits and 
balanced otherwise. 

An important data not shown in the figures below 
is that our tool SECODE consistently produced 
results that were on average somewhat more than 
20% better than the results from JEDI for all circuit 
classes (for the corresponding result tables and their 
discussion see [31][39]). The results from SECODE 
are not included in the figures below, because this 
will not introduce any extra information (it will 
result in a point on the level of somewhat lower than 
–20% in each of the figures), but will substantially 
increase the area of the figures. 

In Figure 1, the relative results for area are 
presented that were produced by each particular 
encoding method: 1-hot (H), Gray (G) and natural 
binary encoding (B) for each particular class of 
benchmarks distinguished according to: size (Size), 
proportion of the number of primary input bits to 
state bits (Input) and proportion of the number of 
primary output bits to state bits (Output). In Figure 
2, the distribution of the relative area results from 
the particular FSM encoding methods is shown. 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 304 Issue 4, Volume 7, April 2008



Many interesting conclusions can be drawn from 
the results of the experiments performed. It follows 
among others that: 
- the constructive FSM encoding methods 

represented in the experiments by JEDI and 
SECODE produce the best results on average; 

- the natural binary and Grey encodings are the 
worst encodings of all the considered; 

- 1-hot is able to produce very good results for the 
medium and large state-dominated FSMs; 
however, it is not robust (in Fig. 2 the difference 
between max and min is largest for 1-hot) - it 
often produces very bad results. 

Moreover, it turned out that only the constructive 
structural state assignment approaches, represented 
by SECODE and JEDI are unique and robust, with 
JEDI being close to the border between near-optimal 
and unique. In general, the pragmatic FSM state 
assignment approaches commonly applied in today’s 
commercial circuit synthesis tools for FPGAs, 
represented by 1-hot, Gray and binary encodings in 
the experiments, are only good or near-optimal, and 
not robust in general. However, 1-hot encoding is 
unique and robust for the medium and large state-
dominated FSMs. The pragmatic approaches are 
thus effective in only some special cases. 

The experimental results clearly show a big room 
for improvement regarding the state assignment 
methods applied in the contemporary commercial 
EDA tools targeted to FPGA synthesis, and in this 

way demonstrate that an adequately performed 
benchmarking is able to reveal important quality 
issues. In the contemporary commercial tools, only 
the medium and large state-dominated FSMs are 
quite well covered by the 1-hot encoding, but there 
is a large room for improvement regarding all the 
other FSM classes for which all the three pragmatic 
approaches (1-hot, Grey and natural binary 
encoding) produce inferior circuits comparing to the 
structural approaches represented by JEDI and 
SECODE. In consequence, the most effective 
published approach of the FSM state encoding for 
the FPGA-implemented systems seems to be our 
new information-driven encoding method 
implemented in SECODE [31][39], supplemented 
with 1-hot encoding applied to some state-
dominated FSMs. 
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distribution from the experiment as in Fig. 2 or a 
statistically processed one in the form of a standard 
deviation), one can immediately conclude much 
more, namely: although on average 1-hot is only 
approximately 13% worse than JEDI, for particular 
benchmark instances it can produce as much as 
400% worse results than JEDI, but also as much as 
500% better results. Thus, 1-hot is not robust, can 
produce both very bad and very good results, but it 
is able to produce excellent results in some cases. 

Without considering some smaller benchmark 
classes, as we did in the presented experiments, and 
computing the statistics over the smaller classes, one 
could however never know for which kinds of FSMs 
1-hot actually produces these excellent results, and 
for which produces very bad results. Considering 
narrower classes, defined by more factor variables 
and narrower sub-ranges for the variables, gives 
more precise information. Including more 
benchmarks in the benchmark set for each such class 
enhances the confidence level of the statistical 
conclusions. On the other hand however, both 
increase the total number of benchmarks to process, 
and with a certain large number of narrow classes 
and large number of benchmarks in each class, the 
total number of benchmarks can become too large to 
be processed in the required practical time. Thus, 
there is a trade-off between the benchmarking time 
(total number of benchmarks used), the amount and 
preciseness of information obtained from the 
benchmarking experiment, and the confidence level 
of the statistical conclusions. 

Often one would like to have an as small as 
possible benchmark set that still enables to take the 
conclusions of interest, within a limited error margin 
and with high enough confidence level of the 
statistical result processing. Obtaining of such a 
reduced representative benchmark set is possible, 
and is illustrated below. The above results in Figure 
1 are obtained for the complete representative 
benchmark set containing somewhat more than 500 
FSMs. Having this large set, we constructed a four 
times smaller reduced representative benchmark set 
consisting of about 160 FSMs, for which the area 
results are presented in Fig. 3. The results on the 
reduced set are almost identical to the results on the 
original large set (the difference is within 2%). 
Obtaining such a well-representative, but reduced, 
benchmark set was possible through a careful 
selection of the most characteristic benchmarks from 
each class of the original large representative set 
(e.g. the benchmarks that result in the best and the 
worst results in a class or have certain class specific 
features that strongly influence the result quality). 
This was virtually impossible without first 

constructing the original large representative 
benchmark set. Also, having a large representative 
benchmark set, an automatic construction of a 
smaller representative set is possible through 
controlled removal of the least characteristic 
benchmarks driven by the objective of change 
minimization in the relevant statistics for each class 
of the reduced set in comparison to the original large 
set. 

A r e a
S iz e

Now let us observe what happens when the 
benchmark selection does not satisfy one or more 
conditions of the representative benchmark set. In 
Fig. 4, we can observe a result of a non-uniform 
benchmark distribution among the classes. In this 
set, there are less state-dominated benchmarks on 
the input side with a simple transition structure 
between the states compared to the number of 
benchmarks in the remaining benchmark classes. 

Observe that the results and conclusions are now 
different than for the representative benchmark set. 
In particular, the relative quality of 1-hot encoding 
computed for the benchmark set with the non-
uniform benchmark distribution among the classes is 
much lower (the relative area is much higher) than 
for the representative benchmark set. In Fig. 5, the 
results are presented for a benchmark set in which 
some benchmarks are repeated twice (namely some 
state-dominated benchmarks on the input side with a 
simple transition structure between the states). The 
same effect can be obtained when having many 
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similar benchmarks in the benchmark set. Also in 
this case the results and conclusions are different 
and incorrect. In particular, the relative quality of 1-
hot encoding computed for the benchmark set with 
some repeated benchmarks is now much higher (the 
relative area is much lower) than for the 
representative benchmark set. This demonstrates 
that both a biased selection of benchmarks within a 
class and non-uniform distribution of benchmarks 
among the classes introduce substantial changes in 
the benchmarking results being the input data for the 
statistical processing, and in consequence result in 
faulty conclusions. 
 
 
11   Conclusion 
This paper reported several results and conclusions 
from our research of benchmarking issues in the 
digital circuit design automation. In particular, we 
briefly discussed the recent research effort related to 
benchmarking in the EDA field and related field of 
heuristic methods and algorithms, considered the 
importance and difficulties of benchmarking, 
analysed and illustrated with examples the problems 
related to the construction and use of a 
representative benchmark set, explained how to 
adopt the statistical factorial design methodology to 
resolve some major benchmarking problems in 
electronic design and EDA, and discussed the FSM 

benchmark generator developed and implemented 
by us to resolve serious problems related to the 
usage of practical industrial benchmarks and so 
called “standard benchmark sets” commonly used 
by researchers. 
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Our FSM benchmark generator is based on the 
principles of the statistical factorial design also used 
in the EDA-related design of experiments methods 
of Brglez at al. However, its aim is different and the 
actual implementation of the statistical factorial 
design approach in BenGen very much differs from 
the methods of Brglez at al. Our FSM generator also 
very much differs from the generator of sequential 
circuit structures proposed by M. Hutton at al, and 
has several advantages comparing to Hutton’s 
generator. BenGen allows us to efficiently construct 
well-characterized sequential circuit specifications 
with various characteristics and representative FSM 
benchmark sets. 

Using large sets of benchmarks from BenGen 
that included two representative benchmark sets and 
two non-representative benchmark sets, we 
experimentally demonstrated several important 
benchmarking issues, mainly related to the 
benchmark set representativeness and statistical 
processing of the benchmarking results. In 
particular, we showed that using only a single 
statistic on the whole benchmark set (e.g. averaging 
over all the benchmarking results) the information 
obtained is very little and the conclusions very 
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limited. Considering more statistics and/or narrower 
benchmark classes gives more information and more 
precise information, enabling more precise and more 
useful conclusions. We also demonstrated that there 
is a trade-off between the benchmarking time, the 
amount and preciseness of information obtained 
from a benchmarking experiment, and the 
confidence level of the statistical conclusions. The 
experiments also showed that the pragmatic FSM 
state assignment approaches commonly applied in 
today’s commercial circuit synthesis tools for 
FPGAs are effective only in some special cases. 
Through showing a big room for improvement 
regarding the state assignment methods applied in 
the contemporary commercial EDA tools targeted to 
FPGA synthesis, we demonstrated that an 
adequately performed benchmarking is able to 
reveal serious quality concerns. We also 
demonstrated that an inadequately performed 
benchmarking, and specifically performed when 
using a non-representative benchmark set, can easily 
result in faulty conclusions and this way mask 
important quality issues. 

Although this paper delivered much information 
on the quality of several FSM state assignment 
techniques in their application to the FPGA-targeted 
circuit synthesis, the FSM synthesis problem and 
related techniques mainly served here as an 
example. The main aim of the paper was to 
demonstrate the importance and difficulties of 
benchmarking in digital circuit design automation, 
and to propose and discuss effective solutions to 
several benchmarking problems. A large part of the 
discussion of the paper is thus not limited to the 
digital circuit design, but pertains to the larger area 
of electronic design and its automation. 

The discussions and experimental results of this 
paper clearly demonstrate the inadequacy of the 
traditional benchmarking approach in EDA, 
advantages of the design of experiments approach, 
and a big room for improvement in the sequential 
circuit design methods and tools. 

Trough its substantial introductory and survey 
part, as well as explanations and examples 
presented, the paper has also a popularizing 
character. We hope therefore that this paper will be 
an important step towards a broader acceptance of 
the statistical design of experiments approach for 
benchmarking in the EDA field, and will trigger 
some works towards more adequate digital circuit 
design methods and tools. 
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