
Benchmarking in Digital Circuit Design Automation

LECH JÓŹWIAK, DOMINIK GAWŁOWSKI, ALEKSANDER ŚLUSARCZYK
Faculty of Electrical Engineering

Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven

THE NETHERLANDS
L.Jozwiak@tue.nl

http://www.ics.ele.tue.nl/~ljozwiak/

Abstract: - This paper focuses on benchmarking, which is the main experimental approach to the design
method and EDA-tool analysis, characterization and evaluation. We discuss the importance and difficulties of
benchmarking, as well as the recent research effort related to it. To resolve several serious problems related to
quality of benchmarking and use of practical industrial benchmarks, we proposed an adequate benchmarking
methodology based on the statistical experimental design approach, and developed corresponding digital
circuit benchmark generators. These benchmark generators enable research, evaluation and fine-tuning of
circuit synthesis methods and EDA-tools largely independent of the actual industrial benchmarks, and much
better than having only some industrial benchmarks. Using the results of extensive experiments that involved
large sets of diverse benchmarks generated with our FSM benchmark generator, we discuss several crucial
problems of benchmarking and demonstrate how to resolve them.

Key-Words: - Microelectronic Circuit Design, Digital Circuits, EDA-tools, Benchmarking, Statistical
Experimental Design, Benchmark Set Quality

1 Introduction
The recent spectacular progress in microelectronics
enabled implementation of a complex system on a
single chip, autonomous and mobile computing,
wire-less communication, global networking, and
facilitated a fast progress in these areas. A big
stimulus has been created towards development of
various kinds of embedded and high-performance
systems. On the other hand however, the spectacular
advances introduced unusual silicon and system
complexity, and created many new difficult to solve
issues. The opportunities created by modern
microelectronics cannot effectively be exploited
without adequate methods and electronic design
automation (EDA) tools for designing of high-
quality circuits and systems. Therefore, the quality
of the EDA methods and tools, as well as of the
methods and means for their quality analysis is of
crucial importance.

Two basic approaches are used to study
performance of objects (e.g. methods or tools):
analytical and experimental. The analytical approach
is based on (mathematical) models and use of the
logical analysis and proof methods. The
experimental approach is based on performing sets
of tests, collecting and processing data from the
tests, and drawing logical conclusions from the
collected and processed data.

This paper is related to experimental performance
analysis of the digital circuit design methods used in
EDA-tools. It focuses on benchmarking that is one
of the main and most difficult issues of the design
method and EDA-tool analysis, characterization and
evaluation. A benchmark is a design problem that
constitutes a point of reference against which
methods or tools can be measured, analyzed,
characterized or compared in order to assess their
(relative) performance. Benchmarking is the process
in which, using benchmarks, various aspects of a
methods or tools are measured, analyzed,
characterized, evaluated or compared. In this paper,
we discuss several crucial problems of
benchmarking, specifically related to the adequacy
of the benchmark set and evaluation of
benchmarking results, and demonstrate how to
resolve them.

While some benchmarking problems related to
combinational circuit design were addressed by
researchers in recent years, and both an approach
and several particular solutions have been proposed
(see e.g. [6][22][33][18][29][30]), the benchmarking
in sequential design is a much less recognized
territory. The paper [26] authored by the first author
of this paper and [23] belong to unique works in this
field. Therefore, in this paper we focus on
benchmarking in sequential design. Despite this fact,
a large part of the discussion of the paper and its

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 287 Issue 4, Volume 7, April 2008

mailto:L.Jozwiak@tue.nl

more general conclusions are not limited to the
sequential design, but can be extended through
analogies to the whole field of digital circuit design,
and some of them even to a larger area of electronic
design automation.

The main aim of the paper is to discuss several
crucial benchmarking problems, such as the complex
problem of the benchmark set quality or the lack of
satisfactory academic and industrial benchmark sets,
and to propose and discuss their adequate solutions.
The sequential synthesis methods implemented in
the contemporary EDA-tools are used here rather in
the role of examples. However, the realization of the
main aim includes demonstration that an adequately
performed benchmarking is in state to reveal
strengths and weaknesses of the benchmarked
methods. Therefore, we will also briefly comment
on the quality of the sequential circuit synthesis
methods implemented in the contemporary EDA-
tools, and show a big room for their improvement.

In recent years a growing fraction of the
electronic systems is implemented using the FPGA-
technology. Several reasons of this trend are
explained [28]. We therefore performed our
experimental research using as test bed methods and
EDA-tools for FPGA-targeted circuit synthesis. To
resolve serious problems related to the use of
practical industrial benchmarks and ensuring the
adequate quality of the benchmark set, we developed
and implemented sequential and combinational
benchmark generators. These benchmark generators
make it possible for us to efficiently construct well-
characterized circuit specifications with different
characteristics, including specifications
representative to various typical industrial
application areas. The generators greatly reduce the
necessity of having the actual industrial benchmarks
and enable research, comparison, evaluation and
fine-tuning of circuit synthesis methods and tools
largely independent of the industry, and much better
than having only some industrial benchmarks. In this
paper, the discussion of several benchmarking issues
and their solutions is performed and illustrated using
the results of our experimental research that
involved several sequential circuit synthesis methods
implemented in the contemporary academic and
commercial EDA-tools, and large sets of diverse
FSM benchmarks generated with our Finite State
Machine (FSM) Benchmark Generator BenGen
[32].

The contributions of the research reported in this
paper include amongst others:
- discussion of the importance and difficulties of

benchmarking in the EDA field, as well as of the
recent research effort related to it;

- proposal of an adequate benchmarking
methodology based on the statistical experimental
design approach, as well as an appropriate
generation and application of the high-quality
representative benchmark sets;

- the first published finite state machine (FSM)
benchmark generator that enables an efficient
construction of various well-characterized
sequential circuit specifications and
representative FSM benchmark sets;

- experimental analysis of several FSM state
assignment methods using large sets of
benchmarks from this generator that
demonstrated several important benchmarking
issues, mainly related to the benchmark set
representativeness and statistical processing of
the benchmarking results;

- demonstration that using only a single statistic on
the whole benchmark set the information
obtained and conclusions are very limited, while
considering more statistics and/or narrower
benchmark classes gives more, more precise and
more useful information and conclusions;

- demonstration of the trade-off between the
benchmarking time, the amount and preciseness
of information obtained from a benchmarking
experiment, and the confidence level of the
statistical conclusions;

- demonstration that an inadequately performed
benchmarking, and specifically performed when
using a non-representative benchmark set, can
easily result in faulty conclusions and this way
mask important quality issues, while an
adequately performed benchmarking is able to
reveal significant quality concerns;

- demonstration that the pragmatic FSM state
assignment approaches commonly applied in
today’s commercial circuit synthesis tools for
FPGAs are effective in only some special cases.

2 Benchmarking issues in EDA

In this section, we will briefly discuss some of
the major benchmarking issues in the EDA field,
when focusing on benchmarking of digital circuit
design methods used in the EDA-tools. The main
problems in digital circuit design are
computationally complex (NP-hard [16]), including
the FSM state assignment problem discussed further
in this paper [26][27]. In general, finding a strictly
optimal solution to such a problem requires a
solution time that exponentially grows with the
problem dimensions. Therefore, heuristic solution
methods are used for such problems. The heuristic

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 288 Issue 4, Volume 7, April 2008

methods, although not guaranteeing the strict
optimality, are often able to find some high-quality
solutions in an acceptably short time and using an
acceptable quantity of other resources. In
consequence, in most of the practical cases, the
strictly optimal solutions remain unknown. Even if
one of them is actually obtained, it is usually
unknown that the obtained solution is optimal.
Analytical performance study of the heuristic
methods for these complex problems is also complex
itself, and consequently, the experimental approach
is typically used. This paper is therefore devoted to
the experimental performance analysis of digital
circuit design methods and tools. The experimental
performance analysis uses some test cases
(benchmarks) for performing the sets of tests.

In general, a benchmark is a point of reference
against which objects can be measured, analyzed,
characterized or compared in order to assess their
(relative) performance. Benchmarking is the
process in which, using benchmarks, various aspects
characteristics of a particular object are measured,
analyzed, characterized, evaluated or compared in
relation to values of the same characteristics of other
similar objects serving the same or similar purposes,
or in relation to the best (actual or predicted) values
of those aspects, to their other characteristic values
or their values’ distributions.

In the design area, a benchmark corresponds to a
design problem against which design methods,
processes, techniques, algorithms, tools, etc. can be
measured, analyzed, characterized or compared. In
the field of digital circuit design, a benchmark
corresponds to a circuit specification in a particular
form (e.g. HDL, tabular, diagram, graph, net-list
etc.) to which circuit design methods, processes,
techniques, tools, algorithms etc. can be applied, and
against which they can be measured, analyzed,
characterized or compared in order to assess their
(relative) effectiveness and/or efficiency. The
effectiveness and efficiency are typically expressed
through the result quality (e.g. the circuit’s area,
speed, power dissipation, testability,
manufacturability,…), robustness (i.e. the ability to
steadily deliver some high-quality solutions in the
whole range of possible input data), and use of
resources (e.g. computation resource use, as CPU-
time or memory use, or human resource use).

Benchmarking is one of the main issues of the
design method and EDA-tool development and
quality assurance. By providing a feedback on the
method or tool qualities, benchmarking is a major
source of information used to control the direction of
the method or tool development and improvement,
and has a decisive influence on their final quality.

Adequately performed benchmarking may reveal
unknown inefficiencies or new issues and trigger
work towards innovations enabling their elimination
or resolution. Moreover, benchmarking enables the
design method and tool users to analyse and
compare alternative methods or tools and to decide
which of the available alternatives best suit their
particular needs. It is thus of primary importance for
both the design method and tool researchers and
developers, and the method and tool users.

Summing up, the circuit design methods and
tools can be thoroughly analyzed, characterized,
compared, and evaluated by applying them to some
sets of (practical or hypothetical) designs
(benchmarks), and analyzing the results produced by
them. However, the value of the experimental
research performed when using benchmarks, as well
as the value of the conclusions drawn based on the
results from such research, heavily depend on the
quality of the benchmark set used for the
experiments, as well as the way the experiments are
performed and their results analyzed.

Unfortunately, the benchmarking experiments in
the EDA area are typically performed using a
relatively small number of isolated, unrelated,
unsystematically collected and not characterised
benchmarks. Processing of the results from these
experiments is usually also extremely simplistic. In
most cases it is limited to presenting some raw data
on an unsystematic, not characterised and relatively
small benchmark sets, and computing some totals or
simple averages for such benchmark sets. If the
benchmarks’ characteristics and their distributions
are unknown, those totals or averages are in most
cases meaningless. Moreover, it is impossible to
reliably draw any more general conclusions from the
raw data on an unsystematic, not characterised
and/or small benchmark set. For example, in [2] the
algorithms were tested on just a single instance of
one particular problem, and in [41] on only four
instances of a single problem differing in size, but
without accounting for any other features or factors
of the problem. This sort of experimentation may
only be used as an example further explaining the
algorithms, but it does not allow for any
generalizations and any general conclusions
regarding the algorithms’ qualities. In [15] and [35],
the methods proposed are tested on just a few
“standard” benchmarks. This can only give a first
impression on how the methods behave for a few
typical problem cases, but it does not allow for any
reasonably reliable generalizations. It even does not
allow for a reliable simple average computation,
because the number of cases is not statistically
significant and the different problem features are not

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 289 Issue 4, Volume 7, April 2008

well covered by the experimentation. In [40] the
benchmarking experiments were performed
somewhat better. In parallel to a few “standard”
benchmarks ten randomly generated benchmarks
with different parameters were used. Results on
these generated benchmarks show somewhat more
on how the methods perform for different cases and
may already allow for a computation of a reasonably
reliable simple average. The number and diversity of
benchmarks are however still much too low to make
any more precise characterisation of the methods.
Unfortunately, the cases briefly discussed above are
not exceptional. They represent the typical
benchmarking practice in the electronic design, EDA
and related areas, which is far from being of an
acceptable quality.

Furthermore, the method (tool) evaluations made
on isolated results obtained for isolated benchmarks
do not provide much information on their actual
quality, even for these isolated cases. Since in most
cases the strictly optimal solutions for a typical
computationally complex circuit design problem
remain unknown, there is no reference point to
which the isolated results could be compared, and
even if the result of one method or tool is better than
from another, it is still unknown how bad (or good)
both these results are. In 1990 the first author of this
paper proposed a technique that overcomes the
above problems of benchmarking result analysis and
evaluation. In particular, he demonstrated that
distribution of solutions for the FSM state
assignment problem can be well estimated by the
normal (Gaussian) distribution and showed that the
normal distribution can be used to well model many
other complex circuit design problems having
analogous properties [26]. He proposed to evaluate
the performance of the design methods and tools for
solving such problems through comparison of the
result from a method on a particular benchmark to
the normal distribution of results for this
benchmark[26][27]. This result evaluation technique
is briefly explained further in this paper. Although
this solved in a way the problem of the result
evaluation, the questions related to the benchmark
set quality remained open, and we started to work on
them.

3 Experimental design approach to
benchmarking
Although this paper is devoted to benchmarking in
EDA, and particularly in digital circuit design
automation, the problem of an adequate
benchmarking is very important to many areas. In

particular, in parallel to our works in the EDA
benchmarking, several researchers in the area of
heuristic methods and algorithms (for different than
EDA applications) also tried to find a satisfactory
solution for the benchmarking in their area. We will
briefly discuss the works in the area of heuristic
method and algorithm benchmarking, because both
the area and the research results are related to the
area and results of our research presented in this
paper. The researchers of heuristic methods and
algorithms proposed to adapt to the benchmarking in
their area the statistical experimental design (or
design of experiments) paradigm pioneered by R. A.
Fisher [14] and used in many areas, including
physical sciences, medicine, agriculture and other
life sciences [4][9]. The statistical experimental
design methodology consists in an adequate
planning and performing of an experiment which
ensures that appropriate data is collected and
analyzed by statistical methods to obtain meaningful
and satisfactorily objective conclusions. In
particular, in his paper from 1994 [19], J. N. Hooker
argued that an empirical science of algorithms is
needed to alleviate several benchmarking problems,
in the sense of investigating “how algorithmic
performance depends on problem characteristics”.
He wrote: “Rather than agonize over whether a
problem is representative of practice, one picks
problems that vary along one or more parameters”,
and suggested usage of generated benchmarks and
adoption of the experimental design paradigm.
Although we agree with many ideas presented in his
paper, we do not support his suggestion that
“whether a problem is representative of practice” is
not so important. In our opinion, the practical
representativeness of problems and varying of
problems along various parameters are both
important, and both should be taken care of when
preparing and performing the benchmarking
experiments. We will more extensively comment on
this further in this paper. Our opinion is shared by
several other researchers and practitioners, including
R. S. Barr and his collaborators who wrote: “Real-
world problems reflect the ultimate purpose of
heuristic methods, and are important for assessing
the effectiveness of a given approach. Of particular
value are instances that are representative, in some
manner, of those encountered in a given problem
domain” [3]. Also Hooker himself partly changed
his opinion on this aspect, and in his next paper [20]
wrote: “…the well-known pitfalls of this approach
(random generation of test problems), the most
obvious of which is that random problems generally
do not resemble real problems.”

To overcome some of the benchmark set

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 290 Issue 4, Volume 7, April 2008

representativeness and result processing problems,
he proposes to adopt a type of experimental design
known as factorial design. An analogous proposal is
included in the paper by R. S. Barr at al [3], who
stressed that: “A variety of different types of
problems should be generated to reflect the diversity
of factors that could be encountered. Generated
problem instances should be representative of
problems likely to be found in the field or designed
to explore key hypotheses. In general, the more test
problems evaluated, the more informative the
study”. In general, we agree with the above
statements, but with the last one only upon the
condition that the numerous test problems are
divergent and their characteristic features (factor
values) are known and taken into account by the
statistical result analysis.

The main ideas of factorial design are as follows.
First a set of factors is found, such that each of them
is an independent controllable variable that may
substantially affect the experiment results (e.g.
performance measures) being dependent variables.
The factors can e.g. represent the problem size, its
various functional or structural features, etc. For
each factor, its several value subsets or ranges are
distinguished (e.g. size levels, function types or
structure types). For each possible combination of
the factors’ value ranges a randomized problem
(benchmark) set of statistical size is generated. For
each such problem set meaningful average values of
the experiment results can be computed and
statistical analysis can be performed to reveal the
influence of particular factors on the experiment
result or interactions among the factors. The
statistical factorial design of experiments is based on
basic principles of test replication and randomization
to offset unaccounted factors and enable a
meaningful statistical processing.

Our benchmarking methods and related digital
circuit benchmark generators discussed further in
this paper overcome the problems of the benchmark
set representativeness and result processing bias,
because they efficiently combine the best features of
the two different experimental analysis techniques:
factorial design and testing on practical designs.
They are based on the factorial design, but they do
not generate random benchmarks. They generate
benchmarks whose structure and other features very
closely resemble those of the actual practical
designs. Moreover, our benchmarking methods are
able to use as some of the benchmarks just the
available practical benchmarks.

In [21] H. Hoos and T. Stützle criticized the
common simplistic practice of the benchmarking
results processing: “Usually, the final performance

measure is obtained by averaging over all instances
from the test set. This last step, however, is
potentially extremely problematic. …a fundamental
problem with averaging … is the mixing of two
different sources of randomness in the evaluation of
algorithms: the nondeterministic nature of the
algorithm itself, and the random selection of
problem instances.” Further in their paper, they
focused on the first problem being the
nondeterministic nature of algorithms. In this paper,
we focus on the second problem being an adequate
selection of problem instances to ensure meaningful
averages and other results of statistical analysis. In
the scope of the research presented in this paper the
first problem was inactive, as the methods of the
FSM state assignment considered are deterministic.

In the field of digital circuit design and its
automation, a benchmark typically represents a
digital circuit specification at a certain stage of the
circuit design. Such a circuit (benchmark) has its
own specific functional, structural and parametric
characteristics. The experimental analysis
(benchmarking) of the circuit design methods and
tools is based on running them on sets of
benchmarks, collecting and processing data from the
tests, and drawing logical conclusions from the
collected and processed data. The circuit
(benchmark) characteristics relevant to a specific
experimental performance analysis represent the
factors of the statistical factorial design. According
to different values of particular characteristics
(factors) or characteristics combinations different
benchmark classes can be distinguished.

In parallel to our works on benchmarking in
EDA, F. Brglez and his collaborators N. Kapur, D.
Gosh and R. Drechsler performed research on
scientific experimentation targeted to EDA
benchmarking, and specifically, combinational
circuit benchmarking, from which results were
published in the late 1990s [7][33]. Their
combinational circuit benchmarking method through
analysis of equivalence class mutant circuit
distributions is in fact a specific kind of the
statistical factorial design. In brief, they proposed to
consider a number of known combinational circuit
benchmarks and for each such benchmark construct
a large sample of mutant circuits that belong to the
same equivalence class of signature-invariant
circuits. The reference circuit represents a net-list of
a known design, and the signature-invariance
guarantees that the reference net-list and all of its
mutants have the same number of I/Os and the same
number of nodes distributed across the same number
of levels [33. This corresponds to the selection of the
number of I/Os and the number of nodes distributed

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 291 Issue 4, Volume 7, April 2008

across the levels as the factors in factorial design,
and setting the factor values to the same values as in
the reference circuit. The equivalence class of
signature-invariant circuits is in fact a randomized
problem (benchmark) set of statistical size generated
in a specific way for a given combination of the
factors’ values defined by the reference circuit. This
shows that their proposal is indeed a specific kind of
the statistical factorial design. Moreover, Brglez and
his collaborators stressed that: “Random graphs, a
potentially unlimited source of benchmarks, have
not been accepted as realistic circuit benchmarks.
Mutants, as defined here, are not random net-lists”.

Although their proposal was a step in a good
direction, it did not ultimately solve the problems of
benchmark set representativeness and of unbiased
result processing for sets of signature invariant
classes. In particular, it did not address the problems
of high and uniform coverage of different possible
combinations of the factor values by the reference
circuits, necessary to guarantee a high benchmark set
representativeness and unbiased result analysis and
evaluation. Moreover, their results are limited to
combinational circuits and they did not provide any
hints that could suggest if or how their results could
be used for sequential circuits. Our factorial design
based benchmarking method and FSM benchmark
generation tool presented in this paper resolve these
problems.

In the area of heuristic methods and algorithms,
the proposal to adapt the statistical design of
experiments approach for the algorithm
benchmarking and analysis was relatively well
received. In the successive years this resulted in
several papers which further researched and
explained this approach or reported its use. Since
this paper is devoted to benchmarking in digital
circuit design automation, and we will not make any
extensive discussion of the algorithm
experimentation bibliography, but we would like to
recommend several relatively general papers from
the area of algorithm experimentation supplementing
the material presented in this paper. McGeoch
[36][37], Johnson [25] and Moret [38] give some
general advice and tips related to the
experimentation with algorithms and/or reporting the
experimental results. Coffin at al. [11] discuss some
statistical concepts relevant to analysis of tests
related to algorithms and heuristics. General
information on design of experiments in other areas
can be found in [4][9].

Unfortunately, in the EDA field not many
researchers and practitioners followed the proposal
to adapt the statistical experimental design approach
to the benchmarking. Some of the few follow-up

developments were the following. In the late 1990s,
we implemented our combinational circuit
specification generator based on the factorial design
approach, and used it for benchmarking related to
our new information-driven approach to digital
circuit synthesis [29][30]. Since the principles on
which this combinational circuit specification
generator is based constitute a subset of the
principles used to develop the FSM benchmark
generator reported in this paper, we will not further
comment on it in this paper. S. Davidson and J.
Harlow edited a Special Issue on Benchmarking for
Design and Test of the IEEE Design and Test of
Computers [13], in which amongst others, a short
paper by Brglez was included that informally
discusses the statistical design of experiments
approach to CAD benchmarking [5]. Brglez and his
collaborators used this approach later to some other
EDA related problems, as e.g. design of experiments
and evaluation of BDD ordering heuristics [18] and
SAT algorithms [7][8] . In their research related to
BDD ordering heuristics [18] they focused on
logically equivalent isomorphism classes consisting
of circuits that are logically identical and graph
isomorphic instances of a reference circuit. To
illustrate some major drawbacks of the traditional
benchmarking approach in EDA that uses some
relatively small collections of isolated, unrelated, not
well characterized benchmarks, as e.g. the well
known ISCAS or MCNC benchmark sets [17], they
selected some specific isolated instances from the
isomorphic classes and demonstrated that: “specific,
isolated instances randomly selected from an
isomorphic class cannot characterize the
performance of an algorithm”. They concluded that:
“Without examining statistically meaningful
samples of such populations, any reported results on
the benchmark sets are subject to large, unknown
random variability.” This means that many
differences in results and related “improvements”
reported using the traditional benchmarking
approach may be due to a chance related to
benchmark selection and/or result processing, and
not due to any actual differences in the methods,
algorithms or tools tested. They also wrote: “… the
principles of experimental design … are generally
applicable over a wide range of CAD tasks, but the
particulars of the experiments will vary, depending
on the problem domain” and “… sequential circuit
applications are different, and will require
appropriate treatments … and experimental designs
which will differ from those presented here”.

Similarly to the works of Brglez and his
collaborators, our research presented in this paper is
devoted to benchmarking in digital circuit design

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 292 Issue 4, Volume 7, April 2008

automation based on the design of experiments
approach. However, our work in its general part is
focused on the problems of a high benchmark set
representativeness and unbiased result processing,
and in its specific part on sequential circuit
benchmarking. Our research and its results are thus
different and complementary to those of Brglez and
his collaborators.

4 Motivation of our research and
development of an FSM benchmark
generator for experimental design
based benchmarking
Several recent papers reported that the available
digital circuit synthesis tools are not effective for
many important classes of circuits (see a. o.
[12][30][32]). Moreover, due to the recent rapid
progress in the microelectronic CMOS technologies,
both the importance relationships among various
circuit characteristics changed (e.g. the interconnects
being of secondary importance in the past have now
a dominating influence on the important circuit
characteristics, the static power being negligible in
the past technologies is becoming dominating in the
modern nano-dimension CMOS technologies), and
the multi-objective circuit optimization and tradeoff
exploitation became much more important. Due to
those changes and several other issues, the available
circuit synthesis tools do not well address the needs
of circuit synthesis for the modern nano CMOS
technologies. Consequently, a new generation of
more adequate circuit synthesis methods and tools is
necessary.

Unfortunately, the proliferation and absorption of
the statistical experimental design approach in the
EDA field is weak. The industry and most of the
researchers and developers in EDA field still
typically apply the traditional benchmarking
approach, using relatively small sets of isolated,
unrelated, unsystematically collected and not
characterized benchmarks, and inadequately
processing the benchmarking results. In
consequence, many quality issues and inefficiencies
of the circuit synthesis methods and tools remain not
revealed. This masks the actual problems and has a
restraining effect on innovations. It makes an
adequate evaluation of innovations impossible, and
disables or delays their actual industrial take-up and
exploitation. It also makes it difficult for the design
method and tool users to decide which of the
available alternative methods and tools best suit
their particular needs. In consequence, it disables or
delays progress. The critical importance of an

adequate benchmarking for the progress in the EDA
methods and tools, and in the digital system area,
confronted with the weak proliferation and
absorption in the EDA field of the more adequate
statistical experimental design approach to
benchmarking, motivated us to publish this paper.

In addition to the weak proliferation and
absorption of the statistical experimental design
approach in the EDA field, several other important
factors motivated us to perform research in the
experimental design based benchmarking and to
develop and implement the FSM benchmark
generator BenGen, including the following:
- actual need to use this approach in our own

research related to the analysis and evaluation of
our new information-driven methodology to
digital circuit synthesis,\

- inadequacy of the standard MCNC FSM
benchmark set [17],

- problems with the actual industrial FSM
benchmarks, and

- lack of any FSM benchmark generator,
According to our knowledge BenGen is the first and
the only FSM benchmark generator on which any
information has been published. It is described in
one of the successive sections of this paper.

Similarly to the above discussed design of
experiments methods in EDA of Brglez and his
collaborators, our FSM benchmark generator is
based on the principles of the statistical factorial
design. However, the actual implementation of the
statistical factorial design approach in our FSM
benchmark generator very much differs from the
methods of Brglez and his collaborators. First of all,
the benchmarks from our generator represent the
sequential circuit specifications and not the
combinational circuit specifications. Differently than
in their methods, the benchmarks from our FSM
benchmark generator that belong to a particular
benchmark equivalence class are not limited to only
some mutants of a known practical design or
logically identical circuits. In our method a
benchmark class is defined by a particular
combination of the factors’ value subsets.
Benchmarks of a certain class are basically
generated by our generator through deciding the
value subsets for each particular factor (representing
e.g. a certain size level, function type or structure
type), and subsequent random generation of a
benchmark set of a statistical size for the selected
combination of the factors’ value subsets. This
includes, but only as special cases, the possibility to
generate benchmarks as mutants of a given practical
FSM specification or sets of logically identical FSM
specifications. The realistic character of the

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 293 Issue 4, Volume 7, April 2008

generated FSM benchmarks is basically ensured not
through a direct mutation of particular practical
benchmarks, but through the covering of the
function types, structure types, size levels and other
characteristics of the benchmarks encountered in
practice through the characteristics of the generated
benchmarks. Our FSM benchmark generator enables
an efficient, flexible generation of a different
number of benchmark equivalence classes and
different number of benchmarks in each class,
dependent on the precision requirements of a
particular experiment, as well as on the computation
resource and experiment time limitations.

Our FSM benchmark generator also much differs
from the sequential circuit generator by M. Hutton
and his collaborators [23][24]. Their sequential
circuit generator has been constructed through an
extension of their earlier combinational circuit
generator [22] that generates structural
combinational net-lists with a specific size defined
by the number of edges and I/Os, a specific shape,
and given edge length, fan-out and re-convergence
distributions. Their sequential circuit generator
generates structural net-lists of binary sequential
circuits, where a sequential circuit is defined by
them as “a hierarchy of two or more combinational
circuits connected by “flip-flop-edges (FF-edges)
and “back-edges””. Consequently, their generator
produces specifications of binary sequential circuit
structures as are obtained after the sequential and
combinational synthesis of FSMs. On the contrary,
our FSM benchmark generator BenGen generates
just the original symbolic FSM specifications, as
constructed by human designers or behavioral
synthesis tools, and being input to the successive
sequential and combinational logic synthesis. Their
binary sequential benchmarks are unable to directly
serve several purposes to which our symbolic FSM
benchmarks can serve, and are unable to
accommodate several important features that our
FSM benchmarks can accommodate. For instance,
their binary benchmarks cannot directly be used as
input to all the “symbolic” tasks of sequential
synthesis, as e.g. FSM decomposition, state
assignment, state minimization, etc., while our
symbolic FSM benchmarks represent the natural
input for these tasks. After binary state encoding, our
FSM benchmarks can be directly used as an input to
combinational synthesis, while the Hutton’s binary
circuit structures have to be first reverse-engineered
before their corresponding next-state and output
functions could be used as an input to combinational
synthesis. Finally, the binary circuit structures
resulting from sequential and combinational
synthesis of our FSM benchmarks can directly be

used for the same purposes as their binary net-lists
of sequential circuits. While their sequential circuit
benchmarks represent just particular binary circuit
structures corresponding to completely specified
binary next-state and output functions of sequential
circuits with exclusively 2k states (where k is a
number of flip-flops), our FSM benchmark generator
enables construction of completely, incompletely
and weakly specified FSMs with any given number
of states. These are of course only some of the major
differences. More information on the specifics of our
FSM benchmark generator can be found in one of
the successive sections of this paper devoted to it.

5 Benchmark set quality
As discussed in previous sections, the value of the
experiments with benchmarks and conclusions
drawn heavily depend on:
- the quality of the benchmark set used;
- the adequacy of the experimentation process; and
- the adequacy of the experimental result analysis.
Since these are three main aspects of one whole
being an adequate benchmarking, they are
interrelated. In this section, we focus on the first
problem, but in combination with the third one, i.e.
on an adequate construction of a benchmark set to
ensure high-value conclusions, and specifically
meaningful averages and other results of statistical
analysis.

To enable true and reliable conclusions, the
benchmark set must be representative. However,
many different aspects and their complex
interrelationships are hidden under this notion of
being representative, including the following:
- the benchmark set must include design

specifications identical or similar to the typical
specifications of practical designs for all
substantially different functions and their various
relevant characteristics, from all diverse
application fields for which the use of the
benchmarked method or tool is predicted;

- the values of all important characteristics of all
benchmarks of the benchmark set must be
known;

- the benchmark set should include characteristic
design specifications for all various benchmark
classes defined by all possible combinations of
the benchmarks’ important characteristics;

- each benchmark class defined by a certain value
combination of the benchmarks’ important
characteristics should contain a statistically
meaningful number of benchmarks, and should

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 294 Issue 4, Volume 7, April 2008

be constructed using an unbiased random
generation or selection of benchmarks;

- the distribution of the benchmarks from the
benchmark set among the various benchmark
classes defined by all possible combinations of
the benchmarks’ important characteristics must
be (close to) uniform or if not (close to) uniform
then known and taken into account by the
statistical processing of the benchmarking results,
to enable any useful and reliable conclusions
from the statistical processing.

Satisfaction of the first three of the above conditions
is necessary to ensure an adequate representativeness
of the benchmark set to practice, so that it well
accounts for the real-world designs, and
consequently, the benchmarking conclusions will be
relevant for practice. Satisfaction of the second
condition and of the two final conditions is required
to ensure an adequate structure of the benchmark set
for the meaningful statistical processing of the
experimental data. Assuming the usage of the
statistical factorial design approach, the values of all
important primary benchmark characteristics
(factors) must be known. To offset unaccounted
(secondary) factors and enable a meaningful
statistical processing of benchmarking results within
each benchmark class, the principles of test
replication and randomization have to be used. To
enable unbiased averaging over results from
different classes, the distribution of the benchmarks
among the various benchmark classes must be (close
to) uniform or if not (close to) uniform then known
and taken into account by the statistical processing.

In benchmarking experiments particular results
for particular benchmark instances are directly
measured and expressed through some measures
related to selected effectiveness and efficiency
aspects. In the field of electronic design and its
automation, we are however interested not only in
the fact how a particular method or tool behaved on
a particular design, but we are interested as well in
how it behaves in general or for a particular class of
designs, or we are trying to predict how it will
behave for some future designs. To answer questions
of this kind, we often compute averages or other
statistics.

However, averaging of particular results over a
subset of benchmark instances or computing of any
other statistics corresponds to computation of a
certain function defined by the statistics. Since any
function not being a one-to-one function involves
abstraction, i.e. loss of information compared to
information contained in its input data, averaging or
computation of any other statistics over a nontrivial
sub-set of benchmark instances always involves

abstraction, i.e. loss of information. This means that
an average and other statistics are from their nature
unable to faithfully reflect the behaviour of a method
or tool on individual benchmark instances. Each
statistic only represents a particular abstraction from
a combination of behaviours on individual instances.
From this it should be clear that value of an average
or other statistics very much depends on the
selection of the individual instances over which the
average or other statistics is computed. Thus, to
obtain meaningful and useful information from a
statistic, both the statistic itself has to be adequately
selected to well reflect the actual aim of its use, and
the benchmark sub-sets on which the statistic is
computed have to be properly constructed.

In parallel to the representativeness of the
benchmark set to practice, the proper benchmark
sub-set construction includes such aspects as:
- ways of grouping benchmarks into classes,
- class granularity (generality/specifics),
- class size, and
- construction of particular classes and proportions

between the classes to avoid bias towards specific
groups of benchmarks.

These aspects decide, correspondingly, which sort of
conclusions, as well as, how precise
(general/specific), how statistically correct, and how
unbiased conclusions can be drawn from the
benchmarking experiments using a given benchmark
set.

In consequence, it is not easy to construct a
representative benchmark set that is strongly related
to practice, actually addresses the issues of interest
and enables true and reliable conclusions. Also,
“representative” does not designate just a single
point, but a degree. Different benchmark sets are
representative to various degrees, and the quality and
reliability of the conclusions obtained from the
experimental research using the benchmarks
increase with the degree.

We had an opportunity to work with several
industrial circuit synthesis benchmark sets from 8
different system houses and EDA companies,
involving from tenths to more than a thousand of
circuits. Unfortunately, none of them was well
representative. Most of them represented some ad
hoc collections of non-characterized benchmarks
with very irregular coverage of different circuit sub-
classes. Also the standard circuit synthesis
benchmarks commonly used by researchers are not
representative enough. Moreover, there are several
serious problems related to the use of practical
industrial benchmarks:
- the industry does not want to make their

benchmarks accessible, motivating that these are

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 295 Issue 4, Volume 7, April 2008

their or their clients’ important designs, and thus
they cannot be disclosed;

- having even a large set of the actual industrial
circuit specifications it is difficult to see how
large and divergent parts of the actual circuit
space do they cover: are the circuits very
different or almost the same; do they cover the
circuit space regularly or are just cumulated in
some particular regions; what are their
characteristics?

- to be representative the industrial benchmarks
have to involve very different functions typical to
diverse application fields; they have thus to be
collected from many industrial partners, but this
results in a multitude of their formats, standards
and/or representations.

It should be stressed that the use of a non-
characterized or non-representative set of (industrial)
benchmarks to research, compare or evaluate the
synthesis methods or tools can very easily lead to
completely wrong conclusions. In particular, even a
large set of non-characterized benchmarks used may
only include very similar or trivial benchmarks.
Consequently, from the fact that a method or tool
worked excellently for all of them one cannot
conclude that it will work reasonably for another,
but different and non-trivial, benchmark. In the last
part of the paper, various cases of non-representative
benchmark sets will be discussed and illustrated with
experimental results.

To resolve the serious problems related to the use
of practical industrial benchmarks in research,
comparison and evaluation of the electronic design
automation methods and tools, we proposed to use
the representative sets of generated benchmarks. The
term representative benchmark set is used here in
the sense discussed above in this section, and covers
both being representative to practice and adequate
for the statistical benchmarking result processing. Of
course, some mixed benchmark sets involving both
some practical industrial benchmarks (if available)
and generated benchmarks may also be used. In this
case however, the available industrial benchmarks
have first to be characterized, and knowing their
characteristics, the remaining benchmarks have to be
carefully generated to complete the (in most cases
not representative) industrial benchmark sub-set into
a representative benchmark set. Additionally, to
satisfy the requirements of the unbiased random
construction of the benchmark subsets representing
particular benchmark classes and uniform
benchmark distribution among the classes, some of
the industrial benchmarks may have to be removed,
if they are identical or very similar to some other
benchmarks.

Benchmarks are particular instances of objects
considered to be processed by a particular design
method or tool. To characterize benchmarks or to
generate benchmarks with particular characteristics,
it is first necessary to find a set of all the relevant
characteristic features of the objects considered to be
processed, i.e. all such characteristic object attributes
that changes in their values may substantially
influence the processing effectiveness or efficiency
of the methods or tools to be analysed. Each
particular object (benchmark) can then be
characterized by a particular vector of its attribute
values. For instance, in the case of a circuit, the
number of inputs, the number of outputs, the type of
function to be implemented etc. may represent such
characteristic attributes. Different ranges of the
attribute values and their various possible
combinations define the object sub-classes. To be
representative, a benchmark set has to include a
large enough unbiased selection of benchmark
instances in each particular class, and uniformly
cover all the sub-classes. If the benchmark
distribution among the sub-classes is not (close to)
uniform then it must be known and taken into
account by the statistical processing of the
benchmarking results to enable drawing of any
useful and reliable conclusions from the statistical
processing. It is of course possible to distinguish the
ranges of the attribute values with lower or higher
precision, which results in a smaller or larger
number of the corresponding object sub-classes, and
in a lower or higher benchmarking precision,
correspondingly.

Since the number of different object sub-classes
defined by the number of various attribute ranges
combinations may be very high, and each of the sub-
classes must be covered by a sufficient number of
benchmarks, the representative sets of benchmarks
may easily involve hundreds or thousands of
benchmarks of various sizes and with various
features. Moreover, to efficiently perform sensitivity
analysis of EDA methods and tools to changes in the
benchmark characteristics, it must be possible to
quickly perform the corresponding changes in
benchmarks. To perform the complex benchmark
preparation efficiently, the benchmark generation
process has to be automated.

To resolve the serious problems related to the
benchmark set quality and use of practical industrial
benchmarks in research, comparison and evaluation
of circuit synthesis methods, we developed and
implemented sequential and combinational circuit
benchmark generators that make it possible for us to
efficiently construct well-characterized circuit
specifications with various characteristics, including

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 296 Issue 4, Volume 7, April 2008

circuit specifications representative to various
typical industrial application areas. These
benchmark generators greatly reduce the necessity of
having the actual industrial benchmarks, and enable
research, comparison, evaluation and fine-tuning of
circuit synthesis methods and tools largely
independent of the industry, and much better than
having only some industrial benchmarks. One of
them is the Final State Machine (FSM) Benchmark
Generator BenGen. In this paper, we use some
results of our experimental research that involved
large sets of diverse benchmarks generated with
BenGen and a number of sequential circuit synthesis
methods implemented in the contemporary EDA-
tools to illustrate several crucial problems of
benchmarking and demonstrate how to solve them.

6 FSM benchmark generator BenGen
Several factors explained in the previous sections
motivated us to perform research in the experimental
design based benchmarking and to develop and
implement the FSM benchmark generator BenGen.

FSMs are commonly used for specification and
development of sequential circuits and control-
dominated systems.

A sequential machine/finite state machine (FSM)
M = (I, S, O, δ, λ) is an algebraic system,
with:
I - a finite nonempty set of inputs,
S - a finite nonempty set of internal states,

O - a finite set of outputs,
δ - the next-state function: δ: S x I → S,
λ - the output function:
λ: S x I → O (a Mealy machine), or
λ: S → O (a Moore machine).

An FSM can be represented in the form of a state
transition table or state transition graph, where the
transitions between states correspond to the
computations defined by the next-state function δ.

Our FSM benchmark generator BenGen
constructs the sequential circuit specifications
originally in the form of state transition graphs. The
state transition graphs are directly translated into the
corresponding tabular form in KISS format used for
the MCNC sequential benchmark set [17] and the
corresponding Verilog representation. No
restructuring is performed during this translation,
and there is a one-to-one correspondence among
these three FSM benchmark representations.

Benchmark set generation with BenGen is based
on the principles of the statistical factorial design.
The first author of this paper, which has more than
thirty years of experience in digital circuit and
system design, and EDA, analyzed several thousands
of FSMs from various application areas and serving
various purposes, like e.g. controllers, protocol
machines, or sequential data-path circuits. He
observed that all the analysed FSMs involve various
combinations of several basic state-transition
patterns, and their next-state and output functions
can be quite well reconstructed using various
combinations of several reasonably simple basic
function generation rules. He generalized and
parameterized the basic state-transition patterns,
function generation rules, and several FSM
characteristics (e.g. the number of inputs, outputs,
states, transitions). In this way, he constructed a set
of factors that represent several main FSM
characteristics related to e.g. a function type,
structure type, size characteristics, proportions, etc.,
so that a particular combination of their
corresponding values almost completely (but in most
cases not completely) defines a particular FSM. This
means in fact that a particular combination of the
factor values defines a quite narrow FSM class, in
which all FSMs have the same controlled
characteristics. The remaining FSM construction
freedom can be exploited by random generation.
Based on these principles the first author of this
paper designed the FSM benchmark generator
BenGen that for a particular combination of the
controlled factor values constructs a corresponding
class of FSMs through instantiating a corresponding
combination of the FSM basic elements (i.e. the sets
of inputs, states, outputs and transitions of the
required dimensions), basic state-transition patterns
(each involving a corresponding number of states
and branches), basic next-state and output function
generation rules, etc., and exploiting the remaining
FSM construction freedom by random generation.

The benchmark instances form BenGen are thus
not random, but have a clear structure and are only
randomized within the framework of this structure.
They represent some test cases that resemble the
actual real-world cases, but are randomized within
each specific (small) class. This way the FSM
benchmarks can be generated that have the same or
similar values of the controlled factors as the
practical industrial FSMs, and consequently, quite
closely resemble the practical FSMs. Moreover, the
generated FSMs can be easily modified to even more
closely mimic practical FSMs or more precisely
research particular features.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 297 Issue 4, Volume 7, April 2008

BenGen was subsequently implemented by the
authors of this paper and used by them to generate
large benchmark sets exploited in numerous
experiments related to the FSM design method and
tool analysis, testing and benchmarking. Some of the
benchmark sets from BenGen are also used by other
research groups in several countries.

From the above it can be concluded that building
a satisfactory benchmark generator that enables a
high representativeness of the generated benchmarks
is a difficult task that involves an extensive analysis
of a large number of divergent industrial
benchmarks by an experienced designer,
generalization of the analysis results, as well as an
actual development of a generator based on the
generalized and parameterized basic patterns,
generation rules and structural characteristics. Such
a generator however can then serve many
researchers and developers, as well as various
experimental analysis tasks.

BenGen allows us to efficiently construct FSMs
with various characteristics. This includes FSMs
having:
- different number of states and various transition

patterns between the states (e.g. chains of states
with forward and/or backward transitions, loops,
conditional “case” structures etc. and their
combinations);

- different numbers of inputs and outputs, and
different proportions between the next-state and
output logic (state-dominated, balanced or
output-dominated), as well as between the
primary-input and state-input (input-dominated,
balanced, state-dominated), and their mixtures;

- various dependences of particular transitions and
output variables on the number of inputs and
input conditions;

- completely, incompletely and weakly specified
next-state and/or output functions.

The possibility to generate FSMs covers the FSMs
representative to various typical industrial
application areas, for instance having typical
structure of controllers or protocol machines from
various application areas, or representing various
sequential data-path circuits. BenGen gives us an
efficient FSM construction, but also modification of
the constructed or industrial FSMs, and very precise
“fine-tuning”. This last feature is very useful in the
sensitivity analysis of EDA methods and tools to the
changes in their input data, i.e. changes in the FSM
characteristics.

FSM benchmarks from BenGen enable us to do
the following:
- analysis of a wide spectrum of design cases and

problems related to the FSM architecture and

logic synthesis, in the space spanned by various
FSM functions, structures and different
implementation options, and in the light of
various optimization constraints and objectives;

- thorough and very precise testing of EDA
methods and tools;

- extensive research and precise characterization of
EDA methods and tools regarding their
performance and robustness in relation to FSMs
with various known characteristics;

- very precise sensitivity analysis of EDA methods
and tools to changes in the FSM characteristics;

- reliable comparison and quality evaluation of
different EDA methods and tools in relation to
various FSM classes

From the above it can be concluded that BenGen
allows us to effectively and efficiently perform
many benchmarking tasks that would be very
difficult to be well performed without a benchmark
generator or having only a set of practical industrial
benchmarks.

Although we took a lot of care to ensure that the
generated benchmarks have characteristics very
similar to practical industrial benchmarks from many
application areas, we are unable to guarantee that the
generated benchmark sets cover each specific FSM
type. Therefore, the industrial benchmarks can still
be useful to ensure that the FSM types represented
by them are actually covered by the generated
benchmarks, and to perform some final confirmation
checks. Another possibility is a mixed use of the
generated and practical industrial benchmarks. As
described in the previous section, a particular
benchmark class is not required to contain only
generated benchmarks, but some available and
characterized industrial benchmarks can be included
into the class instead of the corresponding generated
benchmarks. The generated benchmarks are thus not
expected to completely eliminate the need of using
of some industrial benchmarks. It is however also
not expected that practical industrial benchmarks can
eliminate the need of using generated benchmarks.
Even if one would be able to form a large collection
of divergent industrial benchmarks (which is a
difficult task) then the probability is very low that
the benchmarks would to a sufficiently high degree
and uniformly cover all the different circuit classes.
Consequently, after the characterisation and
selection of a subset of suitable industrial
benchmarks, adequate generated benchmarks would
be required to supplement the industrial benchmarks.
Moreover, the generated benchmarks would be
extremely difficult to replace in the tasks of
thorough and precise testing, research,

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 298 Issue 4, Volume 7, April 2008

characterization and sensitivity analysis of EDA
methods and tools.

BenGen has two work modes: batch and
interactive mode. In the batch mode, the parameters
of the FSM to generate are supplied in a script file.
These parameters include:
- the number of the FSM’s branches;
- the branch characteristics, such as the branch start

and end state, the number of states in the branch,
the percentage of backward transitions and the
percentage of loops in the branch;

- the number of inputs and outputs of the FSM;
- the number of inputs active for transitions from a

given state or in a given branch;
- the output type (Mealy or Moore);
- the number of outputs active in a given state, for

transitions from a given state or in a given
branch;

- the percentage of “don’t cares” in the next-state
and/or output function;

- the percentage of “0s” to “1s” in the outputs.
Most of these parameters can be specified both as
concrete values and in the form of a probability
distribution to randomize their values in the specific
instances of the generated FSMs. As a result, in the
batch mode BenGen can be used to easily generate
large sets of FSM benchmarks with similar
characteristics using the same script file. The script
file can be easily modified to generate a next batch
of different FSMs. The interactive mode of BenGen
provides more control over the generation process.
The user can interactively enter any of the
parameters available in the batch mode.
Additionally, operations allowing modifications of
single branches and transitions are provided. The
interactive mode BenGen is especially useful for
fine-tuning of the generated or industrial FSMs to
possess some very specific characteristics, required
for instance to analyze the behaviour or sensitivity of
a method or tool in relation to a certain aspect.

In both modes, BenGen organizes the benchmark
construction process and takes away the burden of
tedious specification of single transitions, or
checking the consistency of the constructed FSMs.
Instead, the user can focus on specifying the
required high-level FSM’s characteristics. In this
specification process, the user is guided by BenGen,
being asked several questions, whose answers
combined by BenGen result in the required high-
level FSM specification. Having the specification of
the required controlled FSM’s characteristics
BenGen generates the corresponding state chains,
with the requested number of states, and appropriate
backward transitions between and self-loops in the
states, if needed. Given the state-transition behaviour

defined in abstract terms, BenGen generates the
input conditions for particular transitions, etc. In this
process not only does it consider user’s requirements
concerning the active inputs for transitions from a
given state or for a given branch, but also ascertains
that the machine is consistent, i.e. distinct transitions
have disjoint input conditions and all possible input
conditions are specified (for completely specified
FSMs). The generator also determines the output
values, taking into account the outputs active for a
given state, for transitions from a given state or for a
given branch, as well as the percentage of “don’t
cares” and percentage of “1s” to “0s”. With the
above characteristics, BenGen allows a very
efficient generation of large sets of various sorts of
well-characterized FSM benchmarks, with a
minimized effort of the user. On the other hand, it
also enables fine-grained control over the generation
process and editing of the generated or industrial
FSMs. The generation time on a PC is negligible for
small FSMs and is in the order of tenths of minutes
for complex FSMs with tenths of inputs and outputs
and thousands of transitions. This is however a
nonrecurring cost, related moreover to the time of a
computer and not of a human designer.

Currently, BenGen is extensively used in our
research related to the analysis of design problems
and use of various EDA methods and tools for the
multi-objective optimal circuit synthesis targeted to
modern FPGAs and re-configurable SoC platforms.
In particular, we used large sets of diverse
benchmarks generated with BenGen to perform an
analysis of problems related to the quality of the
contemporary commercial and academic methods
and tools for the FPGA-targeted FSM state
assignment. A part of the experimental results from
this research is used in the following sections of this
paper to discuss and illustrate several crucial
problems of benchmarking and demonstrate how to
resolve them. More information on BenGen can be
found in [32].

7 Sequential circuit synthesis
With the contemporary synthesis flows for FPGAs,
the sequential circuit synthesis process from the
RTL-level FSM specification to its actual circuit
implementation is very simple, and consists of the
two following main sub-processes:
- assignment of a binary representation for the

FSM’s symbolic internal states, and
- synthesis of the FSM’s combinational binary-

logic component that results from the state
assignment.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 299 Issue 4, Volume 7, April 2008

As shown it in the successive sections of this paper,
the FSM state assignment methods used in the
contemporary commercial FPGA-targeted circuit
synthesis tools are very simplistic what is a reason of
inferior results. In the sequel, we will use the
benchmarking of the FSM state assignment
techniques to illustrate and discuss several major
benchmarking issues and their solutions, but the
quality of the assignment results will be estimated
by performing combinational component synthesis
and getting the corresponding area, delay and power
related data after the circuit placement and routing
(P&R).

Hardware implementation of an FSM requires
two sorts of components: combinational logic
(implementing the binary representation of the next-
state function δ and output function λ), and binary
memory elements (implementing the state memory).
As opposed to inputs and outputs of an FSM, which
represent some external-world signals that are
usually binary already in the initial FSM
specification (i.e. pre-assigned), the internal states
are initially in a symbolic form in most cases. To
construct a binary logic circuit implementing an
FSM having symbolic states, every symbolic state
has to be implemented with a corresponding
combination of values of the binary memory
elements (e.g. flip-flops). The choice of binary codes
for the FSM’s symbolic states finally decides the
binary-level next-state function, output function and
state memory of the FSM circuit implementation,
and in consequence greatly affects all the main
characteristics (e.g. area, speed, power dissipation)
of the circuit implementation. An optimal FSM state
assignment consists in choosing an appropriate
binary representation for the FSM’s symbolic
internal states, so that the resulting binary logic is
optimal for specific objectives. Finding an optimal
or close to optimal assignment often creates a
significant advantage, but is computationally
complex (NP-hard) [16][26][27]. In a strict sense, it
has never been solved, except for exhaustive search
that is impractical or impossible for larger machines.
Therefore, approximate heuristic assignment
approaches have to be used that are able to find high
quality assignments using reasonable computation
resources. One of the basic requirements for the use
of heuristic methods in practical applications of
circuit synthesis is their robustness, in the sense of
steadily delivering high-quality solutions in the whole
range of possible input data.

The heuristic state assignment approaches can
be subdivided into three main categories:
- structural (constructive) approaches, that

construct (near-)optimal assignments using some

knowledge on the internal structure of an FSM
(the representatives of this category are SECODE
[31][39], Jedi[34] and MAXAD[27]);

- statistical (generative) approaches that generate
and check the assignments, but do not use any
information about the internal structure of a
sequential machine (e.g. genetic algorithms
[1][10] and the best-random approach that
consists in choosing the best from n randomly
generated assignments); and

- pragmatic approach, commonly used in today’s
commercial tools for FPGAs, that consists in
applying an assignment that is “known” as
possessing some “nice” properties; most often
used encoding methods in this category are: one-
hot, Gray and natural binary encoding.

8 Benchmarking result evaluation
The quality of benchmarking results from a
particular method or tool can be analyzed,
characterized, evaluated or compared in relation to
the results from some other methods or tools for the
same aim, or in relation to the optimal results. In
sections 3 and 4 we explained how to construct a
benchmark set that will ensure the adequacy of the
statistical experimental design analysis, and
particularly, correct and meaningful averages and
other statistical parameters. Such a benchmark set
enables correct and meaningful comparison of
methods or tools to some other methods or tools. Let
us now focus on benchmark result comparison to the
optimal results.

Due to the computational complexity of many
electronic design automation problems, the strictly
optimal solutions remain usually unknown. In
particular this is the case of the state assignment for
the most practical FSMs. Consequently, there are no
reference points to which the results from a
particular method or tool could be compared. Even if
the result of one method or tool is better than from
another, it is still unknown how bad (or good) both
these results are. To resolve this problem, the first
author of this paper proposed to compare the FSM
state assignment result obtained for a particular
benchmark from a particular method or tool to the
assignment result distribution for this benchmark
obtained by random assignment generation [26].
This solved in a way the problem of the
benchmarking result analysis and evaluation. An
extensive analysis of the state assignment solution
space was presented by us in [26] and [27], and
therefore only the most important considerations,
definitions and conclusions are recalled here.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 300 Issue 4, Volume 7, April 2008

In [26] and [27], the first author of this paper
demonstrated that the distribution of solutions for
state assignment can be well estimated by a normal
(Gaussian) distribution. For non-trivial FSMs, and
especially for large ones, many factors influence the
state assignment quality, but none of them is a
deciding factor in separation. In this situation, that is
typical to all natural or technical processes that show
a normal distribution, there are many more
constellations of factors that lead to medium value
assignments than constellations that lead to very
good or very bad assignments (arrangements of only
the best or only the worst factors, correspondingly).
Of course, for larger machines, on average, more
factors decide an assignment's quality and there are
more possible constellations of these factors, while
each of them in isolation can decide less about the
quality of the assignment. Therefore, the estimation
of the distribution of solutions by the normal
distribution is on average better for larger machines
than for smaller ones. Very small machines may
show substantial deviations from the normal
distribution. Numerous examples of typical
empirical distributions are given in [26][27]. It is
important to notice that the benchmarking result
analysis technique presented in this section is not
limited to the FSM state assignment problem and
methods of its solution. It can be used to any
problem having a solution space that can be well
modelled with a normal distribution, and to solution
methods of such problems.

A normal distribution N (m, σ) is
defined as a distribution with the
probability density function:

)2/()(22

*)
2

1()(σ

πσ
mxexf −−=

where: m - expected value; σ - mean square
deviation.

The cumulative distribution function
F(x)= P(t ≤ x) for a normal distribution is
given by:

⎪
⎩

⎪
⎨

⎧

≤
−

Φ−

>
−

Φ+
=

mxformx

mxformx

xF
)(5,0

)(5,0
)(

σ

σ

where: Φ(x) is an integral from the probability
density function of the normalized Gaussian
distribution N(0,1) in the integration range <0,x>.
The values of Φ(x) are provided in tabular form in
mathematical guides (also on the Internet).

We must however remember that the
random variable X describing the quality of
a solution is a discrete variable. So, we

must calculate P(X=Xi) as an integral from
the probability density function f(x) in the
integration range <Xi-0.5, Xi+0.5>:

∫
+

−

===
5,0

5,0

)()(
i

i

X

X
i dxxfXXP

)5,0()5,0(−−+= ii XFXF

and P(X ≤ Xi) = F(X+0,5)

To calculate the probability of a number of
successes k in n random choices, the binominal
distribution can be used:

n
nn

knk
n

pSp
k
n

PSP

andpp
k
n

kSP

)1(1)0(1)0(

)1()(

−−==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=>

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== −

where: p – the probability of success for
one random choice.

For large instances of computationally complex
problems (e.g. state assignment for large FSMs) a
strictly optimal solution is relatively unknown.
Consequently, it is virtually impossible to define the
terms "good" or "suboptimal" in relation to the
optimal solutions. Therefore, we proposed some
probabilistic quality measures both for particular
solutions and for solution methods that are based on
the estimation of the solution distribution in the
solution space with a normal distribution. With these
measures, we compare the quality of a result for a
particular benchmark (for instance of an assignment
obtained for a particular FSM from a particular
method) to the normal distribution of results
(assignments) for this benchmark. In contrast to
knowing or finding of a strictly optimal solution for
a particular benchmark, one can always easily find
the normal distribution of solutions for the
benchmark. It can be simply realized through
random generation of a statistically relevant number
of solutions (e.g. 20) for a given benchmark,
evaluation of their quality, and finding the
parameters m and σ of the corresponding normal
distribution from the experimental results or just
drawing the graphical representation of the
distribution from the experiment. The quality of a
solution for a particular benchmark, and
consequently, the quality of a particular method that
constructed the solution, can be compared this way
to the quality of solutions that can be obtained for
the benchmark from random generation. The ideas
behind this comparison are the following. If the

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 301 Issue 4, Volume 7, April 2008

quality of a given solution is worse than the quality
that can be on average obtained through the random
solution generation (i.e. with the high probability of
0.5) than this solution is bad, and consequently, the
method which in most cases constructs such
solutions is also bad (i.e. worse than the random
generation). If, in contrast, the method consistently
construct the solutions that are very difficult to be
generated on random (i.e. the probability of their
random generation is very low) than the method is
actually a very good method. An extension, formal
formulation and further discussion of these ideas are
presented below.

In the digital circuit design field the result quality
is often measured through such attributes as the
circuit area, delay or power consumption, and the
result is better in relation to a particular attribute if
the value of the attribute is lower. Therefore, in the
definitions and discussions below we assumed that a
lower attribute value means higher quality. Of
course, in the opposite case all the definitions and
discussions remains valid – only the inequality sign
by the result quality comparison has to change its
direction.

Definition 1: A solution is good if, and only if, its
quality XG is no worse than the average quality:
XG ≤ m (i.e. P (X ≤ XG) ≤ 0.5).

In the opposite case (i.e. if X is worse than the
average quality: X > m), a solution is bad. Thus,
good means just no worse than the average one that
can be obtained through random generation, or
good means just not bad. When XG is close to m
then the corresponding assignment, although still
good, is not much better than the best of the bad
assignments. Due to the normal distribution of
solutions and the characteristic features of its
probability density function that has its maximum
for X= m and is symmetrically decreasing in both
directions with distance from m, the probability of
randomly generating a good solution is high (0.5)
and equal to the probability of randomly generating
a bad solution. Thus, it is equally easy to randomly
generate good and bad solutions, but the randomly
generated solutions will be concentrated around the
solution of the average quality m. Observe that it is
difficult to randomly generate good or bad solutions
whose quality is far from m. The probability of their
random generation is very low, and decreases with
the distance from m. However, our aim is to find
some “as good as possible” solutions, and thus,
some good solutions whose quality is as far as
possible from m. Our aim is to find the solutions that
can be considered as near-optimal or even of

uniquely good quality, whose random generation
probability is very or extremely low,
correspondingly. The above observations motivated
the following definitions.

Definition 2: A solution is near-optimal if, and only
if, the probability of randomly generating a solution
with a quality X no worse than XN of the near-
optimal solution is not higher than 0.05 (P (X ≤ XN)
≤ 0.05).

Definition 3: A solution is unique if, and only if, the
probability of randomly generating a solution with a
quality X no worse than XU of the unique solution, is
not higher than 0.005 (P (X ≤ XU) ≤ 0.005).

To consistently find such good solutions that their
quality is far from the average quality m, and
consequently, their probability by random generation
is very low, and particularly to consistently find the
near-optimal or unique solutions, we cannot rely on
random generation, but we must have a systematic
method. The method will be of higher quality, if it
will be able to consistently find better solutions, and
thus less probable solutions.

Definition 4: A method is good (near-optimal,
unique) if, and only if, it computes good (near-
optimal, unique) solutions in most cases.

Since in the practical circuit and system design
situations our aim is to find high-quality solutions
that are (close to) the best possible solutions, only
the unique or near-optimal methods are of practical
value. For instance, the trivial random generation
“method” is on the border between good and bad, is
unable to find near-optimal or unique solutions in
most cases, and therefore it is difficult to qualify it
as an actual method. Also, it is difficult to qualify
any solution finding activity as an actual method of a
practical value, if it is only able to find good
solutions, but is unable to find near-optimal or
unique solutions in most cases, i.e. works in a
comparable fashion to the random generation.

It is important to notice that the probabilistic
quality measures defined above are not limited to the
FSM state assignment problem and methods of its
solution. They can be used to any problem having a
solution space that can be well modeled with a
normal distribution, and to solution methods of such
problems.

Observe that due to the normal distribution of
solutions, the solutions generated by the generative
statistical assignments methods will be concentrated

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 302 Issue 4, Volume 7, April 2008

around the average quality assignments. For
instance, it follows directly from the normal
distribution that with ten random choices, the
probability of obtaining a solution that is no worse
than the average, is 0,999, but the probability of
obtaining a near-optimal solution XN is 0,4012 (less
than 0,5!) and the probability of obtaining a unique
solution XU is only 0.0489. Thus, better than average
assignments can be generated with high probability
by statistical methods, but the probability of
generating very good assignments is low, while
generating unique assignments is very unlikely. In
contrast, structural methods that construct
assignments using relevant information on a given
FSM, are able to construct near-optimal or even
unique assignments with good probability
[26][27][32][34][39]. Moreover, to find a very good
solution, the generative algorithms usually need to
evaluate tens or hundreds of solution generations,
each composed of tens of solutions, through their
time-consuming combinational synthesis. In
consequence, the generative algorithms are orders of
magnitude slower than the structural methods in
delivering of comparable quality solutions.
Therefore, they will not be considered further in this
paper.

9 Experimental research
In our experiments reported in this paper, more than
500 FSMs were used that exhibit various
characteristics typical to FSMs encountered in
different real-life applications. As more precisely
described in Section 6, we identified a number of
typical basic schemes of sequential behaviour
present in a large number of real-life FSMs from
various application areas, and generalized and
parameterized the basic schemes and some other
FSM characteristics. This way a set of factors has
been constructed that represent several main FSM
features. A particular combination of the factor
values defines a quite narrow FSM class, in which
all FSMs have the same controlled characteristics,
but may differ on the remaining FSM construction
freedom that is exploited by random generation. The
corresponding FSM benchmark generation process
implemented in BenGen has been used to generate
benchmarks for the experiments. Since the number
of different possible combinations of the controlled
factor values is unlimited, because some of the
factors (e.g. the number of states, inputs or outputs)
are theoretically unlimited, we had to limit the
benchmark generation process to the values that
most often occur in practice. For example, in the

experiments reported here, we did not consider
FSMs having more than 200 states, because the
FSMs specified by human designers or constructed
by the behavioral synthesis tools have typically not
so many states. Larger controllers and other
sequential sub-systems are typically specified as a
composition of smaller collaborating FSMs which
are separately processed by EDA-tools. Observe
please, that we are dealing here with the initial
specifications of particular FSMs, and not with the
final synthesized circuit net-lists of large systems
after flattening of their originally modular and
hierarchical representations. Even after limiting the
factor values to those that most often occur in
practice, the number of different possible
combinations of the controlled factor values was too
large to efficiently process a statistical number of
FSM benchmarks for each such combination with all
the involved circuit synthesis tools. To perform our
experiments reasonably efficiently, when at the same
time ensuring their acceptable quality, we first
performed a coarse sensitivity analysis of the FSM
synthesis results to changes in particular factors. The
factors to which the results were less sensitive could
be quantized more coarsely. This enabled us to
replace the benchmark generation for all different
possible combinations of the controlled factor values
with the benchmark generation for a large number of
different particular combinations of the controlled
factor values, corresponding to a large number of the
narrow FSM classes. For each such narrow FSM
class, we initially generated on random more than 40
benchmarks (and totally more than 1000
benchmarks), what was a satisfactory statistical
number of benchmarks to have a very high
confidence level for the statistical tests. However, it
turned out that the experiments will still require a
prohibitively long time taking into account the
efficiency of the circuit synthesis tools used for the
experiments. Therefore, we finally used in the
experiments approximately 20 benchmarks for each
narrow FSM class (and totally somewhat more than
500 benchmarks), what is actually close to the
lowest value of the statistical number of benchmarks
that still ensures an acceptable confidence level, but
enabled us to perform the experiments in a
reasonable time.

In the experiments, we researched several major
benchmarking issues and effectiveness of several
most representative industrial and academic methods
for the FPGA-targeted sequential circuit synthesis.
The experiments involved: 1-hot, Gray and natural
binary encoding, that represent the pragmatic
industrial assignment approaches prevalent in the
contemporary commercial tools for FPGAs, and our

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 303 Issue 4, Volume 7, April 2008

own FPGA-targeted FSM state assignment tool
SECODE, in comparison to Jedi. JEDI and
SECODE belong to the most advanced academic
tools representing the constructive structural
assignment approaches [29][34][39].

We performed the combinational synthesis of the
encoded FSMs, as well as the placement and routing
(P&R) of the synthesized circuits in the actual
FPGA device performed with the tool of the FPGA
vendor, and analyzed and compared the FSM
encoding results after the synthesis and P&R. We
analyzed and compared the results from each
particular encoding method both in relation to the
results from the other encoding methods (using JEDI
as a reference method) and to the normal
distributions of the encoding results for the
particular benchmark FSMs. The main focus of this
paper is on the benchmark set quality issues, and we
can clearly demonstrate several of these issues when
presenting the results from particular encoding
methods in comparison to the results from JEDI.
Moreover, the issues of analysis and comparison of
the encoding results in relation to the normal
distributions of the results for the particular
benchmarks have been discussed in our previous
papers [26][27][32]. Therefore, in this paper we
included only some limited information on this
useful approach mainly to enhance its proliferation,
and to create a broader context and better
understanding of the benchmarking related to the
state assignment problem and similar complex
problems in digital circuit design.

10 Experimental results
To compute the relative quality of a particular
method on a particular benchmark in relation to
JEDI, the values of each considered quality metric
(area, delay or power-dissipation) were computed
for each encoding by the commercial tool used for
the experiments. Subsequently, for each benchmark,
the percentage of difference in the value of each
particular quality metrics for a particular encoding
method M and JEDI (J) in relation to JEDI was
computed according to the equation:

QD(QM, M) = ((QM(M) – QM(J)) / QMmin(M, J)) *
100%
where:
QD(QM, M) – the relative quality difference in %
between a particular encoding method M and JEDI
on a particular quality metrics QM, QM: area, delay
or power-dissipation;
QM(M) – the quality metrics value for the circuit

resulting for a particular benchmark from a
particular encoding method M, M: JEDI, SECODE,
1-hot, Gray and natural binary encoding;
QM(J) – the quality metrics value for the circuit
resulting for a particular benchmark from JEDI
encoding;
QMmin(M, J) = min{QM(M), QM(J)} – the lower of
the two QM values for the two methods M and J,
used instead of QM(J) or QM(M) to avoid bias to
any of the two compared methods M or J.

We only included the results related to the circuit
area in this short paper, because they are fully
sufficient to illustrate several crucial problems of
benchmarking. Moreover, instead of including the
very large tables with complete raw results for all
benchmarks, we show the results of the statistical
processing of the raw results, i.e. the relative average
area results from different methods in comparison to
JEDI for various FSM classes, and distribution of
the relative results from each method in relation to
the average area for the method. We categorized the
FSMs according to following three criteria: the size,
the proportion of the number of primary input bits to
the number of state bits, and the proportion the
number of primary output bits to the number of state
bits. The size criterion divides FSMs into small
(max. 8 states), medium (9 to 32 states) and large
(more than 32 states). The proportion of the number
of primary input/output bits to state bits categorizes
the FSMs as input/output dominated if the number
of input/output bits is 50% larger than the number of
state bits, state dominated if the number of state bits
is larger than the number of input/output bits and
balanced otherwise.

An important data not shown in the figures below
is that our tool SECODE consistently produced
results that were on average somewhat more than
20% better than the results from JEDI for all circuit
classes (for the corresponding result tables and their
discussion see [31][39]). The results from SECODE
are not included in the figures below, because this
will not introduce any extra information (it will
result in a point on the level of somewhat lower than
–20% in each of the figures), but will substantially
increase the area of the figures.

In Figure 1, the relative results for area are
presented that were produced by each particular
encoding method: 1-hot (H), Gray (G) and natural
binary encoding (B) for each particular class of
benchmarks distinguished according to: size (Size),
proportion of the number of primary input bits to
state bits (Input) and proportion of the number of
primary output bits to state bits (Output). In Figure
2, the distribution of the relative area results from
the particular FSM encoding methods is shown.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 304 Issue 4, Volume 7, April 2008

Many interesting conclusions can be drawn from
the results of the experiments performed. It follows
among others that:
- the constructive FSM encoding methods

represented in the experiments by JEDI and
SECODE produce the best results on average;

- the natural binary and Grey encodings are the
worst encodings of all the considered;

- 1-hot is able to produce very good results for the
medium and large state-dominated FSMs;
however, it is not robust (in Fig. 2 the difference
between max and min is largest for 1-hot) - it
often produces very bad results.

Moreover, it turned out that only the constructive
structural state assignment approaches, represented
by SECODE and JEDI are unique and robust, with
JEDI being close to the border between near-optimal
and unique. In general, the pragmatic FSM state
assignment approaches commonly applied in today’s
commercial circuit synthesis tools for FPGAs,
represented by 1-hot, Gray and binary encodings in
the experiments, are only good or near-optimal, and
not robust in general. However, 1-hot encoding is
unique and robust for the medium and large state-
dominated FSMs. The pragmatic approaches are
thus effective in only some special cases.

The experimental results clearly show a big room
for improvement regarding the state assignment
methods applied in the contemporary commercial
EDA tools targeted to FPGA synthesis, and in this

way demonstrate that an adequately performed
benchmarking is able to reveal important quality
issues. In the contemporary commercial tools, only
the medium and large state-dominated FSMs are
quite well covered by the 1-hot encoding, but there
is a large room for improvement regarding all the
other FSM classes for which all the three pragmatic
approaches (1-hot, Grey and natural binary
encoding) produce inferior circuits comparing to the
structural approaches represented by JEDI and
SECODE. In consequence, the most effective
published approach of the FSM state encoding for
the FPGA-implemented systems seems to be our
new information-driven encoding method
implemented in SECODE [31][39], supplemented
with 1-hot encoding applied to some state-
dominated FSMs.

A r e a
S m a ll

A r e a
S iz e

Now let us focus back on the benchmarking
issues and their demonstration through the
experimental results from our research. Please
observe that if only one statistic would be used on
the whole benchmark set, e.g. the average relative
area (see Fig. 1, Area Total), then the conclusions
from the experiments, although obtained for the
representative benchmark set and correct, would be
very limited. One could only conclude that one-hot
encoding is on average approximately 13% worse
than JEDI and 12% better than Grey and natural
binary encoding. Having additional information on
the distribution of the relative area results (the raw

-1 0

-5

0
5

1 0

1 5

2 0

J H G B

s m a ll
m e d i um
la rg e

A r e a
In p u t

0

1 0

2 0

3 0

J H G B
-2 0

-1 0

i np .d o m
b a la n c e d
s t.d o m

A r e a
O u tp u t

0

5

1 0

1 5

J H G B- 5

o u t.d o m
b a la n c e d
s t.d o m

A r e a
T o ta l

0

5

1 0

1 5

2 0

2 5

3 0

J H G B
Fig. 1 Relative area results from the particular

FSM encoding methods

-6 00
-4 00
-2 00

0
2 00
4 00
6 00

J H G B
m in
m e d
m a x

A r e a
M e d iu m

0

50

1 00

J H G B
m in

-1 00

-50 m e d
m a x

A r e a
L a r g e0

50

1 00

J H G B m in

-1 50

-1 00

-50
m e d
m a x

A r e a
T o ta l

0
2 00
4 00
6 00

J H G B
m in

-6 00
-4 00
-2 00 m e d

m a x

Fig. 2 Distribution of the relative area results from

the particular FSM encoding methods

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 305 Issue 4, Volume 7, April 2008

distribution from the experiment as in Fig. 2 or a
statistically processed one in the form of a standard
deviation), one can immediately conclude much
more, namely: although on average 1-hot is only
approximately 13% worse than JEDI, for particular
benchmark instances it can produce as much as
400% worse results than JEDI, but also as much as
500% better results. Thus, 1-hot is not robust, can
produce both very bad and very good results, but it
is able to produce excellent results in some cases.

Without considering some smaller benchmark
classes, as we did in the presented experiments, and
computing the statistics over the smaller classes, one
could however never know for which kinds of FSMs
1-hot actually produces these excellent results, and
for which produces very bad results. Considering
narrower classes, defined by more factor variables
and narrower sub-ranges for the variables, gives
more precise information. Including more
benchmarks in the benchmark set for each such class
enhances the confidence level of the statistical
conclusions. On the other hand however, both
increase the total number of benchmarks to process,
and with a certain large number of narrow classes
and large number of benchmarks in each class, the
total number of benchmarks can become too large to
be processed in the required practical time. Thus,
there is a trade-off between the benchmarking time
(total number of benchmarks used), the amount and
preciseness of information obtained from the
benchmarking experiment, and the confidence level
of the statistical conclusions.

Often one would like to have an as small as
possible benchmark set that still enables to take the
conclusions of interest, within a limited error margin
and with high enough confidence level of the
statistical result processing. Obtaining of such a
reduced representative benchmark set is possible,
and is illustrated below. The above results in Figure
1 are obtained for the complete representative
benchmark set containing somewhat more than 500
FSMs. Having this large set, we constructed a four
times smaller reduced representative benchmark set
consisting of about 160 FSMs, for which the area
results are presented in Fig. 3. The results on the
reduced set are almost identical to the results on the
original large set (the difference is within 2%).
Obtaining such a well-representative, but reduced,
benchmark set was possible through a careful
selection of the most characteristic benchmarks from
each class of the original large representative set
(e.g. the benchmarks that result in the best and the
worst results in a class or have certain class specific
features that strongly influence the result quality).
This was virtually impossible without first

constructing the original large representative
benchmark set. Also, having a large representative
benchmark set, an automatic construction of a
smaller representative set is possible through
controlled removal of the least characteristic
benchmarks driven by the objective of change
minimization in the relevant statistics for each class
of the reduced set in comparison to the original large
set.

A r e a
S iz e

Now let us observe what happens when the
benchmark selection does not satisfy one or more
conditions of the representative benchmark set. In
Fig. 4, we can observe a result of a non-uniform
benchmark distribution among the classes. In this
set, there are less state-dominated benchmarks on
the input side with a simple transition structure
between the states compared to the number of
benchmarks in the remaining benchmark classes.

Observe that the results and conclusions are now
different than for the representative benchmark set.
In particular, the relative quality of 1-hot encoding
computed for the benchmark set with the non-
uniform benchmark distribution among the classes is
much lower (the relative area is much higher) than
for the representative benchmark set. In Fig. 5, the
results are presented for a benchmark set in which
some benchmarks are repeated twice (namely some
state-dominated benchmarks on the input side with a
simple transition structure between the states). The
same effect can be obtained when having many

-1 0

-5

0
5

1 0

1 5
2 0

J H G B

s m a ll
m e d ium
la rg e

A r e a
In p u t

0

1 0

2 0

3 0

J H G B

inp .d o m
b a la n ced

-2 0

-1 0 s t.do m

A r e a
O u tp u t

0

5

1 0

1 5

J H G B

o ut.d o m
b a la n ced
s t.do m

-5

A r e a
T o ta l

0

5

1 0

1 5

2 0

2 5

3 0

J H G B
Fig. 3 Relative area results for the reduced

representative benchmark set

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 306 Issue 4, Volume 7, April 2008

similar benchmarks in the benchmark set. Also in
this case the results and conclusions are different
and incorrect. In particular, the relative quality of 1-
hot encoding computed for the benchmark set with
some repeated benchmarks is now much higher (the
relative area is much lower) than for the
representative benchmark set. This demonstrates
that both a biased selection of benchmarks within a
class and non-uniform distribution of benchmarks
among the classes introduce substantial changes in
the benchmarking results being the input data for the
statistical processing, and in consequence result in
faulty conclusions.

11 Conclusion
This paper reported several results and conclusions
from our research of benchmarking issues in the
digital circuit design automation. In particular, we
briefly discussed the recent research effort related to
benchmarking in the EDA field and related field of
heuristic methods and algorithms, considered the
importance and difficulties of benchmarking,
analysed and illustrated with examples the problems
related to the construction and use of a
representative benchmark set, explained how to
adopt the statistical factorial design methodology to
resolve some major benchmarking problems in
electronic design and EDA, and discussed the FSM

benchmark generator developed and implemented
by us to resolve serious problems related to the
usage of practical industrial benchmarks and so
called “standard benchmark sets” commonly used
by researchers.

A re a
S iz e

0

1 0

2 0

3 0

4 0

J H G B

sm a ll
m e d ium
la rg e

A re a
In p u t

0

1 0

2 0

3 0

4 0

J H G B

inp .do m
b a la nce d
s t.d om

A re a
O u tp u t

0
5

1 0
1 5
2 0
2 5
3 0

J H G B

o ut.do m
b a la nce d
s t.d om

Are a
T o ta l

0
10
20
30

40
50
60

J H G B
Fig. 4 Relative area results for the non-uniform

benchmark distribution

A r e a
S iz e

Our FSM benchmark generator is based on the
principles of the statistical factorial design also used
in the EDA-related design of experiments methods
of Brglez at al. However, its aim is different and the
actual implementation of the statistical factorial
design approach in BenGen very much differs from
the methods of Brglez at al. Our FSM generator also
very much differs from the generator of sequential
circuit structures proposed by M. Hutton at al, and
has several advantages comparing to Hutton’s
generator. BenGen allows us to efficiently construct
well-characterized sequential circuit specifications
with various characteristics and representative FSM
benchmark sets.

Using large sets of benchmarks from BenGen
that included two representative benchmark sets and
two non-representative benchmark sets, we
experimentally demonstrated several important
benchmarking issues, mainly related to the
benchmark set representativeness and statistical
processing of the benchmarking results. In
particular, we showed that using only a single
statistic on the whole benchmark set (e.g. averaging
over all the benchmarking results) the information
obtained is very little and the conclusions very

-1 5
-1 0

- 5
0
5

1 0
1 5
2 0

J H G B

s m a ll
m e d ium
la rg e

A re a
T o ta l0

1 0

2 0

3 0

J H G B
-2 0

-1 0

A r e a
In p u t0

1 0

2 0

J H G B inp .d o m

-3 0

-2 0

-1 0
b a la n ced
s t.do m

A r e a
S iz e0

5

1 0

J H G B o ut.d o m

-1 5

-1 0

-5
b a la n ced
s t.do m

Fig. 5 Relative area for the case of repeated

benchmarks

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 307 Issue 4, Volume 7, April 2008

limited. Considering more statistics and/or narrower
benchmark classes gives more information and more
precise information, enabling more precise and more
useful conclusions. We also demonstrated that there
is a trade-off between the benchmarking time, the
amount and preciseness of information obtained
from a benchmarking experiment, and the
confidence level of the statistical conclusions. The
experiments also showed that the pragmatic FSM
state assignment approaches commonly applied in
today’s commercial circuit synthesis tools for
FPGAs are effective only in some special cases.
Through showing a big room for improvement
regarding the state assignment methods applied in
the contemporary commercial EDA tools targeted to
FPGA synthesis, we demonstrated that an
adequately performed benchmarking is able to
reveal serious quality concerns. We also
demonstrated that an inadequately performed
benchmarking, and specifically performed when
using a non-representative benchmark set, can easily
result in faulty conclusions and this way mask
important quality issues.

Although this paper delivered much information
on the quality of several FSM state assignment
techniques in their application to the FPGA-targeted
circuit synthesis, the FSM synthesis problem and
related techniques mainly served here as an
example. The main aim of the paper was to
demonstrate the importance and difficulties of
benchmarking in digital circuit design automation,
and to propose and discuss effective solutions to
several benchmarking problems. A large part of the
discussion of the paper is thus not limited to the
digital circuit design, but pertains to the larger area
of electronic design and its automation.

The discussions and experimental results of this
paper clearly demonstrate the inadequacy of the
traditional benchmarking approach in EDA,
advantages of the design of experiments approach,
and a big room for improvement in the sequential
circuit design methods and tools.

Trough its substantial introductory and survey
part, as well as explanations and examples
presented, the paper has also a popularizing
character. We hope therefore that this paper will be
an important step towards a broader acceptance of
the statistical design of experiments approach for
benchmarking in the EDA field, and will trigger
some works towards more adequate digital circuit
design methods and tools.

Acknowledgements – The concept and initial
design of the FSM Benchmark Generator BenGen

have been developed by Lech Jóźwiak in his private
capacity. The implementation of BenGen and
subsequent experimental research have been
performed at the Faculty of Electrical Engineering
of the Eindhoven University of Technology, and
were partly supported by the Technology
Foundation STW, applied science division of NWO,
and the Technology Program of the Ministry of
Economic Affairs.

References:
[1] A.E.A. Almaini, et al.: State Assignment of

Finite State Machines using a Genetic
Algorithm, IEE Proc. on Computers and
Digital Techniques, 1995, pp.279-286.

[2] M. Azlinah, Y. Marina, A. M. Itaza, M.
Sofianita, A. R.Shuzlina: Constraint
Satisfaction Problem Using Modified Branch
and Bound Algorithm, WSEAS Transactions on
Computers, Vol. 7, No 1, Jan. 2008, pp. 1-7.

[3] R. S. Barr, B. L. Golden, J. P. Kelly, M. G. C.
Resende, and W. R. Stewart: Designing and
Reporting on Computational Experiments with
Heuristic Methods, Journal of Heuristics, Vol.
1, No. 1, 1995, pp. 9-32.

[4] G.E.P. Box, W.G. Hunter, J.S. Hunter:
Statistics for experimenters: an introduction to
design, data analysis, and model building,
Wiley, 1978.

[5] F. Brglez: The Scientific Method and Design
and Test, IEEE Design Test Computers, Vol.
17, No 3, 2000, pp. 142-144.

[6] F. Brglez, R. Drechsler: Design of Experiments
in CAD: Context and New Data Sets for
ISCAS’99, Proc. ISCASS’99, May 30-June 2,
1999.

[7] F. Brglez, M.F. Stallmann, and Xiao Yu Li:
SATbed: A Configurable Environment for
Reliable Performance Experiments with SAT
Instance Classes and Algorithms, Proc. 6th Int.
Conf. on Theory and Applications of
Satisfiability Testing, S. Margherita Ligure –
Portofino, Italy, May 5-8, 2003.

[8] F. Brglez, Xiao Yu Li and M.F. Stallmann: On
SAT instance classes and a method for reliable
performance experiments with SAT solvers,
Annals of Mathematics and Artificial
Intelligence, Kluwer, 2004.

[9] K.A. Brownlee: Statistical theory and
methodology in science and engineering,
Krieger, 1984 (Reprinted with revisions from
second edition, 1965).

[10] S. Chattopadhyay, P. Pal Chaudhuri: Genetic
Algorithm Based Approach for Integrated State

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 308 Issue 4, Volume 7, April 2008

Assignment and Flipflop Selection in Finite
State Machine Synthesis, Proc. of Int. Conf. on
VLSI Design, 1997, pp. 522-527.

[11] M. Coffin and M. J. Saltzman: Statistical
Analysis of Computational Tests of Algorithms
and Heuristics, INFORMS Journal on
Computing, Vol. 12, No. 1, 2000, pp. 24-44.

[12] J. Cong and K. Minkovich: Optimality Study
of Logic Synthesis for LUT-Based FPGAs,
Proc. FPGA’06, February 22-24, 2006,
Monterey, California, USA, ACM, pp. 33-40.

[13] S. Davidson and J. Harlow: Guest Editorial
Introduction: Benchmarking for Design and
Test, Proc. IEEE Design and Test of
Computers, IEEE Computer Society Press,
17(3), July-September 2000, pp. 12-14.

[14] R.A. Fisher: Statistical methods, experimental
design, and scientific inference, Oxford
University, 1993.

[15] M. D. Galanis, G. Dimitroulakos, C. E. Goutis:
Performance Gains from Executing Critical
Software Segments to Coarse-Grain
Reconfigurable Hardware, WSEAS
Transactions on Circuits and Systems, Vol. 5,
No 7, July 2006, pp. 1111-1118.

[16] M. R. Garey, D. S. Johnson: Computers and
Intractability: A Guide to the Theory of NP-
Completeness, W. H. Freeman & Co, 1979.

[17] J.E Harlow: Overview of Popular Benchmark
Sets, IEEE Design Test Computers, vol. 17,
No3, 2000, pp. 15–17.

[18] J.E. Harlow and F. Brglez: Design of
Experiments and Evaluation of BDD Ordering
Heuristics, Int. Journal STTT, 2001, No. 3, pp.
193-206.

[19] J. N. Hooker: Needed: An Empirical Science of
Algorithms, Operations Research, No 42,
1994, pp.201-212.

[20] J. N. Hooker: Testing Heuristics: We Have It
All Wrong, Journal of Heuristics, No 1, 1995,
pp. 33-42.

[21] H. Hoos, T. Stützle: Evaluating Las Vegas
algorithms – pitfalls and remedies, in:
Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence, Morgan
Kaufman, 1998, pp. 238–245.

[22] M. Hutton, J.P. Grossman. J. Rose and D.
Corneil. Characterization and Parametrized
Random Generation of Digital Circuits, Proc.
of 33rd ACM/IEEE DAC, 1996.

[23] M. Hutton, J.P. Grossman, J. Rose and D.
Corneil: Generation of Synthetic Sequential
Benchmark Circuits, Proc. ACM Symposium on
FPGAs, 1997, pp. 149-155.

[24] M. Hutton, J. Rose and D. Corneil: Automatic

Generation of Synthetic Sequential Benchmark
Circuits, IEEE Trans. CAD, Vol.21, No 8,
2002, pp. 928-940.

[25] D. S. Johnson: A theoretician's guide to the
experimental analysis of algorithms, in Fifth
and Sixth DIMACS Implementation Challenges
(M.H. Goldwasser at al, eds.), Am. Math.
Society, 2001, pp. 215-250.

[26] L. Jóźwiak: Efficient Suboptimal State
Assignment for Large Sequential Machines,
Proc. EDAC-European Design Automation
Conference, 1990, pp. 536 - 541.

[27] L. Jóźwiak: An Efficient Heuristic Method for
State Assignment of Large Sequential
Machines, Journal of Circuits, Systems and
Computers, Vol. 2, No.1, 1992.

[28] L. Jóźwiak: Life-inspired Systems and Their
Quality-driven Design, Proc. ARCS’06: 19th
International Conference on Architecture of
Computing Systems - System Aspects in
Organic Computing, Frankfurt/Main, Germany,
March 13 - 16, 2006 (Keynote Paper), pp. 1-16.

[29] L. Józwiak, A. Chojnacki: Functional
Decomposition Based on Information
Relationship Measures Extremely Effective for
Symmetric Functions, Proc. 25th EUROMICRO
Conference, 1999, pp. 150-160.

[30] L. Jóźwiak, A. Chojnacki: Effective and
Efficient FPGA Synthesis through General
Functional Decomposition, Journal of Systems
Architecture, Elsevier Science, Amsterdam,
The Netherlands, Vol. 49, No 4-6, September
2003, pp. 247-265.

[31] L. Jóźwiak, A. Ślusarczyk, A. Chojnacki: Fast
and Compact Sequential Circuits for the FPGA-
based Reconfigurable Systems, Journal of
Systems Architecture, Vol. 49, No 4-6,
September 2003, pp. 227- 246.

[32] L. Jóźwiak, D. Gawlowski and A. Slusarczyk:
An Effective Solution of Benchmarking
Problem - FSM Benchmark Generator and Its
Application to Analysis of State Assignment
Methods, Proc. DSD’2004 - Euromicro
Symposium on Digital System Design, 2004,
pp. 160-167.

[33] N. Kapur, D. Ghosh, F. Brglez: Towards a New
Benchmarking Paradigm in EDA: Analysis of
Equivalence Class Mutant Circuit
Distributions. Proc. ACM Int. Symp. on
Physical Design, 1997, pp. 136-143.

[34] B. Lin, A.R. Newton: Synthesis of Multiple
Level Logic from Symbolic High-Level
Description Languages, Proc. IFIP Int. Conf.
on VLSI, 1989, pp.187-196.

[35] A. Mahdoum, N. Badache, H. Bessalah: Low-

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 309 Issue 4, Volume 7, April 2008

Power Scheduling Tool for System On a Chip
Designs, WSEAS Transactions on Circuits and
Systems, Vol. 6, No 12, December 2008, pp.
608-624.

[36] C. C. McGeoch: Experimental analysis of
optimization algorithms, Handbook of
Combinatorial Optimization (P. M. Pardalos
and M. G. C. Resende, eds.), Oxford University
Press, 2000.

[37] C. C. McGeoch: Experimental analysis of
algorithms. In Handbook of Global
Optimization, Volume 2: Heurstic Approaches
(P. Pardalos and E. Romeijn, eds.), Kluwer,
2001.

[38] B. M. E. Moret: Toward a discipline of
experimental algorithmics, in Fifth and Sixth
DIMACS Implementation Challenges (M.H.
Goldwasser at al, eds.), Am. Math. Society,
2001.

[39] A. Ślusarczyk: Decomposition and Encoding
of Finite State Machines for FPGA
Implementation, Ph.D. dissertation, Eindhoven
University of Technology, The Netherlands,
2004.

[40] Z. Wenbiao, Y. Zhang, Z. Mao: Link-load
Balance Aware Mapping and Routing for NoC,
WSEAS Transactions on Circuits and Systems,
Vol. 6, No 11, Nov. 2007, pp. 583-591.

[41] M. Yoshikawa, K. Otsuka, H. Terai: Dedicated
hardware for inheritance-oriented crossover
operation, WSEAS Transactions on Circuits
and Systems, Vol. 7, No 3, March 2008, pp.
109-117.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Lech Jozwiak, Dominik Gawlowski
 and Aleksander Slusarczyk

ISSN: 1109-2734 310 Issue 4, Volume 7, April 2008

