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Abstract: - An effective approach for 3D model retrieval is to represent models by a set of projection views . In 
this paper, we propose a flexible framework for view-based 3D model retrieval. The framework provides users 
the ability to configure three components: the number of views, the type of views, and the 2D shape descriptors 
used to distinguish views. Because the three components are closely related to the performance of a view-based 
3D model retrieval system and usually application-dependent, it is necessary to make them configurable. To 
achieve this goal, the framework employs a new view polyhedron positioning algorithm and provides an 
adaptable interface to its 3D shape feature extraction module. We build a demo 3D model retrieval system 
based on the framework. Experiment shows that the performance of the demo system is satisfactory. 
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1 Introduction 
The development of computer graphics has made 
great progress over the last few decades. One aspect 
of the progress is that 3D models can be generated 
much easier than before with new 3D modelling 
tools and digitalizing technologies. As 3D models 
are proliferating, it is necessary to have a system for 
3D shape retrieval. 

Many 3D shape retrieval approaches have been 
proposed recent years. Among them are view-based 
approaches, which distinguish 3D models by 
comparing multiple 2D projection images of the 
models. The following two features of view-based 
approaches make them important to 3D model 
retrieval. 1) Although it seems that view-based 
approaches do not use the 3D geometry information 
fully, they achieve better retrieval performance than 
other approaches [1]. 2) Because view-based 
retrieval algorithms work in image space instead of 
object space, they are not sensitive to noise and 
model degeneracy. 

The main shortcoming of view-based descriptors 
is their high computational complexity. Another 
problem of view-based approaches lies in what type 
of views (silhouette or depth map?) should be taken 
and which 2D shape descriptor (Fourier descriptor 
or Zernike moments?) should be adopted. 
Depending on different application requirements, 
there may be different choices [2]. 

In this paper, we propose a flexible framework for 
view-based 3D model retrieval, which provides 
multiple-level retrieval precision and computational 
complexity. It is also extensible for different types 
of views and 2D shape descriptors.  

The rest of the paper is organized into the 
following sections: Some related work is 
summarized in Sec. 2. Then, we describe our 
framework system and provide some 
implementation details in Sect. 3. Sect. 4 presents a 
demo 3D model retrieval system based on the 
framework and the experimental results of it. 
Finally, we draw the conclusions in Sect. 5. 
 
 
2 Related Works 
The main idea of view-based 3D shape descriptor 
comes from the fact that two 3D objects are similar, 
if they look similar from all viewing angles. Thus, 
almost all view-based retrieval approaches use a 
“view polyhedron” to encompass the 3D model, and 
viewpoints are placed on its vertices. We will 
discuss three typical view-based 3D model retrieval 
systems in the following. 

Funkhouser et al [3] have a view-based 3D shape 
descriptor in their 3D model search engine to 
provide a 2D sketch query interface. The descriptor 
uses 13 views defined by a bounding cube. 
Viewpoints are taken at the center of three faces, the 
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four top corners, and the middle of six edges of that 
cube. The approach uses too few numbers of views, 
so its retrieval precision is relatively low. 

Chen et al [4] propose the Light Field Descriptor 
(LFD) for 3D model retrieval. A LFD is a set of 
images rendered from 10 vertices of a 
dodecahedron. To be robust against rotation, a 
model can be represented by a number of LFDs 
which are evenly distributed around it. Their system 
gets an outstanding retrieval performance, but it is 
very time and computation consuming at the same 
time, because a large number of views need to be 
computed and compared. Moreover, due to only the 
simple silhou ettes are extracted as views, Chen’s 
3D shape descriptor is not very capable of 
discriminating some concave geometries. For 
instance, it can not tell a sphere from a sphere with a 
pit on the surface. If depth maps are used as views, 
such as the Ohbuchi’s system [5], this problem can 
be solved. 

Ohbuchi et al [5] present a 3D model retrieval 
system using a view polyhedron with 42 vertices. 
The depth maps of 3D models are taken as views 
and a region-based 2D shape descriptor is employed 
to distinguish them. But this system adopts a non-
regular view polyhedron, so the rotation alignment 
of 3D models can not be done efficiently and 
effectively. 

As above discussed, each of these systems has its 
advantage and disadvantage. In different 
applications, there are different strategies to deal 
with these issues. With the intention of allowing the 
needs of diverse users and applications, we follow 
Chen’s Light Field Descriptor idea, but take the 
configurability of system into consideration to 
design a flexible view-based 3D model retrieval 
framework. 
 
 
3 View-Based 3D Model Retrieval 
Framework 
The overall structure of our framework is illustrated 
in Fig. 1. 

 

Fig. 1  Structure diagram of the view-based 3D 
model retrieval framework 

Like most 3D model retrieval systems, its main 
parts include Query interface, Model preprocessing, 
Model feature extraction and Dissimilarity 
computation [6]. What makes it different is that the 
“ Model feature extraction” module is configurable, 
which means it can be changed through specifying 
system parameters by users. We will elaborate on 
these parts in the following subsections.  
 
 
3.1 Query Interface and Model 
Preprocessing 
The query interface receives a 3D model submitted 
by users. The queried model follows the same 
processing flow as models in the repository until 
their dissimilarity is computed. Before extracting 
shape feature from 3D models, a preprocessing step 
for translation and scale normalization is need. This 
step ensures that 3D models are fitly circumscribed 
by the view polyhedron. Rotation normalization is 
not included in this step. Two models are implicitly 
aligned in rotation when their dissimilarity are 
compared, i.e. rotation alignment takes place in the 
“Dissimilarity computation” module. 
 
 
3.2 Model Feature Extraction 
The shape feature of 3D models is extracted at the 
“Model feature extraction” module in Fig. 1, which 
is the heart of our framework.  

We employ the dodecahedron as the view 
polyhedron. To be robust against model rotation and 
get higher retrieval precision, more views of a 3D 
model need to be taken. When 20 views 1  that a 
single dodecahedron provides is not enough, a set of 
view polyhedrons with different rotating angle is 
applied to a model. The framework is designed to be 
able to use different number of view polyhedrons. 
The variability of the number of view polyhedrons 
enables multiple-level retrieval precision and 
computation complexity. Users can set a proper 
number according to their specific application. For 
example, many models are aligned with Cartesian 
axes when they were built (This may be explained 
by that people don’t like posing an object random). 

                                                 
1 If the view is reflective symmetric (for example, 
silhouette), there are only 10 different views 
produced for a 3D model, because the views 
projected from two opposite vertices on the 
dodecahedron are identical. 
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In these cases, we can use a smaller number of view 
polyhedrons, for models generally fall into several 
fixed poses. 

When multiple view polyhedrons are applied, 
they need to be evenly distributed around the model 
to cover every viewing angle. Chen’s system [4] 
makes use of Turk’s random points relaxation 
algorithm [7] to generate evenly distributed 
LFDs(view polyhedrons). Our model retrieval 
framework employs a simple but effective algorithm 
to position view polyhedrons. Suppose that we 
apply N view polyhedrons to a model. Each view 
polyhedron is rotated around x-, y- and z-axis by an 
offset angle. The offset angle for the i-th view 
polyhedron is: 

)1(108_ −×= i
N

angleOffset i

D

  (1) 

Ni ,,2,1 …=    
Due to the circular symmetry of the 

dodecahedron, the viewing angle range is 0 to 180-
degree. Formula. 1 divides the viewing angle range 
into equal parts, each of them being taken by a view 
polyhedron. Fig. 2 shows the distribution of view 
polyhedrons generated by our algorithm. 

 
Fig. 2. The distribution of view polyhedrons with 

different N. (a) N = 4 (b) N = 8 (c) N = 12 
When view polyhedrons are ready, we can take 

views from a 3D model. Silhouette may be the 
simplest and the most common type of views. Other 
possible kinds of views include depth map, normal 
map or thickness map, etc. Theoretically, these 
maps are more helpful for 3D shape discriminating, 
since they contain more geometry information than 
silhouette. As above mentioned, depth map has been 
already explored by some researchers. We expect 
that other kinds of maps will also have its utility for 
view-based 3D model retrieval. 

Effectively measuring the shape dissimilarity 
between views is crucial for 3D shape 
discrimination. Fortunately, in the past decades, 
CBIR (Content-Based Image Retrieval) community 
has already brought out a lot of 2D shape 
descriptors for image retrieval [8]. Just like the 3D 
shape discrimination, 2D shape discrimination is 
also a non-trivial work. There is no 2D shape 
descriptor suited for all cases. Using a combination 

of different 2D shape descriptors can get better 
retrieval performance. Moreover, because the 
framework can use different kinds of maps as views, 
there is need for different 2D shape descriptors to 
distinguish them. Thus, our framework provides an 
interface to assemble different 2D shape descriptors. 
Users can try, test and combine different descriptors 
to find out the best ones suited for their application. 
 
 
3.3 Dissimilarity Computation 
To compute the dissimilarity between two 3D 
models is to compare the dissimilarity between 
corresponding views of them. We use the algorithm 
proposed by Chen [4] to do this job. When 
computing the dissimilarity, rotation alignment of 
two 3D models is done at the same time. Chen’s 
algorithm computes the dissimilarity distance 
between two view polyhedrons of the two 3D 
models by compare their views in pairs subject to 
view consistency constrain. If multiple view 
polyhedrons are employed, each view polyhedron of 
a model is compared with each of another and the 
minimal dissimilarity distance between all view 
polyhedrons is taken as the dissimilarity distance 
between the two 3D models. 
 
 
4 Experimental Results 
We implement a 3D model retrieval system based 
on the proposed framework. The demo system uses 
4 view polyhedrons, silhouette as views, and 
employs two 2D shape descriptors to distinguish 
them: the Geometric Moment Descriptor (GMD) 
and the Polar Radius Fourier Transform [9]. 
GMD is a kind of feature based on region. Let 

),( yxf  be a 2D digital image with its size being 
NM × . The )( qp +  rank moment is defined as 

following: 
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(2) 
To be invariant to position, we can use the 

central moment, that is to say, calculating the 
moment with the condition that the centroid of the 
object in the image is the coordinate origin. Thus the 
central moment can be defined as:  
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),( cycx  is the centroid. If we unitize the central 
moments according to area by substituting 

12/)(
00

++qpMpqm
 for pqm  itself, the obtained 

ones have the character of invariance to scale. There 
are 7 moments as: 
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The 7 moments are invariant to the image 
translation, rotation and scaling. We can constitute a 
feature vector of an image using these 7 moments.  

Polar Radius Fourier Transform is based on the 
contour of an image. 
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We choose the first several coefficients as the 
high frequency part is not steady and changes 
drastically when the contour has even a slight 
difference. To get invariance for scaling, we choose 
the following list as feature vector: 
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We use the 3D model database of Princeton 
Shape Benchmark [1] as our test database. The 
“precision and recall” curve is used to evaluate the 
performance of our demo system. Our demo system 
is compared with two other competing 3D shape 
descriptors: the LFD [4] and the D2 Shape 
Distribution [10]. As shown in Fig. 3, our demo 
system outperforms the D2 Shape Distribution 
significantly, but is inferior to the LFD. This can be 
explained by two reasons: 1) our demo system uses 
fewer views than the LFD system. We set 4 view 
polyhedrons in the demo system, while the LFD 
system uses 10 view polyhedrons. 2) Our demo 
system adopts a simple region-based 2D shape 
descriptor. We employ GMD for the demo system, 
while the LFD system uses Zernike moments as one 
of its 2D shape descriptor. Generally, Zernike 
moments perform better than GMD. 

 
Fig. 3. Precision-recall plot of the LFD, D2 and 

demo system 
Although losing some performance, our demo 

system is less computation consuming than the LFD 
system by employing fewer views and a simple 2D 
shape descriptor. The experiment was done on a PC 
with a Pentium IV 2.0GHz CPU, 256M memory. 
Table. 1 shows the average feature extraction time 
and dissimilarity computation time of the two 
systems. Our demo system is 42% faster on feature 
extraction and 44% faster on dissimilarity 
computation than the LFD system. 

Table 1. Feature extraction time and dissimilarity 
computation time 

 Feature 
extraction 

Dissimilarity 
computation 

LFD 7.75s 0.004131s 
Demo system 3.23s 0.001824s 

 
 
5 Conclusions 
In this paper, a flexible framework for view-based 
3D model retrieval is proposed. Using the 
framework, users can build a 3D model retrieval 
system easily according to their specific application. 
The framework is also very useful for researchers to 
observe the tradeoff between computational 
complexity and retrieval precision, and to test 
different types of views and 2D shape descriptors. 
In the future wok, we will test different type of 
views and 2D shape descriptors using the 
framework. We will also explore the three 
configurable components on a variety of 3D model 
databases, expecting to find proper configurations 
for different classes of 3D models. 
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