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Abstract:  -  The paper presents a novel algorithm for the computation of the image decomposition using a 
morphological  filter  with reconstruction The target  applications  are image contrast  enhancement especially 
those with high dynamic content. Both bright and dark regions contrast enhancement were considered. A new 
hardware  efficient  implementation  of decomposition is  presented.  Following decomposition in 5 levels of 
detail  a  local  contrast  enhancement  is  performed.  The  new  reconstruction  algorithm  and  its  hardware 
implementation  as proposed is shown to be independent  on structural  element  size  and that it  results  in a 
predictable time frame operation.  A mixed schematic  and VHDL/Verilog description of the decomposition 
filters was synthesized and results show far higher speed performance compared with solutions found in recent 
literature.  The  FPGA implementation  had  as  main  objective  real  time operation.  The  performance of  the 
architecture was found to exceed real time conditions of operation and fit  into medium size FPGA. A test 
sample  image was  used for  contrast  enhancement  schemes validation.  The white  areas  local  contrast  was 
enhanced expanding the gray scale for the detail levels after a parabolic series. The scale warping in the white 
areas resulted in contrast enhancement while the dark areas did not.  
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1 Introduction
It  is  known  that  the  major  difficulty  in  using 
morphological filters in real time image processing 
applications  is  their  inherent  complexity  and  high 
computation cost.
   In  real  time  image  processing  applications  the 
computational  complexity issue  is  even more  of  a 
constraint.  The  solution  advocated  by  recent 
literature  is  hardware  acceleration  by  FPGA 
implementations of the algorithms [1] [2] [3]. 
    High dynamic intensity images have poor contrast 
when  perceived  by  the  human  vision.  The  final 
objective  of  the  study  was  to  devise  hardware 
solutions  for  image contrast   enhancement  in  real 
time for high dynamic content images. Both bright 
and  dark  regions  contrast  enhancement  were 
considered as possible objectives. 
  Commonly  the  contrast  is  enhanced  by  local 
dilation  of  the  intensity  scale  in  the  region  of 
interest.  The  coefficients  for  scale  dilation  yield 
best  results  when  adopted  to  human  vision 
perception characteristics [5] The basics of contrast 
enhancement principles are presented in  part 2 of 
the paper.
    Morphological filters constitute a convenient and 
efficient method of contrast enhancement. Part 3 of 

the  paper  briefly  reviews  the  principle  of 
morphological  filters  for  image  decomposition 
according  to  the  area  parameter.  The  various 
computational alternatives are examined. 
   It  is shown that the iterative mono dimensional 
structural  element  approach  delivers  lower 
performance   given  real  time  constraint  when 
compared to multiple size structural element (SE). 
  A  single  scale  multiple  dimension  structuring 
element (SE) variant was chosen as appropriate for 
FPGA implementation.
   Part 4 of the paper presents a new computational 
approach for the reconstruction phase. As proposed 
it  eliminates  the  computation  time dependence  on 
image content. The  synthesis  results show  that the 
solution has an efficient implementation  in medium 
size FPGA without need for external RAM .
  In part 5 details of the proposed novel architecture 
implementation  of  the  morphological  image 
decomposition with reconstruction in FPGA. 
   Contrast enhancement  on a sample image used for 
validation of the FPGA implementation as proposed 
is presented in part 6.
   Part 7 of the paper contains a summary of  the 
reported results and suggests further morphological 
algorithm enhancements .
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2  Morphological  Image  Contrast 
Enhancement 
The information content in an image is known to be 
very high. The image representation for perception 
of  the  information  content  is  dependent  on  the 
observer  capacity to  distinguish  among the  salient 
objects of interest.
    A  contrast  enhancement  method  is  a  way  to 
construct  starting  from  the  original  image  an 
appropriate  representation   highlighting  to  the 
observer  for  perception  the  image  objects  with 
features of interest.
     In general terms this means to alter the scale of 
details  in  the  representation  favoring  the  desired 
features.  In the case of contrast enhancement from 
the original image feature space some details at local 
scale are expanded to be brought into focus.  They 
will  attract  the attention of the observer while  the 
rest are contracted to recede in perception.
  The  most  common  method  of  contrast 
enhancement  in  use  today  is  the  histogram 
equalization  [6].  The  draw  back  of  histogram 
equalization is that the results obtained in th end are 
input image dependent.
   The dynamic range of images is known to be very 
large. In a representation at a limited resolution even 
if  generous in resources compromises  as to which 
aspects of interest value range   to be allocated from 
the ones available. The details are the features that 
do pose a lot of interest. The interest is in contrast 
with their  natural  minor representation in the gray 
levels being overshadowed by large area  objects. 
     Natural images do have a Fourier spectrum that is 
of the 1/f – a  form with  a in a range (0.7 – 1.5). As 
the  spacial  frequency f  increases  the  amplitude  of 
the details decreases thus making them always more 
difficult to represent.
    Specific application areas do present images that 
span  selectively  on  ranges  of  the  general  image 
spectrum.  Compact  object  populated  scenes  claim 
the extremes of the spectrum while  inner images of 
compact structures exhibit center spatial frequencies 
spectral  domain.  A different  contrast  enhancement 
scheme must be devised for each class.
    The human vision system perceives images in a 
complex  and  non  linear  fashion.  It  is  therefore 
natural to follow the human system perception rules 
in  order  to  be  able  to  highlight  the  features  of 
interest.
   The  system  architecture  outlined  in  Fig.  1 
indicates the method of image details scale change 
having  as  final  objective  the  human  contrast 
perception enhancement.

Fig. 1 Image contrast  enhancement  principle using 
morphological image decomposition.

   The solution adopted in the present  paper is  to 
decompose  the  original  image  information  in  the 
scale space of the human vision system to start with. 
The second step  adjusts the image levels at every 
scale  of  details  into  a  representation  favoring  the 
perception of features of  interest  by the human eye.
   Classical  contrast  enhancement  schemes  use 
global  rearrangement  of  image  intensity  levels  to 
balance image representation for perception [7], [8].
  The advantage of the morphological decomposition 
and  representation  over  normal  pixel  intensity 
representation is that it relates to features rather than 
just intensity numerical values [14]. 
  Morphological  operators  used  in  the  image 
decomposition  extract  from  intensity  content  the 
variational  content  populating  the  original  larger 
dimension  space with objects. The pixel intensities 
are  not  taken  as  singular  values  but  as  a  map  of 
objects of the real space projected on the 2D image.
  The image decomposed in detail levels is processed 
and subsequently assembled back. Features in image 
can  thus  be  enhanced  or  deemed  with  ought 
affecting the rest of the objects in the image. 

3 Morphological image decomposition 
Image  enhancement  using  morphological  methods 
are  of  considerable  contemporary  interest  as 
reflected in recent literature  [4], [12], [15]. It is also 
well known that for each application class specific 
enhancement methods need to be developed. 
    The decomposition of a image in levels of detail 
is equivalent to low pass filtering as it is illustrated 
in Fig. 2. 
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Fig. 2  Low pass filtering with reconstruction visible 
mostly in the dark areas for a test sample using 5x5 
and 9x9 SE. The image at the right is the original. 
 
  The sequence of successive opening and closing 
with structuring elements of increasing size selects 
the levels of detail hence the spatial frequencies.  
   The image decomposition and scale rearrangement 
principles  is  well  understood  as  reflected  in  the 
literature.  Efficient  technological  implementations 
for classes of applications that can not afford a high 
computational resource have not been explored [4]. 
   The  difficulty  of  hardware  implementation  of 
image processing algorithms is due to the very high 
complexity of the algorithm and the high amount of 
computation necessary [9], [10].
   In  the  present  paper  the  implementation  of 
morphological filters is mirroring the decomposition 
of  the  image  as  proposed  recently,  following  the 
human vision system (HVS) perception process [5].
  The  image  multi-resolution  representation 
proposed  in  the  present  work  is  based  on  a 
morphological  single  scale  decomposition.  The 
classes of objects are selected at each level using a 
closure – opening (CO) morphological operator pair. 
It can be shown that this succession of operators is 
acting equivalent to a low pass filter at the level of 
details of objects in the image. The selective detail 
sub-image is obtained by subtracting of the filtered 
image from the original.
   The  definition  for  the  dilation  and  erosion 
operators for a grayscale image using a structuring 
element [SE] - B (j,k) is as follows:

Dil(A(r,s),B) = maxB (j,k) (A(r-j,s-k) + B (j,k))  (1)

Ero(A(r,s),B) = minB (j,k) (A(r-j,s-k) - B (j,k))  (2)

    A succession of dilation and erosion operations 
define  the  morphological  closing  and  opening 
operators :

Close(Image,B) = Ero(Dil(Image,B),B)              (3)

Open(Image, B) = Dil(Ero(Image,B), B)  (4)

    To obtain a morphological low pass filter with 
ought  image  distortion  each  of  the  closing  and 
opening  operators  must  be  followed  by  an 
appropriate  reconstruction.  The  geodesic  dilation 
and the geodesic erosion of size one are given by:

G1Dil[I (mark)F] = min[I, Dil1(F)]    with F ≤ I (5)

G1Ero[I (mark)F] =max[I, Ero1(F)]  with F ≥ I (6)

   The original image I is reconstructed based on the 
mark  image  F  that  needs  to full  fill  the  ordering 
condition given in formula (5) and (6).

An  illustration  of  how  levels  of  detail  are 
obtained in  morphological image decomposition is 
presented in Fig. 3. for a 2D case. The 3D case is 
similar  by  adding  another  dimension.  The 
reconstruction  fills  back  the  distorted  intensity 
surfaces values by the  planar sides of the structuring 
element.
   The structuring element (SE) at one level is the 
dilation of the previous level  with itself.

 Fig 3 Successive detachment of detail layers from 
image in the decomposition by reconstruction using 
multiple dimension SE.
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The structuring element dimension SE is doubled 
at  each  stage  and  trimmed  by  one  to  be  an  odd 
number.  

When filters by reconstruction are used, as basic 
geodesic transformations, the geodesic dilation and 
the geodesic  erosion of size one,  are iterated until 
idempotence is reached:

RDil[I (mark)F] = {G1Dil & G1Dil& … G1Dil} (7)

REro[I(mark)F]={G1Ero&G1Ero&…G1ERO} (8)

   The iteration runs for a arbitrary number m as 
necessary depending on image I and mark F. 
   The number of iterations is variable and dependent 
on image content. This characteristic will lead to an 
unpredictable  timing  performance  with  large  costs 
when  implemented in hardware.
     According to the original work the matrix of the 
structuring  element  (SE)  must  span  the  range  of 
dimension from 3 to 33 with the following values 
{3,5,9,17,33}  [5]. 
   Five  levels  of  detail  have  been  shown  to  be 
sufficient  for contrast enhancement. For the larger 
objects  in  the  image  corresponding  to  SE  of 
dimension larger then 33 it has been proven there is 
no need for contrast enhancement. They cover more 
than 1 %  in the user field of view and are subject to 
eye adaptive perception. 

Fig.  4  MathLab  simulation  of  morphological 
image decomposition with reconstruction .

  The output after the fifth filter level is an image 
with  a  yet  considerable  amount  of  information 
named - no detail image.

In order to test the new architecture as proposed a 
MathLab simulation of the filtering action on a test 
image was conducted.  

We  followed  the  original  work  selecting  the 
spatial  frequencies  at  each  level  of  detail  are 
determined as optimal for the HVS perception [5]. 
The  level  separation  parameter  values  have  been 
determined following a contrast perception study.

 An  alternative  to  using  a  single  scale  and 
multiple  dimensions  SE  is  the  use  a  single 
dimension structural element. The filtering of levels 
of  detail  can  be  obtained  by  multiple  successive 
applications  of  elementary  erosions  and  dilations. 
Such  an  architecture  is  attractive  for  hardware 
implementation  since  it  promises silicon  area  cost 
effective implementations.

The disadvantage of  this type of architecture is 
that  the  frame  processing  period  increases 
proportional  to  the  number  of  operations  in  the 
morphological processing chain.

   The storage of intermediary images in waiting 
for successive elementary filtering raises constrains 
on memory  resources  necessary.   Since  storage  is 
the major resource bottleneck such a solution loses 
its  simplicity  advantage.  In  the  end  the  real  draw 
back of this architecture is the exponential increase 
in the computation time. 

4 Morphological image decomposition 
for hardware implementation
In  applications  of  image  contrast  enhancement  in 
real  time the  computational  complexity and frame 
rates  are  the  two  constrains  that  both  need  to  be 
satisfied. 
   The solution  selected  for  the  implemented  and 
found  most  appropriate  to  perform  a  efficient 
decomposition  of  the  image  was  a  pyramid  of 
content of details.
   The  optimization  of  morphological  operations 
when  implemented  in  hardware  has  different 
conditioning  parameters  then  when  done 
computationally [11], [12]. 
   The capacity of the recent available computational 
hardware  can sustain parallel implementation when 
necessary thus offering a huge advantage over one 
computational node classical machines.
  Three criteria have been identified that differentiate 
computational  implementations  of  algorithms 
compared with FPGA implementations.
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Criterion I.
The number of  processing units available normally 
is  one or a few in the case of  a vector engine.  In 
FPGA the number of processing units can be made 
virtually  as  large  as  the  number  of  pixels  in  the 
image.

Criterion II.
The second major  difference is  related to  memory 
availability.  Although  in  present  FPGA  there  are 
RAM memory banks, an algorithm implementation 
is  not  constructed by storing values  in RAM. The 
FPGA  logic  gate  fabric  run  length  (incorporating 
distributed  RAM)  actually  implements  the 
processing imposed by the algorithm.

Criterion III.
The  image  processing  with  FPGA  hardware 
acceleration is mainly aiming real time applications. 
The  natural  line  by  line  raster  exploration  of  the 
image must be accommodated. 
   The algorithm must therefore be implementation 
in  the  pipeline  mode.  Storage  is  used for  operand 
ordering only.

   Staring from the above observations the following 
general  strategic  methods  are  to  be  used  for 
algorithm speed up under hardware implementation:

   a) The speed of the processing is not dependent on 
the amount of computations done per image  pixels 
as is the case with classical computational algorithm 
speed up criterion.
   b) When using a FPGA implementation the speed 
of the processing is dependent on the length of the 
pipeline since this determines the time delay for  the 
next processing operator on the image.

   In the case of the morphological filtering the blind 
time period can extend to as much as a fraction of 
the image frame period.  For example for  256x256 
pixels image and a SE of maximum size 33x33 the 
pipe  time restriction  extends  to  15% of  the  frame 
period.
  The conclusion from the above arguments resulted 
in a clear direction of implementation:

I. Full SE dimension used directly results in better  
real time performance as opposed with unitary (or 
small) SE used recursively.

II.  The  reconstruction  part  of  the  morphological  
filtering  following  its  definition  is  inherently  
recursive  (see  formulas  (7)  and  (8)).  The  novel  

algorithm  according  to  formulas  (9)  and  (10)  is  
image  content independent.

    For large SE the classical unit SE algorithm can 
extend in time quite prohibitively. Recent solutions 
have been proposed to cope with the problem [15] 
[16].  Both  above  mentioned  methods  are  very 
heavily  dependent  on  the  intermediary  storage  – 
implemented in queues.
   In the present  paper  we propose and prove the 
efficiency of a computation method that is not only 
well  suited  for  FPGA  implementation  but  is 
accelerating  even  in  the  case  of  computational 
implementation in software.
    Starting from definition formula (7) and (8) we 
propose  the  following  factoring  leading  to  a  very 
efficient hardware implementation.
    Starting with an opening using a SE of size 2n+1 
it is easy to see that the reconstruction iterations are 
bound by a finite number m very often less then the 
size of the SE.
  Our novel algorithm and its FPGA implementation 
is outlined in Fig. 5 and is similar to a the pyramidal 
method described previously in literature indicating 
very large computational savings [13], [10]. 

A1. Proposition:
Dilation and erosion by reconstruction defined by 
formula (7), (8) are  equivalent to formula (9),(10).

  The proposition A1 needs to be interpreted in the 
sense  that  although  mathematically  equivalent  the 
form  in  (9)  and  (10)  is  far  more  efficient  to 
implement in hardware.

Fig. 5 Single scale multiple dimension SE opening 
by reconstruction new computation principle.
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   For a operation with a structuring element SE of 
2n+1 pixels  the  reconstruction  series  starts  with  a 
SE  of  dimension  n.  The  most  advantageous  for 
hardware implementation is the binary series of SE 
dimension.  This  makes  the  reconstruction  module 
share  the  same  architecture  with  the  basic 
morphological operations.

RDil[I (mark)F] = {GnDil & Gn-1Dil& ...G1Dil} (9)

REro[I(mark)F]={GnEro&Gn-1Ero&..G1Ero}(10)

    The aggregation of unitary operations in higher 
order  dilations/erosions  is  using  the  well  known 
linear  decomposition property  of  the  erosion  and 
dilation operators with flat SE in reverse order.
    A  number  of  interesting  corollaries  can  be 
deduced from the above property. In this paper we 
present the most important hardware implementation 
effect. The equivalent form opens up the possibility 
of using the same hardware implementation for the 
SE as in erosion and dilation operations. 
    Computationally the  form of  the  equation  has 
little  consequences  if  at  all.  Each  mathematical 
representation form when implemented in hardware 
suggests  a  very  different  implementation.  The 
iterated  unit  operations  will  end  up  in  a  simple 
circuit  evolving  in  time.  The  higher  order  SE 
operations on the other hand are best implemented in 
hardware  in  a  parallel  multiple  computational 
structure.  

5  FPGA  implementation  of 
morphological filters
The problems inherent to most filter algorithm that 
needed  examination  are  the  margin  effect  and the 
repeated pixel value processing for SE windows at 
just one step distance [10].
   In Fig. 6. a data flow model is presented for the 
FPGA-based  implementation  of  the  image 
decomposition using morphological operators.
   The operations for one level of detail filter is a 
succession  with  a  predefined  order.  The  SE 
operating blocks can be cascaded on the same image 
lines  pixel  values  if  appropriate  timing  delays are 
observed.
   The  general  requirement  for  the  time delay  in 
between  two  successive  morphological  operator 
blocks is given by the following formula:

   Delay = [d(SEn-1)  + d(SEm-1)]/2 + 1          (11)

Fig. 6 Sketch of data flow in the decomposition with 
reconstruction algorithm hardware architecture.

   The problem of the margin effect  has a simple 
solution  for  gray  level  min/max  calculations.  The 
missing parts of the window are initialized at either 
max respectively min of the range and thus will not 
influence the result and suppress edge effect.
  The  successive  SE  processing  blocks  and 
associated  FIFO feed  into  one another.   It  is  thus 
observed that the sequential nature of the algorithm 
imposes  storage  of  the  intermediate  results  before 
proceeding with the next dimension SE processing.
   The proposed architecture  limits  the  amount of 
superposition of the successive SE partial results to 
part of the the dimension of the next SE. 
   From  a  timing  point  of  view  as  soon  as  the 
following  SE  has  accumulated  sufficient  lines  to 
start  processing  no  further  buffering  is  necessary. 
The  current  layer  output  level  detail  data  can  be 
shifted  out  for  next  block  processing  for  direct 
storage.  
   The dimension parameter of the SE (denoted  n) 
according to the HVS contrast enhancement scheme 
spans only the range of{1, 2, 4, 8 and 16}. Higher 
values are not useful to human perception.
   The implementation of the algorithm for one line 
of the raster image of length k is outlined in Fig. 7. 
Only one line of the image is presented since the rest 
are similar in architecture. 
   The SE covers at one time a number of image lines 
equal  to  its  dimension.  The  first  part  of  the  line 
covered  by the  SE is  stored  in  a  raw of  registers 
while  the  rest  of  the  line  is  stored  in  long  shift 
register  or  FIFO  stack.  The  FIFO  is  best 
implemented  in the BRAM resource of the FPGA 
thus saving resources.
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   To simplify the SE min/max ordering circuitry an 
orthogonal decomposition of the computation on the 
two dimensions  of  the SE is  used.  The advancing 
line  of  SE pixel  values  min/max  is  obtained  by a 
comparator running horizontally. Local SE  columns 
min/max values thus determined are stored in a stack 
(line) with latest useful values determined. 

Fig. 7. Block diagram of the FPGA implementation 
of image line morphological decomposition. 

  The evaluation of the min/max value received the 
design  found  as  the  most  appropriate  for  the 
architecture  proposed.  It  is  based  on  a  sequential 
pixel value comparison per  columns and storage of 
the rest of previous  lines maximum for the SE.
   The functioning of the morphological  low pass 
filter  algorithm  implemented  in  a  circuit  is 
composed  of the following phases:

1. Line min/max
   The  comparators  are  cascaded  in  a  pyramid 
structure of compare and store the min/max result in 
an 8 bit accumulator. An outline of the schematic for 
the line processor is given in Fig. 8.

2. SE last lines min/max
    For  each  SE line  latest  maximum  values  are 
stored in stack of an  2n+1 registers with their own 
set of comparator in a second phase of the process. 
The  min/max  of  the  values  of  the  whole  SE is  a 
circuit identical to the line comparator that sorts the 
last  lines  local  min/max  values  determined  in  the 
line min/max phase.
 

3. Shift phase
  The data in storage and SE line values are shifted 
one step to accommodate a next complete cycle of 

computation. The last line maximum is deleted and 
space in created in the FIFO for the new line.
   The calculation of the min/max for one pixel was 
implemented with a manually optimized schematic 
based design presented in Fig. 8. The circuit is an 
asynchronous comparator circuit requiring just eight 
slices of FPGA CLB per pixel. 
   The implementation is of pipeline type with a pipe 
length of k+1 for a column hight of 2k+1.
   The pyramid of comparators uses a 'compare and 
transfer'  the  min/max  values  to  the  next  level  of 
higher  order  having  a  divided  by  two  number  of 
values.  The  SE dimensions  are  odd  and  therefore 
one pixel value will be left outside the scheme until 
the last stage. To preserve the pipeline property of 
the  circuit  the  extra  value  is  shifted  by  a  set  of 
registers  until  it  is  operated  upon  in  the  last 
comparison.
   The  time  delay  of  k+1  shift  periods  must  be 
observed  in  the  succession  of  the  following 
morphological operation in the set. 
  

Fig.  8  The  circuit  schematics  of  the  synchronous 
k+1 stage pipelined comparator.

  It  is  important  to  note  that  the  reconstruction 
operation  is  implemented  using  the  same 
architecture  as  for  the  min/max  (opening  and 
closing) operations making synchronism possible.
  During  the  image  reconstruction  the  delays 
accumulated  in  the  decomposition  stages  must  be 
compensated  by equal  delays in  opposite  order  in 
order  to  synchronize  the  detail  contrast  enhanced 
images before processed image assembly.
  The pipeline has a hardware implementation cost 
that only doubles the number of registers  used for 
column value storage.   
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   Table 1 is a summary of sample results of several 
variant VHDL and manual component instantiations 
used to test design performance.  
   The FIFO was synthesized using the OpenCores 
VHDL GenericFIFO code,  and the Min/Max local 
store  and  comparator  circuit  instantiated  as 
manually optimized schematic components.
   The sample cases presented use Xilinx and Altera 
devices  as  target  FPGA for  a  morphological  filter 
decomposing a image 512x512 with 8 bit /pixel. 

Table 1

Target FPGA Reso-
lution

Slices/ 
Cells

RAM 
Use

Start 
Latency

Xilinx-Virtex 
XCV1000E 512x512 74% 80%     1.5

Altera -Cyclone 
EP2C35

256x256 40% 45%     2.0

   As it can be seen from the sample synthesis results 
the  design  fits  within  a  medium size  FPGA.  The 
pipeline  has  a latency of  the order  of  a  few pixel 
periods,  delay that  can easily compensated with  a 
delay  stack  to  synchronize  frames  for  later 
processing.
 The  timing  of  the  operator  blocks  has  a 
considerable complexity to be detailed in this paper. 
The  operation  delays  counts  in  pixel  image  shifts 
and the solution used for all was pixel delay stacks.

6 White areas morphological contrast 
enhancement
Progressive detail level based contrast enhancement 
has notable results as reported in the literature but it 
is known to have room for  improvement  [16][17].
   The  adaptivity  property  of  the  human  visual 
system  is  one  part  of  the  system  that  must  be 
accounted for. The human eye is more sensitive to 
finer  details  than  to  larger  areas  with  different 
intensity. 
    Ends of scale close to minimum intensity (black) 
as  well  as  maximum  intensity  details  (white) 
transformations that depart from linearity can be the 
object  of contrast enhancement. 
   The large and middle size details observed by a 
human  visual  system  with  adaptation  need  no 
changes aside from range restrictions. Fig.8 presents 
the gray level reservation scheme for a white areas 
contrast enhancement case.  A similar arrangement 
can be made for the dark regions in the image. 
   The  detail  levels  amplitudes  are  scaled  up 
according to a progressive scale. The coefficients for 

optimal  human  eye  perception  are  known  from 
experimental  data.   The  general  form is  a  power 
function with the exponent in the range [0.5 to 1.5].
    In order to accommodate this perception scale the 
detail  levels  need  to  be  multiplied  by  emphasis 
coefficients  forming a power  series  with  a  similar 
form. 

Fig. 9 Intensity scale warping for small details in 
dark areas of the intensity scale.

   The  image  intensity  value  range  is  fixed  (256 
levels  of  gray  )  and  accommodation  of  contrast 
enhanced extended ranges must be at the expense of 
the rest  of the image areas gray scale ranges.  The 
ranges  not  exposed  to  contrast  enhancement  are 
compressed to make room for the enhanced ranges.
   In practical  situations  the contrast  enhancement 
schemes are dependent on the image characteristics. 
Some areas may support enhancements while others 
do not. 

All  level  intensity  perception  is  linked  to  the 
next  level  because  they  appear  in  the  image  as 
background for the former. The contrast sensitivity 
dependence of the human visual system at on level 
of detail its on background intensity is well known.
   Ideally the contrast adjustment process must start 
with  the  lowest  detail  image – no detail  image as 
background.  Being  a  image  level  with  large  flat 
areas from where the details have been removed no 
contrast  enhancement  is  required.  Contrast 
adjustment  at  this  level  may be needed though in 
applications with very high dynamic range images.
  The following smaller  detail  image contrast  and 
enhancement  coefficient  will  be  determined  with 
respect to its background  image level.
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    For all subsequent detail layers all previous layers 
as adjusted and added to the previous layer will form 
the  level  background  reference.  The  contrast 
enhancement  coefficient  for  the  current  layer  are 
than calculated based on all previous levels.
   In  order  to  validate  the  method exposed a  test 
image white areas was contrast enhanced using the 
level scaling coefficients from Table 2. The binary 
values  where  used  as  an  approximation  of 
experimental  coefficients  for  reasons  of  simpler 
hardware  implementation.   
  Other similar approximations to the experimental 
data  have been used.  The results  obtained did not 
exhibit noticeable differences. This result   validates 
our  approach  of  using  a  scale  set  of  factors  in 
powers of 2 for ease of digital implementation. 

Table 2

New Scale [Dl 1] Dl 2 Dl 3 Dl 4 Dl 5
Binary Power 

warping [2] 4 8 4     2
Experimental 
coefficients 1 3.1 9.4 5.2     3

   The results of the image white areas contrast 
enhancement are presented in Fig. 10.  The 'no 
detail' image was compressed by a ½ coefficient 
applied to all values.

Fig.  10  Contrast  enhancement  of  the  white  areas 
(left half)  and original image  (right half). 

    A second attempt to use the same procedure for 
the black areas failed. The test image black (lower) 
areas  are  not  suitable  for  contrast  enhancement 
being very 'flat' with most regions at the same gray 
level. 
  The smallest detail level was suppressed in contrast 
enhancement  because  it  contains  noise  in  large 
proportion and its amplification must be limited. The 
image details contained in the first level image can 
be  added  to  the  image  after  a  noise  removing 
procedure. 
    The performance of the contrast enhancement was 
assessed visually. A more complex measure method 
should be devised including both equipment and real 
human subjects perception.
    The results of image decomposition and contrast 
enhancement  are  known  to  be  dependent  on  the 
image  and  as  such  a  selected  set  of  test  images 
specific for contrast enhancement is necessary.
     Further work is necessary in the catenation of the 
contrast enhanced regions and the rest of the image. 
The gray scale gradients matching may improve the 
integration of the enhanced areas in the final image. 

7 Conclusions
The  results  of  the  implementation  in  FPGA  of  a 
morphological multiple dimensional kernel filter are 
presented. The study was centered on image contrast 
enhancement for  visualization. 
    The focus of the study was the optimization of the 
silicon area  and sample  frame throughput  to  meat 
the real time constraint of the image viewing. 
 The  application  of  the  novel  equivalent 
reconstruction  algorithm  was  found  to  be  very 
computationally  efficient.  The  estimations  show 
improvements in speed of orders of magnitude over 
previous methods used. 
    Synthesis results of a mixed schematic and VHDL 
description  of  the  decomposition  filters  indicate  a 
low enough resource count  to fit  in  a FPGA. The 
performance of the architecture is proven to exceed 
real time conditions of operation. 
  The details of the FPGA implementation support 
the performance with a architecture that requires a 
minimum of resources. The architecture proposed if 
fully  pipelined.  The  timing  constraints  due  to  the 
delays  necessary  in  between  operations  are 
independent of image content. 
   Contrast  enhancement  on  a  sample  images  for 
white areas  was used to validated the method. The 
performance  of  the  contrast  enhancement  was  not 
among the objectives of the present work and needs 
further investigations. 
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   The results obtained so far are encouraging as far 
as  decomposition  performance  is  concerned.  The 
calculation of a new contrast for each detailed image 
and  assembly  of  the  enhanced  image  remains  as 
tasks for future work.  . 
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