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Abstract: - This paper treats the problems involved in the design of logic circuits based on novel processing 

platform. It begins with description of the ternary quantum-dot cell, an extended classic binary cell. These cells 

are basic building blocks of quantum-dot cellular automata. They are used to construct simple structures with 

inputs and output which implement some ternary logic function. These structures are employed as building 

blocks of larger and more complex circuits. The computer-aided design tool that finds an optimal 

implementation of a circuit by bottom-up approach is described. The search of a solution is based on iterative 

deepening. Since searching over all possible solutions is too computationally complex, heuristics are used to 

reduce the computation time. 
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1 Introduction 
The well-known Moore’s law implies the 

exponential miniaturization of integrated circuits. 

With the integration approaching the nanometer 

scale and thus the limits of current manufacturing 

methods, alternative processing platforms have 

received substantial research. One of the possible 

future nano-scale platforms is the quantum-dot 

cellular automaton (QCA) [1]. Based on a new 

computing paradigm, QCA devices are smaller, 

faster and are saving more energy than present 

computers. Furthermore quantum mechanical 

effects present an obstacle at operating of current 

miniaturized complementary metal-oxide 

semiconductor (CMOS) devices, whereas 

functioning of QCA takes advantage of the same 

effects. 

The basic building block of a QCA is a quantum-

dot cell. Positioned on the plane they constitute 

cellular automata, each one characterized by the 

setting of cells. A QCA is a structure with 

predefined input, internal and output cells, capable 

of computing some logical function. A binary QCA 

is composed of binary quantum-dot (bQCA) cells, 

each of them containing four quantum dots and two 

electrons. Quantum dots with assigned positive 

charge are distributed over cell’s surface in a square 

like pattern. An individual negatively charged 

electron occupies one of the quantum dots and has 

the capability of tunneling between adjacent dots. 

The electrons are positioned in quantum dots within 

the cell due to Coulombic interactions among them. 

Their possible arrangements have minimal total 

electrostatic energy in a cell and they determine 

different logic states of a cell. As binary QCA cell’s 

name implies, the electrons can constitute two 

possible arrangements, thus producing two logic 

states. The setting of the selected logic states to 

input cells by determining the corresponding 

electron arrangements influences the states of 

neighboring internal and output cells. By 

electrostatic interactions all cells’ states are set in a 

way that total electrostatic energy of the electron 

arrangements is minimal. At that time the QCA is in 

the ground state and the results are obtained by 

reading the states of the output cells. By cleverly 

placing the cells on the plane various binary 

automata are constructed, capable to compute 

different binary logic functions. 

The use of binary logic in computers was 

historically necessary only due to the limited 

technology available at the time. This, however, 

does not apply to QCA. Lebar Bajec et al. extended 

the bQCA cell and introduced the ternary quantum-

dot (tQCA) cell capable of multi-valued logic 

processing [2], [3]. As the bQCA cell, the ternary 

QCA cell also contains two electrons, however it 

has eight quantum dots distributed on its surface in a 
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circular pattern. In this case the arrangements of 

electrons determine four possible configurations, 

thus enabling four different logic states of a cell. 

The tQCA cell is shown on figure 1(a) and figure 

1(b) presents its four logic states denoted A, B, C 

and D respectively. The ternary number system has 

been proposed as the most efficient, with such 

advantages over binary as more compact coding of 

numbers, implicit sign included in the 

representation, simple comparison of numbers, 

rounding of a fraction coinciding with truncation 

and others [4], [5]. Due to these facts we based our 

logic analysis on Lukasiewicz's ternary logic [6] and 

assigned the logic values to the cell’s states as {A, 

B, C, D} = {0, 1, ½, ½}. The analysis is 

considerably simplified by treating state D as only 

an internal state, i.e. this state only appears in 

internal cells of the tQCA and never in input cells, 

since it is logically equivalent to state C. 

 

 

Fig. 1. (a) The tQCA cell. Quantum dots are 

depicted as circles and numbered from 1 to 8. Two 

electrons are presented as smaller black circles and 

are occupying the dots labeled 2 and 4. (b) The four 

possible electron arrangements in the tQCA cell, 

determining four distinct logic states. 

 

Ternary QCA are similar to binary automata, 

except they are composed of tQCA cells, thus being 

able of computing ternary logic functions that are 

more general than binary. Simple tQCA with few 

cells are connected into more complex tQCA 

circuits that enable extensive computations. The 

algorithms for an exact simulation of the behavior of 

large tQCA circuits are inefficient [7], therefore we 

propose a novel methodology for the design of 

complex tQCA circuits, based on building blocks 

with designated inputs and outputs. These are 

simple tQCA structures constructed of a small 

number of cells. We developed a computer-aided 

design (CAD) tool that constructs a desired tQCA 

circuit with available predefined blocks. They are 

composed of only a few cells so their behavior can 

be accurately simulated fast. The implemented tool 

finds an optimal solution in terms of spatial 

redundancy (the minimal number of tQCA cells 

used) and maximal speed of processing (the 

minimal number of clocking zones in a circuit). 

 

 

2 The tQCA structures 
By placing tQCA cells adjacent to each other 

various cellular automata with defined input and 

output cells are constructed. After establishing logic 

states of the input cells, the processing occurs in the 

internal states and finally results are available as 

states of the output cells. The positions of cells in 

the plane characterize particular ternary QCA 

capable of computing a ternary logic function. 

 

 

Fig. 2. Graph shows the normalized values of the 

inter dot barrier height in particular phase of the 

cyclic clock signal. The value 1 corresponds to the 

highest barrier. The background shade of the tQCA 

cell denotes corresponding clock phase assigned to 

this cell at the beginning of circuit operation. 

Afterwards the phase shifts through complete cycle. 

 

If the inputs are switched suddenly, tQCA can 

relax to the undesirable metastable state instead of 

the ground state that ensures correct processing [8]. 

Additional problems are the desired behavior of the 

simple tQCA structures such as line and inverter, as 

the problem of determining the direction of data 

flow from input to output cells. Solution to these 

impediments is the introduction of adiabatic 

switching [8], [9] to tQCA processing. By 

controlling the inter dot barriers with a cyclic signal, 

the tQCA structure is in its ground state throughout 

the whole switch. The clock signal cycles through 

four distinctive phases, denoted Switch, Hold, 

Release and Relax, each lasting one fourth of a 

clock period. Each cell is assigned a particular 

initial phase, so that entire structure is partitioned 

into clocking zones. Each zone then cycles through 

all four clock phases during computation. The tQCA 

processing performed by the tunneling of electrons 
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takes place in the Switch phase, therefore the result 

may be available before the clock cycles through all 

phases. As presented on figure 2, the inter dot 

barrier rises in the Switch phase and is highest in the 

Hold phase, thus preventing electrons from 

tunneling between quantum dots. In subsequent 

Release phase the barrier lowers and is least in the 

Relax phase, the final phase of a clock cycle. 

 

 

Fig. 3. (a) The tQCA ternary logic inverter. The 

input cell is labeled In and the output cell is labeled 

In . (b) Behavior of the tQCA wire at different 

inputs. In each case the input cell is on the left side 

of a wire and it is outlined with thick lines. The 

internal cells are to the right of the input cell and 

outlined with thin lines. The output cell is on the 

right end of a wire. Cells with same background 

shade belong to the same clocking zone. 

 

The number of clock cycles needed for 

computation is determined by the number of 

clocking zones used in the tQCA circuit. After the 

setting up of the input cells' states and the relaxation 

of the tQCA to its ground state in the final clock 

phase, the result of the computation is obtained by 

reading the states of the output cells. We 

constructed various simple tQCA structures used as 

building blocks of large and complex circuits. The 

blocks are composed of a small number of tQCA 

cells grouped in few clocking zones. Every structure 

can be used to compute a particular simple ternary 

logic function depending on the chosen inputs. For 

each of the constructed building blocks we 

computed its truth table, i.e. for every input 

configuration the corresponding output state was 

found. Calculations were made using the quantum-

mechanical simulation model based on the Hubbard 

type Hamiltonian equation [9]. 

 

 

Fig. 4. The original tQCA majority gate M and its 

truth table. Input cells are labeled In1, In2, In3 and 

the output cell is labeled Out. 

 

Figure 3 presents the simplest tQCA structures. 

On figure 3(a) are the tQCA ternary logic inverter 

and its truth table. The cells of the tQCA inverter 

have to be divided into two clocking zones for 

correct operation, thus the result of the computation 

is available after the second clock phase, i.e. after 

half of the full clock cycle. The truth table of the 

tQCA inverter corresponds to the truth table of 

negation in ternary logic. Figure 3(b) shows the 

behavior of the tQCA wire at every possible input. 
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The input cell, internal cells and the output cell are 

assigned to three different clocking zones, which 

determine the direction of data flow. Upon closer 

inspection it is evident that the wire must have an 

odd total number of cells to perform correctly. 

However the wire of even length can be used to 

transform state D to logically equivalent state C. 

 

 

Fig. 5. The tQCA structure M2 capable of 

computing the majority function after only two 

clock phases. 

 

A useful structure is the tQCA majority gate that 

can be used to implement ternary logic disjunction 

and conjunction, similar to the binary QCA majority 

gate [10], [11]. The tQCA majority gate with same 

form as its binary counterpart is presented on figure 

4 together with corresponding truth table. It must be 

divided in three clocking zones by use of adiabatic 

switching to perform as desired [9]. The tQCA 

majority gate can be used to compute ternary logic 

conjunction by fixing one of the input states to A, 

analogous ternary disjunction is computed by fixing 

one of the inputs to state B [2], [3], [10], [11]. Two 

input logic values are brought to remaining two 

input cells of the gate. In this way the tQCA 

majority gate acts as binary QCA majority gate 

generalized to ternary logic. 

However, another tQCA structure, presented on 

figure 5, is capable of implementing the majority 

function. Structure denoted M2 uses only two 

clocking zones so the result of computation is 

available sooner as the result obtained by using 

original tQCA majority gate labeled M. The truth 

table of M2 on figure 5 is remarkably similar to the 

truth table on figure 4 differing by only three 

configurations. First two columns in both tables are 

identical so ternary conjunction and disjunction can 

be implemented with M2 by fixing the first input 

cell’s state to A and B respectively. Another useful 

building block is the structure denoted Cf shown on 

figure 6. It enables simple implementations of tQCA 

circuits which compute characteristic functions, 

described later in this article. It should be noted that 

two structures with same number and positions of 

cells but different partition of clocking zones can 

have different corresponding truth tables. 

 

 

Fig. 6. The tQCA structure Cf and its truth table. All 

cells belong to the same clocking zone. 
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Each tQCA structure implements some ternary 

logic function. The equations of these functions are 

written in the form 

Output = Si(Input1, Input2, ..., Inputm) 

  i = 1, 2, ..., n   (1) 

Si denotes the function that is computed by i-th out 

of the n constructed tQCA structures which has m 

input cells. The number of input cells m varies 

between structures, e.g. the tQCA inverter has one 

and the tQCA majority gate has three input cells. 

Output is a vector of outputs of the logic function 

with k input variables Variablei, Variable2, ..., 

Variablek and contains 4
k
 values. Since states C and 

D are logically equivalent, i.e. they are both treated 

as logic value ½, only 3
k
 values of vector Output are 

representative. These are the tQCA cell states in the 

output column at each particular input configuration 

of values of k variables in the truth table of the 

function. Inputj, j=1,2,...,m, can be either a constant 

state, a vector of Variable or a vector of function 

outputs computed by some tQCA structure. In case 

of the tQCA logic inverter with one input variable, 

vectors are described by the relations (2), (3) and 

(4): 

  Variable = [A, B, C, D]  (2) 

  Output = [B, A, C, D]  (3) 

and 

 Output = Inverter(Variable)  (4) 

One of many possible equations of ternary logic 

conjunction is written as 

  Output = M(V1, V2, A)  (5) 

In equation (5) input variables are labeled V1 and V2, 

whereas M denotes the tQCA majority gate. The 

third input cell is set to constant state A. 

Each input can be an output of another tQCA 

structure. The tQCA logic circuits are constructed 

by connecting the output cell of the tQCA structure 

to the input cell of another structure with the tQCA 

wire. Thus the state of the output cell is transferred 

to the input of the next tQCA structure. Structures in 

the circuit must be placed sufficiently apart from 

each other or suitably partitioned in clocking zones 

so that the operation of one structure does not 

interfere with others. In case of interference, output 

of a structure can differ from the one calculated by 

the simulation of standalone structure. By placing 

structures sufficiently apart electrostatic forces 

acting between electrons in separate structures are 

negligible since they are inversely proportional to 

the square of the distance between electrons. 

 

 

3 Design of optimal tQCA logic 

circuits 

Although any ternary function can be written in the 

normal form as the composition of functions in a 

functionally complete set, the realization of this 

form may be constituted of many tQCA structures. 

Instead of designing circuits by top-down approach 

based on normal form, we propose the novel 

bottom-up concept. By this method combining 

simple tQCA structures leads to development of 

large circuits capable of computing complex 

functions. Our goal was to find the smallest and the 

fastest tQCA circuit that implements the desired 

ternary logic function. The optimal logic circuit 

consists of the minimal number of tQCA structures 

and has the minimal total number of clocking zones. 

 

 

Fig. 7. The procedure of searching the space of 

solutions by iterative deepening strategy. The tQCA 

structures are denoted Si. Connection between 

structures indicates that the outputs of structures on 

lower level of the search tree are driven to the inputs 

of the structure on one level above them. 

 

We designed the CAD tool that finds the tQCA 

logic circuit composed of predefined tQCA 

structures for an arbitrary ternary logic function 

with an arbitrary number of variables. The input 

data are vector Output and the truth tables of tQCA 

structures that will be used to construct the circuit. 

The number of variables is computed from the 

length of vector Output. Result is the constructed 

tQCA logic circuit, written in the form of the 

relation (1). 

The basic idea of the developed tool is searching 

the space of solutions. Among various search 

algorithms [12] we implemented the method based 

on the iterative deepening [13]. This search strategy 

repeatedly checks the nodes in the search tree, 

increasing the depth limit on each iteration. It 
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combines space efficiency of the depth-first search 

and the promise of obtaining a valid solution like in 

the case of breadth-first search. The procedure of 

iterative deepening search of tQCA circuits is 

demonstrated on figure 7. On first iteration it checks 

every predefined single tQCA structure if it is able 

to compute the desired function by selecting 

appropriate inputs. These can only be constant states 

or variables and not another tQCA structures. If the 

solution is not found, the procedure repeats the 

previous search on each next iteration, since the 

results are not saved. Additionally the depth limit 

increases by one. This means that now the inputs on 

last level of the search tree can also be single 

structures instead of just constants or variables. If 

available building blocks constitute the functionally 

complete set, the procedure is guaranteed to find 

any solution. 

For the implementation of the CAD tool we 

chose the Prolog programming language. In the first 

place it is well suited for problems involving 

structured objects and relations between them [14]. 

That is in accordance with our problem of 

constructing circuits composed of building blocks. 

Secondly, Prolog is designed for artificial 

intelligence programming, which among others 

includes the intelligent search algorithms. This is 

enabled by features like pattern matching, tree-

based data structuring and automatic backtracking 

[14], all of them appropriate for the problem of 

tQCA circuits construction. Furthermore, Prolog 

language has already been used in CAD applications 

[15], [16]. 

 

X A A A B B B C C C 

Y A B C A B C A B C 

X→Y B B B A B C C B B 

Table 1. The truth table of Lukasiewicz’s 

implication. 

 

The truth tables of the basic structures are given 

to Prolog as facts. This is very useful as additional 

structures can be added by simply designing a new 

structure, computing its truth table by simulation 

and adding it to the existing facts. The input data is 

the truth table of the logic function to be realized. 

Furthermore the input can be incompletely 

specified. Using the tool it is easy to handle the 

don’t cares, as these are represented as anonymous 

variables in Prolog. For example, to construct the 

tQCA circuit that computes Lukasiewicz’s 

implication, the input data is vector 

 [B, B, B, A, B, C, C, B, B]  (6) 

The truth table of Lukasiewicz’s implication is 

presented in table 1. However, if for example the 

output of input configuration X = C and Y = C is not 

needed, the input data is described by relation (7). 

 [B, B, B, A, B, C, C, B, _]  (7) 

Anonymous variable in Prolog is denoted by sign 

‘_’. It can take any value, in this case it can be any 

tQCA cell’s logic state. By using anonymous 

variables the search of the desired tQCA circuit can 

be quickened, since more circuits can satisfy the 

input conditions and the solution can be found early. 

By taking advantage of the cellular automata’s 

intrinsic parallel operation [17] it is possible to 

construct tQCA circuit with some of its building 

blocks processing in parallel. Concurrent operation 

significantly reduces the total time of computation. 

The synchronization of building blocks running in 

parallel is assured by appropriate placement of their 

cells in clocking zones. Figure 8 shows two tQCA 

circuits both composed of three building blocks. The 

circuit on figure 8(a) operates in strictly sequential 

way, while the other circuit on figure 8(b) takes 

advantage of parallel processing. 

 

 

Fig. 8. (a) Sequential tQCA circuit. (b) Two 

building blocks in the left part of the circuit process 

concurrently. Synchronized arrival of their output 

states to input cells of the final majority gate is 

enabled by suitably delaying the data transfer on the 

tQCA wires connecting the building blocks, done by 

assigning the clock zones. Input cells are outlined 

with thick lines, output cell is labeled Out. 

 

The number of levels of the tQCA logic circuit is 

the maximal number of sequentially connected 

structures. For example the circuit on figure 8(a), 

described by the form (8) has three levels: 

  M(In6, Cf(In4, M(In1, In2, In3), In5), In7)  (8) 
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On the other hand parallel circuit on figure 8(b) also 

contains three building blocks, but they constitute 

only two levels: 

  M(In7, M(In1, In2, In3), Cf(In4, In5, In6))  (9) 

In above forms In1 to In7 indicate inputs, whereas M 

and Cf are tQCA structures. By iterative deepening 

the tool first finds circuits with the minimal number 

of levels. From obtained solutions only the circuits 

with minimal number of used structures and 

clocking zones are chosen. More than one different 

optimal circuit that computes the desired ternary 

function can be found, depending on the selection of 

building blocks. 

The search algorithm is initiated by calling 

method construct_tQCA_circuit(Function, Circuit, 

Building_blocks). Variable names in Prolog start 

with capital letter. Function is the truth table of 

ternary logic function in vector form, Circuit is the 

solution in form of the relation (1) and 

Building_blocks is the list of building blocks that 

will be used to construct the solution. By taking 

advantage of Prolog’s features the method call 

works in many ways. For example, the tQCA circuit 

for computing ternary conjunction is found by 

calling construct_tQCA_circuit([a, a, a, a, b, c, a, c, 

c], Circuit, [m]). On the other way, the output 

function of the circuit is found by instantiating the 

Circuit variable, e.g. by calling the method 

construct_tQCA_circuit([Function, m(a, x, y), [m]). 

The circuit is checked against the function vector by 

instantiating both Circuit and Function variables. 

 

 

3.1 Reduction of the search space 
The search space is reduced by not considering 

configurations that always output a constant, e.g. 

M(A, A, Variable) that always outputs the vector 

consisting of states A, independent of the value of 

vector Variable. It is evidently more efficient to 

assign the constant state to the input cell instead of 

computing it by such function. Furthermore only 

one of the configurations that have identical truth 

tables is used, e.g. M(A, Variable1, Variable2) and 

M(Variable1, Variable2, A) both compute the same 

output, the ternary conjunction of variables 

Variable1 and Variable2. The elimination of such 

duplicated configurations is performed before the 

search of solution space and it depends on the 

selection of building blocks. The remaining 

configurations constitute the base of search 

algorithm. Computed base can be saved for further 

calculation if it is often used. 

The number of all possible configurations of the 

tQCA majority gate with three inputs, considering 

four constant states and three different variable 

vectors, is 7
3
=343. Using the described technique, 

the number of appropriate configurations is reduced 

to merely 25. Since the space of solutions is 

expanding by multiplication of possible 

configurations for every input of the structure on 

higher level of the search tree, the reduction 

technique considerably reduces the required search 

time. 

 

 

3.2 Interpretation of the tQCA cell’s states 
As mentioned before, we assigned the logic values 

to the cell’s states as {A, B, C, D} = {0, 1, ½, ½}. 

However, different interpretation could produce 

faster and smaller tQCA circuits. Although the 

interpretation cannot be changed from case to case, 

it can be applied to the heuristic method for further 

improvement of the search algorithm. The CAD tool 

employs heuristics to speed up the calculations, 

since it can be hard to find a complex circuit. To 

enable different interpretation of the cells, the tool 

defines as many variables as there are different 

output states and represents the truth table using 

them. In other words all of the input combinations 

that result in the same output state use the same 

variable. Figure 9 shows the procedure in case of 

Lukasiewicz's equivalence function. State A is 

mapped to variable XA, state B to XB and state C to 

variable XC. Through backtracking Prolog 

determines the values of variables that are mutually 

exclusive. The states may be temporarily mapped to 

different ternary logic values as initially, thus the 

obtained solution is not the desired function. In this 

case the tool maps the output states into the desired 

states with the fast method that finds a function of 

one variable, which correctly maps the intermediate 

output states to the final and correct output states. 

With this procedure the tool may not find an optimal 

solution, but it finds a good solution fast. 

 

 

Fig. 9. Mapping the constant output states into 

corresponding states, represented as variables in 

Prolog. Figure shows the mapping in case of 

Lukasiewicz's equivalence function. 
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3.3 Using previously obtained tQCA circuits 
Every constructed tQCA circuit can be used as the 

building block of even more complex circuit. This is 

done by computing its truth table and add it to 

Prolog facts. In another way it can be inserted as 

selected part of the desired solution. For example, 

the search can be initiated by calling method 

construct_tQCA_circuit([b, b, b, a, b, c, c, b, b], 

m(cf(x, y, a), Input1, Input2), [m, cf]). The tool will 

search for a circuit that computes Lukasiewicz’s 

implication, with tQCA majority gate on the first 

level and function Cf(X, Y, A) as its first input. The 

other two inputs will be found to satisfy the 

appointed conditions. By choosing convenient 

predefined parts the solution is found faster. 

In abovementioned example the search will 

automatically start at second level, since the resulted 

tQCA circuit must consist of at least two levels. The 

search can begin at higher depth limit even without 

predefining parts of a solution. This is useful when 

searching for complex circuit which consists of 

numerous levels. By this technique the algorithm 

omits searching on lower levels thus reducing the 

required time for obtaining the solution. 

The scheme of the algorithm, omitting the 

implementation details, is given below: 

construct_tQCA_circuit(Function, Circuit,  

   Building_blocks):- 

construct_base(Base, Building_blocks), 

map_states(Function, Mapped_function,  

  Inverse_mapping), 

Depth_limit=1, increase(Depth_limit), 

iterate(Mapped_function, Intermediate_circuit, 

 Depth_limit), 

Depth_limit=1, increase(Depth_limit), 

iterate(Inverse_mapping, Mapping_circuit, 

 Depth_limit), 

combine(Mapping_circuit, Intermediate_circuit, 

 Circuit). 

First the base is constructed as described in section 

3.1, afterwards the states are mapped as in section 

3.2. Variable Depth_limit is the depth limit of 

iterative deepening search algorithm illustrated on 

figure 7. It increases on each iteration by Prolog’s 

automatic backtracking. In the first place the 

intermediate tQCA circuit is found, then the circuit 

that correctly maps the states and finally they are 

combined into solution. The search is performed by 

the recursive method iterate, outlined below: 

iterate(Function, Circuit, 1):- 

member(Circuit, Base), 

circuit_function(Function, Circuit). 

iterate(Function, Circuit, Depth_limit):- 

member(Circuit, Base), 

iterate(Function1, Input1, Depth_limit-1 ), 

iterate(Function2, Input2, Depth_limit-1 ), …, 

combine(Function1, Function2, …, Function), 

combine(Input1, Input1, …, Circuit). 

The boundary condition is Depth_limit = 1, at that 

time a structure with determined inputs is selected 

from the Base and its output function is returned as 

result. Otherwise the procedure is recursively 

applied to every uninstantiated input. After the 

inputs are instantiated, the procedure checks if the 

combination of their functions agrees with the 

original input function. If this is the case, the 

constructed circuit is returned as valid result. 

 

 

4 Results 
The disjunctive normal form of the ternary cyclic 

negation, defined in the table 2, is quite lengthy: 

X = (f
A
(X) ˅ C) ˄ 

                      (f
B
(X) ˅ A) ˄            (10) 

                      (f
C
(X) ˅ B)    

In equation (10) the symbol ˄ denotes ternary logic 

conjunction, defined as the minimum of the input 

logic values. The symbol ˅ denotes ternary 

disjunction, defined as the maximum of the input 

logic values. Input variable is labeled X and X is the 

notation of the cyclic negation. The functions f
A
(X), 

f
B
(X) and f

C
(X) denote the characteristic functions 

for states A (logic value 0), B (logic value 1) and C 

(logic value ½) respectively. They are defined by 

the relation 

 CB,A,

otherwise     A;

 if     B;
=)(f





 

Y

YX
XY

            

(11) 

Circuits for f
A
(X) and f

B
(X) are given by equations 

(12) and (13) respectively. 

  f
A
(X) = Cf(B, B, X)            (12) 

 f
B
(X) = Cf(B, B, Inverter(X))                  (13) 

The tQCA circuit implementing function f
C
(X) is 

slightly more complex: 

 f
C
(X) = Cf(Cf(A, X, B), A, Inverter(X)) (14) 

 

X 0 ½ 1 

Logic values of  X ½ 1 0 

Output cell states of X C B A 

Table 2. Truth table of the ternary cyclic negation 

function. 

 

The straightforward realization of the ternary 

cyclic negation by equation (10) is composed of 

many structures sequentially connected in numerous 

levels. However our tool finds an optimal solution 
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composed of only three structures connected in two 

levels as presented in figure 10. It can be written in 

equation form as 

 f
C
(X) = Cf(X, Cf(B, C, X), Cf(B, B, X))   (15) 

With implemented heuristic methods the CAD 

tool is able to find even complex tQCA circuits for 

implementation of ternary logic functions that do 

not have a simple solution. One of these is 

Lukasiewicz's equivalence, implemented by the 

tQCA circuit described by complex form: 

M2(B, M2(B, M2(A, X, Y), M2(A, Inverter(X), 

Inverter(Y))), Cf(A, A, M2(B, M2(B, X, Y), Cf(X, A, 

Y)))). 

 

 

Fig. 10. The optimal implementation of the ternary 

cyclic negation with tQCA structures. The output X 

is computed after 5 clock phases. 

 

 

5 Conclusion 
This article describes the methodology used to 

design (sub)optimal tQCA logic circuit that 

computes an arbitrary ternary logic function. The 

solution is composed of predefined tQCA structures. 

One criterion for optimality is the number of 

interconnected structures, so that an optimal 

realization of a function occupies the smallest 

possible area. The second criterion is the number of 

levels in which the structures are connected. Indeed 

every level in the implementation increases the time 

needed to compute an output of a function. The third 

criterion, connected to the previous two, is the 

number of clocking zones in the tQCA circuit. 

Obviously the fastest and therefore optimal circuit 

computes the result after the minimal number of 

clock cycles. 

We present the CAD tool that is designed to find 

the implementation of the ternary logic function 

given as its input. The application, developed in 

programming language Prolog, searches for a 

solution based on the concept of iterative deepening. 

Since the circuit design is computationally complex, 

heuristic methods are used to expedite calculations 

[18]. In this way the tool may find a suboptimal 

solution but the computation time is greatly reduced. 

With the developed tool we designed complex 

tQCA circuits that were validated by quantum-

mechanical simulation. The benchmarking is not 

simple since the design of tQCA circuit is a novel 

domain and comparable models do not exist. The 

circuits obtained by using the CAD tool are much 

smaller and faster than those developed analytically 

based on the normal form. Most resembling domain 

is construction of binary QCA circuits. 

One of the applications of tQCA circuits is 

development of fuzzy controller [19] using multi-

valued logic [20]. If the tQCA cell can be further 

extended to represent more logic states, render it 

useful for fuzzy logic operations, the tool can be 

easily modified to design circuits using the 

improved QCA cell. 
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University of Ljubljana, Slovenia and is part of a 

PhD thesis being prepared by Miha Janez. 
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