
Automatic Design of Optimal Logic Circuits Based on Ternary

Quantum-dot Cellular Automata

MIHA JANEZ, IZTOK LEBAR BAJEC, PRIMOZ PECAR, ANDREJ JAZBEC, NIKOLAJ ZIMIC

and MIHA MRAZ

Faculty of Computer and Information Science, Computer Structures and Systems Laboratory

University of Ljubljana

Trzaska cesta 25, 1000 Ljubljana

SLOVENIA

miha.janez@fri.uni-lj.si http://lrss.fri.uni-lj.si/en/default.asp?lc=en

Abstract: - This paper treats the problems involved in the design of logic circuits based on novel processing

platform. It begins with description of the ternary quantum-dot cell, an extended classic binary cell. These cells

are basic building blocks of quantum-dot cellular automata. They are used to construct simple structures with

inputs and output which implement some ternary logic function. These structures are employed as building

blocks of larger and more complex circuits. The computer-aided design tool that finds an optimal

implementation of a circuit by bottom-up approach is described. The search of a solution is based on iterative

deepening. Since searching over all possible solutions is too computationally complex, heuristics are used to

reduce the computation time.

Key-Words: - Quantum-dot cellular automata, Ternary quantum-dot cell, Computer-aided design, Ternary

logic, Logic circuits, Iterative deepening, Heuristics

1 Introduction
The well-known Moore’s law implies the

exponential miniaturization of integrated circuits.

With the integration approaching the nanometer

scale and thus the limits of current manufacturing

methods, alternative processing platforms have

received substantial research. One of the possible

future nano-scale platforms is the quantum-dot

cellular automaton (QCA) [1]. Based on a new

computing paradigm, QCA devices are smaller,

faster and are saving more energy than present

computers. Furthermore quantum mechanical

effects present an obstacle at operating of current

miniaturized complementary metal-oxide

semiconductor (CMOS) devices, whereas

functioning of QCA takes advantage of the same

effects.

The basic building block of a QCA is a quantum-

dot cell. Positioned on the plane they constitute

cellular automata, each one characterized by the

setting of cells. A QCA is a structure with

predefined input, internal and output cells, capable

of computing some logical function. A binary QCA

is composed of binary quantum-dot (bQCA) cells,

each of them containing four quantum dots and two

electrons. Quantum dots with assigned positive

charge are distributed over cell’s surface in a square

like pattern. An individual negatively charged

electron occupies one of the quantum dots and has

the capability of tunneling between adjacent dots.

The electrons are positioned in quantum dots within

the cell due to Coulombic interactions among them.

Their possible arrangements have minimal total

electrostatic energy in a cell and they determine

different logic states of a cell. As binary QCA cell’s

name implies, the electrons can constitute two

possible arrangements, thus producing two logic

states. The setting of the selected logic states to

input cells by determining the corresponding

electron arrangements influences the states of

neighboring internal and output cells. By

electrostatic interactions all cells’ states are set in a

way that total electrostatic energy of the electron

arrangements is minimal. At that time the QCA is in

the ground state and the results are obtained by

reading the states of the output cells. By cleverly

placing the cells on the plane various binary

automata are constructed, capable to compute

different binary logic functions.

The use of binary logic in computers was

historically necessary only due to the limited

technology available at the time. This, however,

does not apply to QCA. Lebar Bajec et al. extended

the bQCA cell and introduced the ternary quantum-

dot (tQCA) cell capable of multi-valued logic

processing [2], [3]. As the bQCA cell, the ternary

QCA cell also contains two electrons, however it

has eight quantum dots distributed on its surface in a

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS

Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 919 Issue 9, Volume 7, September 2008

mailto:miha.janez@fri.uni-lj.si
http://lrss.fri.uni-lj.si/en/default.asp?lc=en

circular pattern. In this case the arrangements of

electrons determine four possible configurations,

thus enabling four different logic states of a cell.

The tQCA cell is shown on figure 1(a) and figure

1(b) presents its four logic states denoted A, B, C

and D respectively. The ternary number system has

been proposed as the most efficient, with such

advantages over binary as more compact coding of

numbers, implicit sign included in the

representation, simple comparison of numbers,

rounding of a fraction coinciding with truncation

and others [4], [5]. Due to these facts we based our

logic analysis on Lukasiewicz's ternary logic [6] and

assigned the logic values to the cell’s states as {A,

B, C, D} = {0, 1, ½, ½}. The analysis is

considerably simplified by treating state D as only

an internal state, i.e. this state only appears in

internal cells of the tQCA and never in input cells,

since it is logically equivalent to state C.

Fig. 1. (a) The tQCA cell. Quantum dots are

depicted as circles and numbered from 1 to 8. Two

electrons are presented as smaller black circles and

are occupying the dots labeled 2 and 4. (b) The four

possible electron arrangements in the tQCA cell,

determining four distinct logic states.

Ternary QCA are similar to binary automata,

except they are composed of tQCA cells, thus being

able of computing ternary logic functions that are

more general than binary. Simple tQCA with few

cells are connected into more complex tQCA

circuits that enable extensive computations. The

algorithms for an exact simulation of the behavior of

large tQCA circuits are inefficient [7], therefore we

propose a novel methodology for the design of

complex tQCA circuits, based on building blocks

with designated inputs and outputs. These are

simple tQCA structures constructed of a small

number of cells. We developed a computer-aided

design (CAD) tool that constructs a desired tQCA

circuit with available predefined blocks. They are

composed of only a few cells so their behavior can

be accurately simulated fast. The implemented tool

finds an optimal solution in terms of spatial

redundancy (the minimal number of tQCA cells

used) and maximal speed of processing (the

minimal number of clocking zones in a circuit).

2 The tQCA structures
By placing tQCA cells adjacent to each other

various cellular automata with defined input and

output cells are constructed. After establishing logic

states of the input cells, the processing occurs in the

internal states and finally results are available as

states of the output cells. The positions of cells in

the plane characterize particular ternary QCA

capable of computing a ternary logic function.

Fig. 2. Graph shows the normalized values of the

inter dot barrier height in particular phase of the

cyclic clock signal. The value 1 corresponds to the

highest barrier. The background shade of the tQCA

cell denotes corresponding clock phase assigned to

this cell at the beginning of circuit operation.

Afterwards the phase shifts through complete cycle.

If the inputs are switched suddenly, tQCA can

relax to the undesirable metastable state instead of

the ground state that ensures correct processing [8].

Additional problems are the desired behavior of the

simple tQCA structures such as line and inverter, as

the problem of determining the direction of data

flow from input to output cells. Solution to these

impediments is the introduction of adiabatic

switching [8], [9] to tQCA processing. By

controlling the inter dot barriers with a cyclic signal,

the tQCA structure is in its ground state throughout

the whole switch. The clock signal cycles through

four distinctive phases, denoted Switch, Hold,

Release and Relax, each lasting one fourth of a

clock period. Each cell is assigned a particular

initial phase, so that entire structure is partitioned

into clocking zones. Each zone then cycles through

all four clock phases during computation. The tQCA

processing performed by the tunneling of electrons

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 920 Issue 9, Volume 7, September 2008

takes place in the Switch phase, therefore the result

may be available before the clock cycles through all

phases. As presented on figure 2, the inter dot

barrier rises in the Switch phase and is highest in the

Hold phase, thus preventing electrons from

tunneling between quantum dots. In subsequent

Release phase the barrier lowers and is least in the

Relax phase, the final phase of a clock cycle.

Fig. 3. (a) The tQCA ternary logic inverter. The

input cell is labeled In and the output cell is labeled

In . (b) Behavior of the tQCA wire at different

inputs. In each case the input cell is on the left side

of a wire and it is outlined with thick lines. The

internal cells are to the right of the input cell and

outlined with thin lines. The output cell is on the

right end of a wire. Cells with same background

shade belong to the same clocking zone.

The number of clock cycles needed for

computation is determined by the number of

clocking zones used in the tQCA circuit. After the

setting up of the input cells' states and the relaxation

of the tQCA to its ground state in the final clock

phase, the result of the computation is obtained by

reading the states of the output cells. We

constructed various simple tQCA structures used as

building blocks of large and complex circuits. The

blocks are composed of a small number of tQCA

cells grouped in few clocking zones. Every structure

can be used to compute a particular simple ternary

logic function depending on the chosen inputs. For

each of the constructed building blocks we

computed its truth table, i.e. for every input

configuration the corresponding output state was

found. Calculations were made using the quantum-

mechanical simulation model based on the Hubbard

type Hamiltonian equation [9].

Fig. 4. The original tQCA majority gate M and its

truth table. Input cells are labeled In1, In2, In3 and

the output cell is labeled Out.

Figure 3 presents the simplest tQCA structures.

On figure 3(a) are the tQCA ternary logic inverter

and its truth table. The cells of the tQCA inverter

have to be divided into two clocking zones for

correct operation, thus the result of the computation

is available after the second clock phase, i.e. after

half of the full clock cycle. The truth table of the

tQCA inverter corresponds to the truth table of

negation in ternary logic. Figure 3(b) shows the

behavior of the tQCA wire at every possible input.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 921 Issue 9, Volume 7, September 2008

The input cell, internal cells and the output cell are

assigned to three different clocking zones, which

determine the direction of data flow. Upon closer

inspection it is evident that the wire must have an

odd total number of cells to perform correctly.

However the wire of even length can be used to

transform state D to logically equivalent state C.

Fig. 5. The tQCA structure M2 capable of

computing the majority function after only two

clock phases.

A useful structure is the tQCA majority gate that

can be used to implement ternary logic disjunction

and conjunction, similar to the binary QCA majority

gate [10], [11]. The tQCA majority gate with same

form as its binary counterpart is presented on figure

4 together with corresponding truth table. It must be

divided in three clocking zones by use of adiabatic

switching to perform as desired [9]. The tQCA

majority gate can be used to compute ternary logic

conjunction by fixing one of the input states to A,

analogous ternary disjunction is computed by fixing

one of the inputs to state B [2], [3], [10], [11]. Two

input logic values are brought to remaining two

input cells of the gate. In this way the tQCA

majority gate acts as binary QCA majority gate

generalized to ternary logic.

However, another tQCA structure, presented on

figure 5, is capable of implementing the majority

function. Structure denoted M2 uses only two

clocking zones so the result of computation is

available sooner as the result obtained by using

original tQCA majority gate labeled M. The truth

table of M2 on figure 5 is remarkably similar to the

truth table on figure 4 differing by only three

configurations. First two columns in both tables are

identical so ternary conjunction and disjunction can

be implemented with M2 by fixing the first input

cell’s state to A and B respectively. Another useful

building block is the structure denoted Cf shown on

figure 6. It enables simple implementations of tQCA

circuits which compute characteristic functions,

described later in this article. It should be noted that

two structures with same number and positions of

cells but different partition of clocking zones can

have different corresponding truth tables.

Fig. 6. The tQCA structure Cf and its truth table. All

cells belong to the same clocking zone.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 922 Issue 9, Volume 7, September 2008

Each tQCA structure implements some ternary

logic function. The equations of these functions are

written in the form

Output = Si(Input1, Input2, ..., Inputm)

 i = 1, 2, ..., n (1)

Si denotes the function that is computed by i-th out

of the n constructed tQCA structures which has m

input cells. The number of input cells m varies

between structures, e.g. the tQCA inverter has one

and the tQCA majority gate has three input cells.

Output is a vector of outputs of the logic function

with k input variables Variablei, Variable2, ...,

Variablek and contains 4
k
 values. Since states C and

D are logically equivalent, i.e. they are both treated

as logic value ½, only 3
k
 values of vector Output are

representative. These are the tQCA cell states in the

output column at each particular input configuration

of values of k variables in the truth table of the

function. Inputj, j=1,2,...,m, can be either a constant

state, a vector of Variable or a vector of function

outputs computed by some tQCA structure. In case

of the tQCA logic inverter with one input variable,

vectors are described by the relations (2), (3) and

(4):

 Variable = [A, B, C, D] (2)

 Output = [B, A, C, D] (3)

and

 Output = Inverter(Variable) (4)

One of many possible equations of ternary logic

conjunction is written as

 Output = M(V1, V2, A) (5)

In equation (5) input variables are labeled V1 and V2,

whereas M denotes the tQCA majority gate. The

third input cell is set to constant state A.

Each input can be an output of another tQCA

structure. The tQCA logic circuits are constructed

by connecting the output cell of the tQCA structure

to the input cell of another structure with the tQCA

wire. Thus the state of the output cell is transferred

to the input of the next tQCA structure. Structures in

the circuit must be placed sufficiently apart from

each other or suitably partitioned in clocking zones

so that the operation of one structure does not

interfere with others. In case of interference, output

of a structure can differ from the one calculated by

the simulation of standalone structure. By placing

structures sufficiently apart electrostatic forces

acting between electrons in separate structures are

negligible since they are inversely proportional to

the square of the distance between electrons.

3 Design of optimal tQCA logic

circuits

Although any ternary function can be written in the

normal form as the composition of functions in a

functionally complete set, the realization of this

form may be constituted of many tQCA structures.

Instead of designing circuits by top-down approach

based on normal form, we propose the novel

bottom-up concept. By this method combining

simple tQCA structures leads to development of

large circuits capable of computing complex

functions. Our goal was to find the smallest and the

fastest tQCA circuit that implements the desired

ternary logic function. The optimal logic circuit

consists of the minimal number of tQCA structures

and has the minimal total number of clocking zones.

Fig. 7. The procedure of searching the space of

solutions by iterative deepening strategy. The tQCA

structures are denoted Si. Connection between

structures indicates that the outputs of structures on

lower level of the search tree are driven to the inputs

of the structure on one level above them.

We designed the CAD tool that finds the tQCA

logic circuit composed of predefined tQCA

structures for an arbitrary ternary logic function

with an arbitrary number of variables. The input

data are vector Output and the truth tables of tQCA

structures that will be used to construct the circuit.

The number of variables is computed from the

length of vector Output. Result is the constructed

tQCA logic circuit, written in the form of the

relation (1).

The basic idea of the developed tool is searching

the space of solutions. Among various search

algorithms [12] we implemented the method based

on the iterative deepening [13]. This search strategy

repeatedly checks the nodes in the search tree,

increasing the depth limit on each iteration. It

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 923 Issue 9, Volume 7, September 2008

combines space efficiency of the depth-first search

and the promise of obtaining a valid solution like in

the case of breadth-first search. The procedure of

iterative deepening search of tQCA circuits is

demonstrated on figure 7. On first iteration it checks

every predefined single tQCA structure if it is able

to compute the desired function by selecting

appropriate inputs. These can only be constant states

or variables and not another tQCA structures. If the

solution is not found, the procedure repeats the

previous search on each next iteration, since the

results are not saved. Additionally the depth limit

increases by one. This means that now the inputs on

last level of the search tree can also be single

structures instead of just constants or variables. If

available building blocks constitute the functionally

complete set, the procedure is guaranteed to find

any solution.

For the implementation of the CAD tool we

chose the Prolog programming language. In the first

place it is well suited for problems involving

structured objects and relations between them [14].

That is in accordance with our problem of

constructing circuits composed of building blocks.

Secondly, Prolog is designed for artificial

intelligence programming, which among others

includes the intelligent search algorithms. This is

enabled by features like pattern matching, tree-

based data structuring and automatic backtracking

[14], all of them appropriate for the problem of

tQCA circuits construction. Furthermore, Prolog

language has already been used in CAD applications

[15], [16].

X A A A B B B C C C

Y A B C A B C A B C

X→Y B B B A B C C B B

Table 1. The truth table of Lukasiewicz’s

implication.

The truth tables of the basic structures are given

to Prolog as facts. This is very useful as additional

structures can be added by simply designing a new

structure, computing its truth table by simulation

and adding it to the existing facts. The input data is

the truth table of the logic function to be realized.

Furthermore the input can be incompletely

specified. Using the tool it is easy to handle the

don’t cares, as these are represented as anonymous

variables in Prolog. For example, to construct the

tQCA circuit that computes Lukasiewicz’s

implication, the input data is vector

 [B, B, B, A, B, C, C, B, B] (6)

The truth table of Lukasiewicz’s implication is

presented in table 1. However, if for example the

output of input configuration X = C and Y = C is not

needed, the input data is described by relation (7).

 [B, B, B, A, B, C, C, B, _] (7)

Anonymous variable in Prolog is denoted by sign

‘_’. It can take any value, in this case it can be any

tQCA cell’s logic state. By using anonymous

variables the search of the desired tQCA circuit can

be quickened, since more circuits can satisfy the

input conditions and the solution can be found early.

By taking advantage of the cellular automata’s

intrinsic parallel operation [17] it is possible to

construct tQCA circuit with some of its building

blocks processing in parallel. Concurrent operation

significantly reduces the total time of computation.

The synchronization of building blocks running in

parallel is assured by appropriate placement of their

cells in clocking zones. Figure 8 shows two tQCA

circuits both composed of three building blocks. The

circuit on figure 8(a) operates in strictly sequential

way, while the other circuit on figure 8(b) takes

advantage of parallel processing.

Fig. 8. (a) Sequential tQCA circuit. (b) Two

building blocks in the left part of the circuit process

concurrently. Synchronized arrival of their output

states to input cells of the final majority gate is

enabled by suitably delaying the data transfer on the

tQCA wires connecting the building blocks, done by

assigning the clock zones. Input cells are outlined

with thick lines, output cell is labeled Out.

The number of levels of the tQCA logic circuit is

the maximal number of sequentially connected

structures. For example the circuit on figure 8(a),

described by the form (8) has three levels:

 M(In6, Cf(In4, M(In1, In2, In3), In5), In7) (8)

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 924 Issue 9, Volume 7, September 2008

On the other hand parallel circuit on figure 8(b) also

contains three building blocks, but they constitute

only two levels:

 M(In7, M(In1, In2, In3), Cf(In4, In5, In6)) (9)

In above forms In1 to In7 indicate inputs, whereas M

and Cf are tQCA structures. By iterative deepening

the tool first finds circuits with the minimal number

of levels. From obtained solutions only the circuits

with minimal number of used structures and

clocking zones are chosen. More than one different

optimal circuit that computes the desired ternary

function can be found, depending on the selection of

building blocks.

The search algorithm is initiated by calling

method construct_tQCA_circuit(Function, Circuit,

Building_blocks). Variable names in Prolog start

with capital letter. Function is the truth table of

ternary logic function in vector form, Circuit is the

solution in form of the relation (1) and

Building_blocks is the list of building blocks that

will be used to construct the solution. By taking

advantage of Prolog’s features the method call

works in many ways. For example, the tQCA circuit

for computing ternary conjunction is found by

calling construct_tQCA_circuit([a, a, a, a, b, c, a, c,

c], Circuit, [m]). On the other way, the output

function of the circuit is found by instantiating the

Circuit variable, e.g. by calling the method

construct_tQCA_circuit([Function, m(a, x, y), [m]).

The circuit is checked against the function vector by

instantiating both Circuit and Function variables.

3.1 Reduction of the search space
The search space is reduced by not considering

configurations that always output a constant, e.g.

M(A, A, Variable) that always outputs the vector

consisting of states A, independent of the value of

vector Variable. It is evidently more efficient to

assign the constant state to the input cell instead of

computing it by such function. Furthermore only

one of the configurations that have identical truth

tables is used, e.g. M(A, Variable1, Variable2) and

M(Variable1, Variable2, A) both compute the same

output, the ternary conjunction of variables

Variable1 and Variable2. The elimination of such

duplicated configurations is performed before the

search of solution space and it depends on the

selection of building blocks. The remaining

configurations constitute the base of search

algorithm. Computed base can be saved for further

calculation if it is often used.

The number of all possible configurations of the

tQCA majority gate with three inputs, considering

four constant states and three different variable

vectors, is 7
3
=343. Using the described technique,

the number of appropriate configurations is reduced

to merely 25. Since the space of solutions is

expanding by multiplication of possible

configurations for every input of the structure on

higher level of the search tree, the reduction

technique considerably reduces the required search

time.

3.2 Interpretation of the tQCA cell’s states
As mentioned before, we assigned the logic values

to the cell’s states as {A, B, C, D} = {0, 1, ½, ½}.

However, different interpretation could produce

faster and smaller tQCA circuits. Although the

interpretation cannot be changed from case to case,

it can be applied to the heuristic method for further

improvement of the search algorithm. The CAD tool

employs heuristics to speed up the calculations,

since it can be hard to find a complex circuit. To

enable different interpretation of the cells, the tool

defines as many variables as there are different

output states and represents the truth table using

them. In other words all of the input combinations

that result in the same output state use the same

variable. Figure 9 shows the procedure in case of

Lukasiewicz's equivalence function. State A is

mapped to variable XA, state B to XB and state C to

variable XC. Through backtracking Prolog

determines the values of variables that are mutually

exclusive. The states may be temporarily mapped to

different ternary logic values as initially, thus the

obtained solution is not the desired function. In this

case the tool maps the output states into the desired

states with the fast method that finds a function of

one variable, which correctly maps the intermediate

output states to the final and correct output states.

With this procedure the tool may not find an optimal

solution, but it finds a good solution fast.

Fig. 9. Mapping the constant output states into

corresponding states, represented as variables in

Prolog. Figure shows the mapping in case of

Lukasiewicz's equivalence function.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 925 Issue 9, Volume 7, September 2008

3.3 Using previously obtained tQCA circuits
Every constructed tQCA circuit can be used as the

building block of even more complex circuit. This is

done by computing its truth table and add it to

Prolog facts. In another way it can be inserted as

selected part of the desired solution. For example,

the search can be initiated by calling method

construct_tQCA_circuit([b, b, b, a, b, c, c, b, b],

m(cf(x, y, a), Input1, Input2), [m, cf]). The tool will

search for a circuit that computes Lukasiewicz’s

implication, with tQCA majority gate on the first

level and function Cf(X, Y, A) as its first input. The

other two inputs will be found to satisfy the

appointed conditions. By choosing convenient

predefined parts the solution is found faster.

In abovementioned example the search will

automatically start at second level, since the resulted

tQCA circuit must consist of at least two levels. The

search can begin at higher depth limit even without

predefining parts of a solution. This is useful when

searching for complex circuit which consists of

numerous levels. By this technique the algorithm

omits searching on lower levels thus reducing the

required time for obtaining the solution.

The scheme of the algorithm, omitting the

implementation details, is given below:

construct_tQCA_circuit(Function, Circuit,

 Building_blocks):-

construct_base(Base, Building_blocks),

map_states(Function, Mapped_function,

 Inverse_mapping),

Depth_limit=1, increase(Depth_limit),

iterate(Mapped_function, Intermediate_circuit,

 Depth_limit),

Depth_limit=1, increase(Depth_limit),

iterate(Inverse_mapping, Mapping_circuit,

 Depth_limit),

combine(Mapping_circuit, Intermediate_circuit,

 Circuit).

First the base is constructed as described in section

3.1, afterwards the states are mapped as in section

3.2. Variable Depth_limit is the depth limit of

iterative deepening search algorithm illustrated on

figure 7. It increases on each iteration by Prolog’s

automatic backtracking. In the first place the

intermediate tQCA circuit is found, then the circuit

that correctly maps the states and finally they are

combined into solution. The search is performed by

the recursive method iterate, outlined below:

iterate(Function, Circuit, 1):-

member(Circuit, Base),

circuit_function(Function, Circuit).

iterate(Function, Circuit, Depth_limit):-

member(Circuit, Base),

iterate(Function1, Input1, Depth_limit-1),

iterate(Function2, Input2, Depth_limit-1), …,

combine(Function1, Function2, …, Function),

combine(Input1, Input1, …, Circuit).

The boundary condition is Depth_limit = 1, at that

time a structure with determined inputs is selected

from the Base and its output function is returned as

result. Otherwise the procedure is recursively

applied to every uninstantiated input. After the

inputs are instantiated, the procedure checks if the

combination of their functions agrees with the

original input function. If this is the case, the

constructed circuit is returned as valid result.

4 Results
The disjunctive normal form of the ternary cyclic

negation, defined in the table 2, is quite lengthy:

X = (f
A
(X) ˅ C) ˄

 (f
B
(X) ˅ A) ˄ (10)

 (f
C
(X) ˅ B)

In equation (10) the symbol ˄ denotes ternary logic

conjunction, defined as the minimum of the input

logic values. The symbol ˅ denotes ternary

disjunction, defined as the maximum of the input

logic values. Input variable is labeled X and X is the

notation of the cyclic negation. The functions f
A
(X),

f
B
(X) and f

C
(X) denote the characteristic functions

for states A (logic value 0), B (logic value 1) and C

(logic value ½) respectively. They are defined by

the relation

 CB,A,

otherwise A;

 if B;
=)(f





 

Y

YX
XY

(11)

Circuits for f
A
(X) and f

B
(X) are given by equations

(12) and (13) respectively.

 f
A
(X) = Cf(B, B, X) (12)

 f
B
(X) = Cf(B, B, Inverter(X)) (13)

The tQCA circuit implementing function f
C
(X) is

slightly more complex:

 f
C
(X) = Cf(Cf(A, X, B), A, Inverter(X)) (14)

X 0 ½ 1

Logic values of X ½ 1 0

Output cell states of X C B A

Table 2. Truth table of the ternary cyclic negation

function.

The straightforward realization of the ternary

cyclic negation by equation (10) is composed of

many structures sequentially connected in numerous

levels. However our tool finds an optimal solution

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 926 Issue 9, Volume 7, September 2008

composed of only three structures connected in two

levels as presented in figure 10. It can be written in

equation form as

 f
C
(X) = Cf(X, Cf(B, C, X), Cf(B, B, X)) (15)

With implemented heuristic methods the CAD

tool is able to find even complex tQCA circuits for

implementation of ternary logic functions that do

not have a simple solution. One of these is

Lukasiewicz's equivalence, implemented by the

tQCA circuit described by complex form:

M2(B, M2(B, M2(A, X, Y), M2(A, Inverter(X),

Inverter(Y))), Cf(A, A, M2(B, M2(B, X, Y), Cf(X, A,

Y)))).

Fig. 10. The optimal implementation of the ternary

cyclic negation with tQCA structures. The output X

is computed after 5 clock phases.

5 Conclusion
This article describes the methodology used to

design (sub)optimal tQCA logic circuit that

computes an arbitrary ternary logic function. The

solution is composed of predefined tQCA structures.

One criterion for optimality is the number of

interconnected structures, so that an optimal

realization of a function occupies the smallest

possible area. The second criterion is the number of

levels in which the structures are connected. Indeed

every level in the implementation increases the time

needed to compute an output of a function. The third

criterion, connected to the previous two, is the

number of clocking zones in the tQCA circuit.

Obviously the fastest and therefore optimal circuit

computes the result after the minimal number of

clock cycles.

We present the CAD tool that is designed to find

the implementation of the ternary logic function

given as its input. The application, developed in

programming language Prolog, searches for a

solution based on the concept of iterative deepening.

Since the circuit design is computationally complex,

heuristic methods are used to expedite calculations

[18]. In this way the tool may find a suboptimal

solution but the computation time is greatly reduced.

With the developed tool we designed complex

tQCA circuits that were validated by quantum-

mechanical simulation. The benchmarking is not

simple since the design of tQCA circuit is a novel

domain and comparable models do not exist. The

circuits obtained by using the CAD tool are much

smaller and faster than those developed analytically

based on the normal form. Most resembling domain

is construction of binary QCA circuits.

One of the applications of tQCA circuits is

development of fuzzy controller [19] using multi-

valued logic [20]. If the tQCA cell can be further

extended to represent more logic states, render it

useful for fuzzy logic operations, the tool can be

easily modified to design circuits using the

improved QCA cell.

The work presented in this paper was performed at

the Computer Structures and Systems Laboratory,

Faculty of Computer and Information Science,

University of Ljubljana, Slovenia and is part of a

PhD thesis being prepared by Miha Janez.

References:

[1] C. S. Lent, P. D. Tougaw, W. Porod and G. H.

Bernstein, Quantum cellular automata,

Nanotechnology, Vol. 4, No. 1, 1993, pp. 49-

57.

[2] I. Lebar Bajec, N. Zimic and M. Mraz, The

ternary quantum-dot cell and ternary logic,

Nanotechnology, Vol. 17, No. 8, 2006, pp.

1937-1942.

[3] I. Lebar Bajec, N. Zimic and M. Mraz,

Towards the bottom-up concept: Extended

quantum-dot cellular automata,

Microelectronic Engineering, Vol. 83, No. 4-9,

2006, pp. 1826-1829.

[4] B. Hayes, Third Base, American Scientist, Vol.

89, No. 6, 2001, pp. 490-494.

[5] D. E. Knuth, The Art of Computer

Programming, Volume 2: Seminumerical

Algorithms (2nd edition), Addison-Wesley Pub,

1981.

[6] J. Lukasiewicz and L. Borkowski, Selected

Works, North-Holland Publishing Company,

1970.

[7] J. C. Lusth and B. Dixon, A characterization of

important algorithms for quantum-dot cellular

automata, Information Sciences, Vol. 113, No.

3, 1999, pp. 193-204.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 927 Issue 9, Volume 7, September 2008

[8] C. S. Lent and P. D. Tougaw, A device

architecture for computing with quantum dots,

Proceedings of the IEEE, Vol. 85, No. 4, 1997,

pp. 541-557.

[9] P. Pecar, M. Mraz, N. Zimic, M. Janez and I.

Lebar Bajec, Solving the Ternary Quantum-dot

Cellular Automata Logic Gate Problem by

Means of Adiabatic Switching, Japanese

Journal of Applied Physics, Vol. 47, No. 6B,

2008, pp. 5000-5006.

[10] I. Amlani, A. O. Orlov, G. Toth, G. H.

Bernstein, C. S. Lent and G. L. Snider, Digital

Logic Gate Using Quantum-Dot Cellular

Automata, Science, Vol. 284, No. 5412, 1999,

pp. 289-291.

[11] P. D. Tougaw and C. S. Lent, Logical devices

implemented using quantum cellular automata,

Journal of Applied Physics, Vol. 75, No. 3,

1994, pp. 1818-1825.

[12] J. Kluabwang, D. Puangdownreong and S.

Sujitjorn, Management Agent for Search

Algorithms with Surface Optimization

Applications, WSEAS Transactions on

Computers, Vol. 7, No. 6, 2008, pp. 791-803.

[13] R. E. Korf, Depth-first iterative-deepening: an

optimal admissible tree search, Artificial

Intelligence, Vol. 27, No. 1, pp. 97-109.

[14] I. Bratko, Prolog programming for artificial

intelligence (Third edition), Addison-Wesley

Longman Publishing Company, 2001.

[15] P. W. Horstmann and E. P. Stabler, Computer

aided design (CAD) using logic programming,

Proceedings of the 21st conference on Design

automation, 1984, pp. 144-151.

[16] J. C. Gonzalez, M. H. Williams and I. E.

Aitchison, Evaluation of the Effectiveness of

Prolog for a CAD Application, IEEE Computer

Graphics and Applications, Vol. 4, No. 3,

1984, pp. 67-75.

[17] S. Wolfram, Cellular automata, Los Alamos

Science, No.9, 1983, pp. 2-21.

[18] L. Jozwiak, D. Gawlowski and A. Slusarczyk,

Benchmarking in Digital Circuit Design

Automation, WSEAS Transactions on Circuits

and Systems, Vol. 7, No. 4, 2008, pp. 287-310.

[19] M. Mraz, Z. Magdevski, J. Ficzko, N. Zimic,

M. Moskon, M, Janez and I. Lebar Bajec,

Towards multistate nanocomputing: The

implementation of a primitive fuzzy controller,

Proceedings of the Second International

Conference on Quantum, Nano and Micro

Technologies (ICQNM 2008), Vol. 00, 2008,

pp. 45-49.

[20] V. Varshavsky, V. Marakhovsky, I. Levin and

N. Kravchenko, Summing Amplifier as a

Multi-Valued Logical Element For Fuzzy

Control, WSEAS Transactions on Circuits and

Systems, Vol. 2, No. 3, 2003, pp. 625-631.

WSEAS TRANSACTIONS on CIRCUITS and SYSTEMS
Miha Janez, Iztok Lebar Bajec, Primoz Pecar,
Andrej Jazbec, Nikolaj Zimic and Miha Mraz

ISSN: 1109-2734 928 Issue 9, Volume 7, September 2008

