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Abstract: -. When designing low power sensor with radio capabilities the choice of the encoding for the radio 

signal can have great impact on performance and implementation requirements. The paper presents different 

encodings with their advantages and disadvantages, looking at both performance and implementation 

requirements. Finally the paper presents a proposed PWM encoding and the way that it was implemented and 

shows that the implementation advantages over other more traditional encoding outweigh the loss in 

performance. As well the paper presents different implementation methods for transmitters and receivers using 

the PWM encoding. 
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1 Introduction 
With the advancements in the wireless radio 

communication and the availability of low power 

micro controllers a new research field became very 

popular in the past few years called “Wireless sensor 

networks”. A wireless sensor network is formed 

from nodes capable of sensing, processing and 

communication that allow the network to analyze 

data in a distributed fashion. There are many 

applications where data from different places has to 

be collected and analyzed as a whole to solve a 

problem and wireless sensor networks are good 

candidates for this sort of problems. In [11] three 

classes of applications have been identified as 

relevant for being implemented with wireless sensor 

networks. These classes are: environmental data 

collection, security monitoring and senor node 

tracking. Environmental data collection refers to 

collecting data from many points over a long period 

of time in order to be able to infer some properties 

about the environment by analyzing the collected 

data. For the security monitoring application class 

sensors do not gather information, they are 

analyzing the information online in order to detect 

abnormalities. In the node tracking scenario tagged 

objects are tracked through a region monitored by 

the sensor network. An example of where this class 

of application can be used is in logistics companies 

like UPS [12]. 

In the paper we will present radio communication 

aspects for nodes designed to work for 

environmental data collection. In our case the 

environment is the house. There are many things 

that are currently monitored in the house like: 

electricity, water and heat consumption. These 

things can be monitored automatically by a wireless 

sensor network and then the data to be centralized 

and sent to the authorities that are interested in it in 

order to issue the bills for home automation. One 

important demand is to reduce the number of wires 

needed to connect all the sensors as it is very 

inconvenient to install a large number of wires to 

create a sensor network. For example, if smart water 

meters and smart heat meters are installed the state 

of the meters can be collected by the network and 

transmitted by some standard network (Ethernet) to 

the company that sends the bills. The paper 

describes how we chose and implemented the 

wireless communication for this sort of sensors and 

the data collector while at the same time to meet the 

other constraints imposed for such sensors.  

Water meters and heat meters for home automation 

have to be cheep low power devices. Most sensors 

are built around a microcontroller that has to 

implement all the logic of the sensor. Such sensors 

usually have to work for at least ten years on battery 

and therefore have to be low power. There is little 

extra hardware that can be added apart from the 

controller. In this case all the communication 
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protocol has to be implemented in software with 

limited hardware support only what is offered as 

peripherals of the microcontroller. 

Under these constraints we had to optimize the data 

encoding for the communication protocol in order to 

be easier to implement in software and still to keep a 

performance that is close to a more traditional 

encoding, but which would require some dedicated 

hardware components. 

 

2. Coding solutions 
The simples coding and physical layer 

communication protocol is the one used at the 

UART transceivers. [1] This is a simple encoding 

where the bits are encoded by the voltage level and 

the protocol permits the synchronization of the 

receiver at the beginning of each byte. Since the 

transmitter is implemented in software and 

sometimes the receiver as well, timing is critical and 

it is very complicated to keep both the transmitter 

and the receiver synchronized for very long. The 

UART protocol has the advantage that the 

transmitter and the receiver have to be synchronized 

only for the duration of one byte. On the other hand 

our simple radio transmitter was set for ON/OFF 

amplitude modulation. This means that if data that 

contained a lot of zeros has to be transmitted for the 

duration of those zeros there would be no carrier 

wave with this encoding – Figure 1.  

 

 

Figure 1 UART coding (up) – the worst 

case (down) 

The lack of carrier wave from the transmitter leads 

the receiver to drift from the functioning point and 

start amplifying the noise which compromises the 

transmission. One solution was to divide the data 

into nibbles and force some bits to ‘1’ in order to 

have the carrier wave active for sufficient time. 

However this would double the time necessary to 

transmit the data and therefore violate our low 

power restrictions.  

 In order to avoid the problem of the UART 

encoding we turned to an encoding that ensured that 

we would have a carrier wave for an average of 50% 

of the transmission time regardless of the data we 

transmit. An encoding that complies with these 

specifications is the Manchester encoding, [2, 3] – 

Figure 2. 

 

 

Figure 2 Manchester coding 

 

From the electrical point of view the Manchester 

encoding is ideal, however we had implementation 

problems. One major problem that we faced with 

our software implemented versions is 

synchronization. Synchronizing the receiver with the 

transmitter is only possible without any extra 

overhead at the beginning of the data package where 

code violations can be inserted. After the initial 

synchronization both the transmitter and the receiver 

would have to keep a stable operating frequency for 

the duration of the whole package. Implementing 

these timing requirements in software is very 

difficult and the slightest deviation would result in 

errors at reception even if the signal is not affected 

by noise and the whole package would need to be 

retransmitted resulting in a waste of energy.  

A robust encoding for software implementation 

should allow the receiver to synchronize with the 

transmitter more often than just at the beginning of 

the data package. At the same time the encoding 

should allow the carrier wave to be on enough time, 

so that the receiver would not be affected by noise, 

regardless of the transmitted data. We found that by 

using a “Pulse Width Modulation” (PWM) to 

encode the data at the physical layer we could 

satisfy both requirements. We defined the encoding 

as follows: a 25% pulse for logical ‘0’ and a 75% 

pulse for logical ‘1’. This way in the worse case 

when a lot of ‘0’ are transmitted the carrier wave is 

on for at least 25% of the time. The other main 

advantage is that each bit starts with a rising edge 

which can be used for synchronization at the 

receiver as shown in Figure 3. 
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Figure 3 PWM signals diagram 

As shown in Figure 3 each bit of the transmitted 

data starts with a rising edge and has a predefined 

constant period known by the receiver. The only 

thing that changes is the pulse width. The receiver 

can synchronize on the rising edge and set its timing 

to sample at 50% of the period. If the transmitted bit 

is ‘0’, than the receiver sampling at half the period, 

will see a ‘0’. The case where ‘1’ is transmitted is 

similar and the sampled values are actually the bit 

values and no further processing is necessary. 

This encoding method proved to be robust because 

with the synchronization on each bit the timing 

errors introduced by software implementations of 

the transmitter or the receiver are not cumulated to 

the whole package, therefore requiring precise 

timing. From over experiments that we will present 

in the chapter 4, we will show that the PWM 

encoding method is comparable to the Manchester 

encoding methods and that advantages offered for 

implementation are greater than the loss in 

performance as compared to Manchester encoding. 

 

 

3   Implementations. 
3.1   Data package description 
There are three problems that we tried to address 

when we defined the structure of our data package. 

One problem was to allow time for the receiver to 

get ready to receive data. We do this by transmitting 

8 bytes with the value 0xAA as a preamble. This 

way the receiver sees the carrier wave for 50% of 

the time on average and it should bring the receiver 

in the functioning point. The second problem was to 

find a way to delimit the start of the package. For 

this we chose to transmit a field of 16 bits after the 

preamble which we called the key. We chose to 

transmit the value 0xCCCC as the key – Figure 4. 

The receiver has to wait for the key combination 

before starting to save the received data and has to 

ignore any key combinations that appear until the 

end of the package. The third problem that needed to 

be solved was to ensure data integrity. We did this 

by using CRC to detect any errors in the 

transmission. We used a 16 bit CRC with the 

standard CCITT polynomial expression.  

Except for the data that we needed to add to comply 

with the requirements of the physical medium we 

tried to construct the data package to be general in 

order to use it for any application with sensor 

networks. Therefore the data package contains a 

fixed length header that contains the destination 

address on 8 bits, the source address on 8 bits, an 8 

bit field to identify the connection, the length of the 

data on 8 bits and the CRC code of the header on 16 

bits. After the header the data is send and it can have 

variable size in between 1 and 255 bytes followed 

by the CRC code of the data field. 

 

 

Figure 4 Data package description 

 

3.2 Software implementation 
We have implemented a software version of the 

transmitter using a MSP430F417 microcontroller 

from Texas Instruments. This is a low power 

microcontroller which is used for many metering 

applications since it also has an integrated LCD 

controller. The only hardware support that we used 

was one of the timers and a compare channel in 

order to generate the timing from the transmitter. 

Since metering applications have to be low power 

solutions the microcontroller was set to work at 1 

MHz in order to save energy. In order for the 

transmitter to work at this clock speed, we could not 

use the timer interrupt to construct the transmitter 

code. Instead the assembly written code that 

emulates the transmitter actively waits on the 

interrupt flag of the compare channel that was used 

to generate the timing. The disadvantage of this 

solution is that the microcontroller has to be active 

all the time until the whole data package is 

transmitted, but the advantage is that we have more 

precise timing without having a dedicated hardware 

controller as a transmitter. 

In a similar fashion we implemented a software 

version of the receiver which we tested on a 

MSP430F449 microcontroller [17]. We chose this 

controller because it has a standard UART hardware 
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interface which we used to connect to a PC in order 

to collect data. However this is similar with the 

previous controller which is more popular for simple 

meters. 

The algorithm by which the receiver works is 

presented in the following pseudo code: 

 

1. loop 

2.     wait for rising edge and set timer 

upon detection 

3.     wait for timer and sample on timer 

overflow 

4.     if received pattern matches the key 

go to 6 

5.     if expected time to receive data 

elapsed go to 34 

6. end loop 

7. set byte counter to header size 

8. loop  

9.     set bit counter to word size 

10.     loop 

11.         wait for rising edge and set timer 

upon detection 

12.         wait for timer and sample on timer 

overflow 

13.         decrement bit counter 

14.         if byte received go to17 

15.         if timeout occurred go to 34 

16.     end loop 

17.     decrement byte counter 

18.     if data received and CRC test is 

successful go to 20 else go to 

34 

19. end loop 

20. set byte counter to data size 

21. loop  

22.     set bit counter to word size 

23.     loop 

24.         wait for rising edge and set timer 

upon detection 

25.         wait for timer and sample on timer 

overflow 

26.         decrement bit counter 

27.         if byte received go to 30 

28.         if timeout occurred go to 34 

29.     end loop 

30.     decrement byte counter 

31.     if data received and CRC test is 

successful go to 33 else go to 

34 

32. end loop 

33. set flags to indicate correct reception 

and return 

34. set flags to indicate the occurred error 

and return 

As can be seen from the pseudo code a major 

drawback of a purely software implementation of 

the receiver is that the controller is always busy 

waiting to receive the key which marks the begging 

of a data package and while receiving the data. The 

problem is that without any carrier wave present the 

receiver amplifies the noise to logic levels and 

therefore if the input pin would be set to give an 

interrupt on change, the interrupt would constantly 

be triggered. For this reason a purely software 

receiver implementation has limited practical 

application. This sort of software implementation 

can only be used practically if the receiver knows 

the approximate times when the sensors are 

transmitting and it only goes into the receiving loop 

around those moments. Timeouts provide ways to 

exit the loops in case there is no transmission 

present in a reasonable time window.     

 

3.3 Hardware implementation 
To test a hardware implementation, we used an 

FPGA platform based on Cyclone II device from 

Altera. We also used the Nios II processor that 

Altera offers for their FPGAs to build out system. 

The idea behind the hardware implementation was 

to create a data collection device for intelligent 

meters, which could collect the data from the 

sensors over radio and relay to a central database 

over Ethernet. In order to offload the processor as 

much as possible we implemented the physical level 

protocol and most of the data link level protocol in 

hardware. A simplified diagram of our test system is 

presented in Figure 5. 

 

Figure 5 The block diagram of test system 

 

In order to use the TCP/IP stack we programmed our 

application using MicroC/OS-II real time kernel. In 

this case it was useful to move as much of the radio 

transceiver protocol in hardware and to use some 

FIFO buffers in order to have more relaxed real time 

constraints 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
197

Issue 4, Volume 7, April 2008



The whole design including the processor and other 

necessary peripherals was fitted in fewer than 5000 

logic cells. For a more precise report see Figure 6. 

 

 

Figure 6 Hardware implementation report 

 

However in order to make low cost sensors with 

receiver capabilities a hybrid solution can be used. It 

is enough to implement in hardware the “Receiver 

logic” and to implement the protocol in software. 

This way the controller is interrupted only when the 

key is detected or when a byte is received. The 

“Receiver logic” block only takes 58 logic cells. 

Such a receiver together with some additional logic 

for communicating with a microcontroller could be 

fitted in a low power CPLD like the ones from the 

Cool Runner II series from Xilinx with 128 

elements. A schematic of such a receiver module is 

presented in Figure 7. 

 

 
Figure 7 Schematic of a receiver module 

 

As can be seen in the diagram the simple receiver 

that can be used to offload the microcontroller from 

doing active waiting contains very few parts. It 

requires an edge detector that can be implemented 

with two flip-flops and some gates, a timer large 

enough to implement the half period timeout, a 16 

bit shift register to sample and assemble the data, 

comparer with a constant (the key) a bit counter to 

identify the bytes from the bit stream and a register 

to hold the received byte. To reduce the number of 

necessary connections the processor can read the 

data serially, using a simple sample and shift 

protocol. 

 

3.4 RF modules 
The radio transmitter and receiver modules were 

build around two dedicated circuits: the TH72032 

ASK transmitter and the TH71111 FSK/FM/ASK 

single-conversion superheterodyne receiver. 

The TH72032 ASK transmitter IC is designed 

for applications in the European 868 MHz industrial-

scientific-medical (ISM) band, according to the EN 

300 220 telecommunications standard. It can also be 

used for any other system with carrier frequencies 

ranging from 850 MHz to 930 MHz. The 

transmitter's carrier frequency fc is determined by the 

frequency of the reference crystal fref. The integrated 

PLL synthesizer ensures that carrier frequencies, 

ranging from 850 MHz to 930 MHz, can be 

achieved. This is done by using a crystal with a 

reference frequency according to: fref = fc/N, where 

N = 32 is the PLL feedback divider ratio. 

As depicted in figure 8 the TH72032 transmitter 

consists of a fully integrated voltage-controlled 

oscillator (VCO), a divide-by-32 divider, a phase-

frequency detector (PFD) and a charge pump (CP). 

An internal loop filter determines the dynamic 

behavior of the PLL and suppresses reference 

spurious signals. A Colpitts crystal oscillator 

(XOSC) is used as the reference oscillator of a 

phase-locked loop (PLL) synthesizer. The VCO’s 

output signal feeds the power amplifier (PA). The 

RF signal power can be adjusted in four steps by 

changing the value of resistor RPS or by varying the 

voltage at pin PSEL. The open-collector output 

(OUT) can be used either to directly drive a loop 

antenna or to be matched to a 50Ohm load. Bandgap 

biasing ensures stable operation of the IC at a power 

supply range of 1.95 V to 5.5 V. 

The PLL transmitter can be ASK-modulated by 

applying a data stream directly at the pin ASKDTA. 

This turns the internal current sources of the power 

amplifier on and off and therefore leads to an ASK 

signal at the output. The mode control logic allows 

two different modes of operation as listed in the 

following table. The mode control pin ENTX is 

pulled-down internally. This guarantees that the 

whole circuit is shut down if this pin is left floating. 

After enabling the transmitter by the ENTX signal, 

the power amplifier remains inactive for a time ton, 

the transmitter start-up time. The crystal oscillator 

starts oscillation and the PLL locks to the desired 

output frequency within the time duration ton. After 

successful PLL lock, the LOCK signal turns on the 
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power amplifier, and then the RF carrier can be ASK 

modulate – see figure 9. 
 

Figure 8 TH72032 ASK transmitter 

Figure 9 Timing diagram for ASK modulation 

The TH71111 FSK/FM/ASK single-conversion 

superheterodyne receiver IC is designed for 

applications in the European 868 MHz industrial-

scientific-medical (ISM) band, according to the EN 

300 220 telecommunications standard. It can also be 

used for any other system with carrier frequencies 

ranging from 800 MHz to 930 MHz  

With the TH71111 receiver chip, various circuit 

configurations can be arranged in order to meet a 

number of different customer requirements. In ASK 

configuration the RSSI signal is fed to an ASK 

detector, which is constituted by the operational 

amplifier. This receiver allows a higher degree of 

image rejection achieved in conjunction with an RF 

front-end filter. Efficient RF front-end filtering is 

realized by using SAW, ceramic filter or helix filter 

in front of the LNA and by adding an LC filter at the 

LNA output 

The TH71111 receiver IC consists of the following 

building blocks: 

- PLL synthesizer (PLL SYNTH) for generation 

of the local oscillator signal LO. The parts of the 

PLL SYNTH are: the high-frequency VCO1, the 

feedback divider DIV_32, a phase –frequency 

detector (PFD) with charge pump (CP) and a crystal-

based reference oscillator (RO). 

- Low-noise amplifier (LNA) for high-sensitivity 

RF signal reception  

- First mixer (MIX1) for down-conversion of the 

RF signal to the IF 

- IF preamplifier which is a mixer cell (MIX2) 

that operates as an amplifier 

- IF amplifier (IFA) to amplify and limit the IF 

signal and for RSSI generation 

- Phase coincidence demodulator (DEMO) with 

third mixer (MIX3) to demodulate the IF signal 

- Operational amplifier (OA) for data slicing, 

filtering and ASK detection. 

-   Bias circuitry for bandgap biasing and circuit 

shutdown 
 

Figure 10 TH71111 FSK/FM/ASK single-conversion superheterodyne receiver - block diagram 
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4 Experimental setup and results 
There were two experiments. One where we 

tried to see the difference between the Manchester 

encoding and our PWM encoding. In the other 

experiment we tried to find out the effective range of 

the radio connection, using the PWM encoding on 

our current RF radio hardware. 

In our experiments we used a MSP430F417 

based sensor with a software emulated transmitter 

which was adapted to use both our PWM encoding 

and the Manchester encoding for the same data 

structure and the hardware implementation 

described above as the receiver – Figures 11 and 12 .  

 

 

Figure 11 - MSP430F417  based sensor with transmitter 

 

In the first experiment we were interested in the 

time that it takes the receiver to get to the 

functioning point once the transmission is started. 

For this we looked at the output signal of the RF 

radio receiver on the digital output that is connected 

to the digital receiver implemented on the FPGA. 

 

Figure 12 - TH71111 based receiver module 

 

The results of the experiment are visible in the 

Figures 13, 14 and 15 which are captured of the 

oscilloscope. The Manchester encoding seems to be 

somewhat better since it presents in average the 

carrier wave 50% of the time every bit while our 

PWM encoding achieves an average of 50% every 

two bits for the data we transmit in the preamble. 

The receiver settles after 7.37 ms in the case when 

the Manchester encoding is used and at 10.3 ms in 

the case where the PWM encoding is used. We 

consider that the receiver is settled once the bit 

lengths correspond to their desired value and the 

timing on both the high voltage level and the low 

voltage level is equal. In the beginning the receiver 

seems to stay on the high level longer than on the 

low level. From the experiments we could see that 

around 3 bytes for the preamble is enough for the 

Manchester encoding and 4 bytes are necessary for 

the PWM encoding with 400 µs for the bit period.  

 

 

 
 

  
 

Figure 13 Machester Encoding: received signal (left) – settling time measurement (right) 
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Figure 14 PWM  Encoding: received signal (left) – settling time measurement (right) 

 

 

 
 

 

Figure 15 Machester Encoding: received signal (left) – PWM  Encoding: received signal (right) 

 

The difference in behavior is not significantly worse 

in the case where we use our encoding and anyway 

we use 8 byte for the preamble to make sure that the 

receiver is working correctly when the real data 

arrives.  

In the second experiment we set the transmitter to 

use the PWM encoding and to regularly send a data 

package containing 6 bytes of effective data plus the 

extra data required by our communication protocol. 

We started out with the transmitter close to the 

receiver and incremented the distance between the 

transmitter and the receiver by one meter once a data 

package was sent. On the receiver side we checked 

to see if the receiver got the data with no errors. 

Once the receiver started presenting systematic 

errors we stopped moving the transmitter and 

measured the distance between the two. Our 

experiment was done inside the building and we 

came up with a range of around 25 meters in this 

configuration using the Melexis RF modules and the 

PWM encoding. 

 

5   Conclusion 
The paper proposes the PWM data encoding as an 

alternative encoding for wireless communication to 

be used in low cost and low power sensors. The 

main advantage of this encoding is the ability to 

implement the transmitter and the receiver without 

much hardware support and of being less sensitive 

to timing errors. The paper also compares this type 

of encoding to a more traditional encoding like 

Manchester and shows from the experimental results 

that the loss in performance is not significant. 

Therefore we considered that the advantages of the 

PWM encoding are greater than the loss in 

performance as compared to the Manchester 
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encoding and for our sensor network application we 

decided to use the PWM encoding for the radio 

communication. 

 

References: 

[1] nAN400-07, “nRF
TM

 Radio protocol 

guidelines”, Nordic VLSI ASA application note, 

December 2002. 

[2] R.Forster, 'Made in Manchester', IEE Review, 

March 2000, p. 42 

[3] W. Stallings, Data and Computer 

Communications (7th ed.). Prentice Hall, pp. 

137-138. ISBN 0-13-100681-9, 2004. 

[4] D. Steed, H. Nielsen, “Frequency hopping data 

radio”, U. S. Patent 7103086, September 2006. 

[5] AN070, “Verilog implementation of a 

Manchester encoder/decoder in Philips CPLDs”. 

Philips Semiconductors application note, 1997. 

[6] XAPP339, “Manchester Encoder-Decoder for 

Xilinx CPLDs”, Xilinx application note, 

October, 2002 

[7] S. K. An; S. I. Park; S. B. Jun; C. J. Lee; K. M. 

Byun; J. H. Sung, “Design for a Simplified 

Cochlear Implant System”, IEEE Transactions 

on Biomedical Engineering, Volume 54, Issue 6, 

June 2007 Page(s): 973 – 982. 

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D. 

Culler, J. Anderson, “Wireless Sensor Networks 

for Habitat Monitoring”, ACM International 

Workshop on Wireless Sensor Networks and 

Applications - WSNA’02, September 28, 2002, 

Atlanta, Georgia, USA 

[9] M. Varchola, M. Drutarovský, “Zigbee Based 

Home Automation Wireless Sensor Network” 

Acta Electrotechnica et Informatica, No. 4, Vol. 

7, 2007, ISSN 1335-8243, Technical University 

of Košice, Slovak Republic 

[10] L. Youbok, Microchip Technology Inc."CRC 

Algorithm for MCRF45X Read/Write Device" 

http://ww1.microchip.com/downloads/en/AppNo

tes/00752a.pdf 

[11] J. L. Hill, “System Architecture for Wireless 

Sensor Networks” PhD Disertation, Univerisy 

of California, Berkeley, 2003. 

[12] K. Whitehouse, “The design of calamari: an ad-

hoc localization system for sensor networks.” 

Masters Report, University of California at 

Berkeley, 2003. 

[13] A. Cerpa et al., “Habitat monitoring: 

Application driver for wireless communications 

technology”. ACM SIGCOMM Workshop on 

Data Communications in Latin America and the 

Caribbean, 2001. 

[14] A. Woo, D. Culler, “Evaluation of Efficient 

Link Reliability Estimators for Low-Power 

Wireless Networks.”, Technical Report, UC 

Berkeley, 2002. 

[15] Y. Xu, , J. Heidemann, and D. Estrin, 

“Geography-informed energy conservation for 

Ad Hoc routing.” 2001, ACM Press: 

SIGMOBILE: ACM Special Interest Group on 

Mobility of Systems, Users, Data and 

Computing. pp. 70 - 84. 

[16] M. D. Yarvis et al., “Real-World Experiences 

with an Interactive Ad Hoc Sensor Network.”, 

International Conference on Parallel 

Processing Workshops, 2002. 

[17] Texas Instruments, MSP 430 Family, User’s 

Guide, slau056c, 2003 

 

 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
202

Issue 4, Volume 7, April 2008


