
PWM encoding method for wireless communication in

sensor networks

CIPRIAN SEICULESCU, IOAN LIE, AUREL GONTEAN

Applied Electronic Department

„Politehnica“ University of Timisoara

Bd. Vasile Parvan, no. 2, Timisoara, 300223

ROMANIA

ioan.lie@etc.upt.ro

Abstract: -. When designing low power sensor with radio capabilities the choice of the encoding for the radio

signal can have great impact on performance and implementation requirements. The paper presents different

encodings with their advantages and disadvantages, looking at both performance and implementation

requirements. Finally the paper presents a proposed PWM encoding and the way that it was implemented and

shows that the implementation advantages over other more traditional encoding outweigh the loss in

performance. As well the paper presents different implementation methods for transmitters and receivers using

the PWM encoding.

Key-Words: - PWM, amplitude modulation, Low power sensors networks, FPGA Prototyping, radio

communication

1 Introduction
With the advancements in the wireless radio

communication and the availability of low power

micro controllers a new research field became very

popular in the past few years called “Wireless sensor

networks”. A wireless sensor network is formed

from nodes capable of sensing, processing and

communication that allow the network to analyze

data in a distributed fashion. There are many

applications where data from different places has to

be collected and analyzed as a whole to solve a

problem and wireless sensor networks are good

candidates for this sort of problems. In [11] three

classes of applications have been identified as

relevant for being implemented with wireless sensor

networks. These classes are: environmental data

collection, security monitoring and senor node

tracking. Environmental data collection refers to

collecting data from many points over a long period

of time in order to be able to infer some properties

about the environment by analyzing the collected

data. For the security monitoring application class

sensors do not gather information, they are

analyzing the information online in order to detect

abnormalities. In the node tracking scenario tagged

objects are tracked through a region monitored by

the sensor network. An example of where this class

of application can be used is in logistics companies

like UPS [12].

In the paper we will present radio communication

aspects for nodes designed to work for

environmental data collection. In our case the

environment is the house. There are many things

that are currently monitored in the house like:

electricity, water and heat consumption. These

things can be monitored automatically by a wireless

sensor network and then the data to be centralized

and sent to the authorities that are interested in it in

order to issue the bills for home automation. One

important demand is to reduce the number of wires

needed to connect all the sensors as it is very

inconvenient to install a large number of wires to

create a sensor network. For example, if smart water

meters and smart heat meters are installed the state

of the meters can be collected by the network and

transmitted by some standard network (Ethernet) to

the company that sends the bills. The paper

describes how we chose and implemented the

wireless communication for this sort of sensors and

the data collector while at the same time to meet the

other constraints imposed for such sensors.

Water meters and heat meters for home automation

have to be cheep low power devices. Most sensors

are built around a microcontroller that has to

implement all the logic of the sensor. Such sensors

usually have to work for at least ten years on battery

and therefore have to be low power. There is little

extra hardware that can be added apart from the

controller. In this case all the communication

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS

Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
194

Issue 4, Volume 7, April 2008

protocol has to be implemented in software with

limited hardware support only what is offered as

peripherals of the microcontroller.

Under these constraints we had to optimize the data

encoding for the communication protocol in order to

be easier to implement in software and still to keep a

performance that is close to a more traditional

encoding, but which would require some dedicated

hardware components.

2. Coding solutions
The simples coding and physical layer

communication protocol is the one used at the

UART transceivers. [1] This is a simple encoding

where the bits are encoded by the voltage level and

the protocol permits the synchronization of the

receiver at the beginning of each byte. Since the

transmitter is implemented in software and

sometimes the receiver as well, timing is critical and

it is very complicated to keep both the transmitter

and the receiver synchronized for very long. The

UART protocol has the advantage that the

transmitter and the receiver have to be synchronized

only for the duration of one byte. On the other hand

our simple radio transmitter was set for ON/OFF

amplitude modulation. This means that if data that

contained a lot of zeros has to be transmitted for the

duration of those zeros there would be no carrier

wave with this encoding – Figure 1.

Figure 1 UART coding (up) – the worst

case (down)

The lack of carrier wave from the transmitter leads

the receiver to drift from the functioning point and

start amplifying the noise which compromises the

transmission. One solution was to divide the data

into nibbles and force some bits to ‘1’ in order to

have the carrier wave active for sufficient time.

However this would double the time necessary to

transmit the data and therefore violate our low

power restrictions.

 In order to avoid the problem of the UART

encoding we turned to an encoding that ensured that

we would have a carrier wave for an average of 50%

of the transmission time regardless of the data we

transmit. An encoding that complies with these

specifications is the Manchester encoding, [2, 3] –

Figure 2.

Figure 2 Manchester coding

From the electrical point of view the Manchester

encoding is ideal, however we had implementation

problems. One major problem that we faced with

our software implemented versions is

synchronization. Synchronizing the receiver with the

transmitter is only possible without any extra

overhead at the beginning of the data package where

code violations can be inserted. After the initial

synchronization both the transmitter and the receiver

would have to keep a stable operating frequency for

the duration of the whole package. Implementing

these timing requirements in software is very

difficult and the slightest deviation would result in

errors at reception even if the signal is not affected

by noise and the whole package would need to be

retransmitted resulting in a waste of energy.

A robust encoding for software implementation

should allow the receiver to synchronize with the

transmitter more often than just at the beginning of

the data package. At the same time the encoding

should allow the carrier wave to be on enough time,

so that the receiver would not be affected by noise,

regardless of the transmitted data. We found that by

using a “Pulse Width Modulation” (PWM) to

encode the data at the physical layer we could

satisfy both requirements. We defined the encoding

as follows: a 25% pulse for logical ‘0’ and a 75%

pulse for logical ‘1’. This way in the worse case

when a lot of ‘0’ are transmitted the carrier wave is

on for at least 25% of the time. The other main

advantage is that each bit starts with a rising edge

which can be used for synchronization at the

receiver as shown in Figure 3.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
195

Issue 4, Volume 7, April 2008

Figure 3 PWM signals diagram

As shown in Figure 3 each bit of the transmitted

data starts with a rising edge and has a predefined

constant period known by the receiver. The only

thing that changes is the pulse width. The receiver

can synchronize on the rising edge and set its timing

to sample at 50% of the period. If the transmitted bit

is ‘0’, than the receiver sampling at half the period,

will see a ‘0’. The case where ‘1’ is transmitted is

similar and the sampled values are actually the bit

values and no further processing is necessary.

This encoding method proved to be robust because

with the synchronization on each bit the timing

errors introduced by software implementations of

the transmitter or the receiver are not cumulated to

the whole package, therefore requiring precise

timing. From over experiments that we will present

in the chapter 4, we will show that the PWM

encoding method is comparable to the Manchester

encoding methods and that advantages offered for

implementation are greater than the loss in

performance as compared to Manchester encoding.

3 Implementations.
3.1 Data package description
There are three problems that we tried to address

when we defined the structure of our data package.

One problem was to allow time for the receiver to

get ready to receive data. We do this by transmitting

8 bytes with the value 0xAA as a preamble. This

way the receiver sees the carrier wave for 50% of

the time on average and it should bring the receiver

in the functioning point. The second problem was to

find a way to delimit the start of the package. For

this we chose to transmit a field of 16 bits after the

preamble which we called the key. We chose to

transmit the value 0xCCCC as the key – Figure 4.

The receiver has to wait for the key combination

before starting to save the received data and has to

ignore any key combinations that appear until the

end of the package. The third problem that needed to

be solved was to ensure data integrity. We did this

by using CRC to detect any errors in the

transmission. We used a 16 bit CRC with the

standard CCITT polynomial expression.

Except for the data that we needed to add to comply

with the requirements of the physical medium we

tried to construct the data package to be general in

order to use it for any application with sensor

networks. Therefore the data package contains a

fixed length header that contains the destination

address on 8 bits, the source address on 8 bits, an 8

bit field to identify the connection, the length of the

data on 8 bits and the CRC code of the header on 16

bits. After the header the data is send and it can have

variable size in between 1 and 255 bytes followed

by the CRC code of the data field.

Figure 4 Data package description

3.2 Software implementation
We have implemented a software version of the

transmitter using a MSP430F417 microcontroller

from Texas Instruments. This is a low power

microcontroller which is used for many metering

applications since it also has an integrated LCD

controller. The only hardware support that we used

was one of the timers and a compare channel in

order to generate the timing from the transmitter.

Since metering applications have to be low power

solutions the microcontroller was set to work at 1

MHz in order to save energy. In order for the

transmitter to work at this clock speed, we could not

use the timer interrupt to construct the transmitter

code. Instead the assembly written code that

emulates the transmitter actively waits on the

interrupt flag of the compare channel that was used

to generate the timing. The disadvantage of this

solution is that the microcontroller has to be active

all the time until the whole data package is

transmitted, but the advantage is that we have more

precise timing without having a dedicated hardware

controller as a transmitter.

In a similar fashion we implemented a software

version of the receiver which we tested on a

MSP430F449 microcontroller [17]. We chose this

controller because it has a standard UART hardware

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
196

Issue 4, Volume 7, April 2008

interface which we used to connect to a PC in order

to collect data. However this is similar with the

previous controller which is more popular for simple

meters.

The algorithm by which the receiver works is

presented in the following pseudo code:

1. loop

2. wait for rising edge and set timer

upon detection

3. wait for timer and sample on timer

overflow

4. if received pattern matches the key

go to 6

5. if expected time to receive data

elapsed go to 34

6. end loop

7. set byte counter to header size

8. loop

9. set bit counter to word size

10. loop

11. wait for rising edge and set timer

upon detection

12. wait for timer and sample on timer

overflow

13. decrement bit counter

14. if byte received go to17

15. if timeout occurred go to 34

16. end loop

17. decrement byte counter

18. if data received and CRC test is

successful go to 20 else go to

34

19. end loop

20. set byte counter to data size

21. loop

22. set bit counter to word size

23. loop

24. wait for rising edge and set timer

upon detection

25. wait for timer and sample on timer

overflow

26. decrement bit counter

27. if byte received go to 30

28. if timeout occurred go to 34

29. end loop

30. decrement byte counter

31. if data received and CRC test is

successful go to 33 else go to

34

32. end loop

33. set flags to indicate correct reception

and return

34. set flags to indicate the occurred error

and return

As can be seen from the pseudo code a major

drawback of a purely software implementation of

the receiver is that the controller is always busy

waiting to receive the key which marks the begging

of a data package and while receiving the data. The

problem is that without any carrier wave present the

receiver amplifies the noise to logic levels and

therefore if the input pin would be set to give an

interrupt on change, the interrupt would constantly

be triggered. For this reason a purely software

receiver implementation has limited practical

application. This sort of software implementation

can only be used practically if the receiver knows

the approximate times when the sensors are

transmitting and it only goes into the receiving loop

around those moments. Timeouts provide ways to

exit the loops in case there is no transmission

present in a reasonable time window.

3.3 Hardware implementation
To test a hardware implementation, we used an

FPGA platform based on Cyclone II device from

Altera. We also used the Nios II processor that

Altera offers for their FPGAs to build out system.

The idea behind the hardware implementation was

to create a data collection device for intelligent

meters, which could collect the data from the

sensors over radio and relay to a central database

over Ethernet. In order to offload the processor as

much as possible we implemented the physical level

protocol and most of the data link level protocol in

hardware. A simplified diagram of our test system is

presented in Figure 5.

Figure 5 The block diagram of test system

In order to use the TCP/IP stack we programmed our

application using MicroC/OS-II real time kernel. In

this case it was useful to move as much of the radio

transceiver protocol in hardware and to use some

FIFO buffers in order to have more relaxed real time

constraints

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
197

Issue 4, Volume 7, April 2008

The whole design including the processor and other

necessary peripherals was fitted in fewer than 5000

logic cells. For a more precise report see Figure 6.

Figure 6 Hardware implementation report

However in order to make low cost sensors with

receiver capabilities a hybrid solution can be used. It

is enough to implement in hardware the “Receiver

logic” and to implement the protocol in software.

This way the controller is interrupted only when the

key is detected or when a byte is received. The

“Receiver logic” block only takes 58 logic cells.

Such a receiver together with some additional logic

for communicating with a microcontroller could be

fitted in a low power CPLD like the ones from the

Cool Runner II series from Xilinx with 128

elements. A schematic of such a receiver module is

presented in Figure 7.

Figure 7 Schematic of a receiver module

As can be seen in the diagram the simple receiver

that can be used to offload the microcontroller from

doing active waiting contains very few parts. It

requires an edge detector that can be implemented

with two flip-flops and some gates, a timer large

enough to implement the half period timeout, a 16

bit shift register to sample and assemble the data,

comparer with a constant (the key) a bit counter to

identify the bytes from the bit stream and a register

to hold the received byte. To reduce the number of

necessary connections the processor can read the

data serially, using a simple sample and shift

protocol.

3.4 RF modules
The radio transmitter and receiver modules were

build around two dedicated circuits: the TH72032

ASK transmitter and the TH71111 FSK/FM/ASK

single-conversion superheterodyne receiver.

The TH72032 ASK transmitter IC is designed

for applications in the European 868 MHz industrial-

scientific-medical (ISM) band, according to the EN

300 220 telecommunications standard. It can also be

used for any other system with carrier frequencies

ranging from 850 MHz to 930 MHz. The

transmitter's carrier frequency fc is determined by the

frequency of the reference crystal fref. The integrated

PLL synthesizer ensures that carrier frequencies,

ranging from 850 MHz to 930 MHz, can be

achieved. This is done by using a crystal with a

reference frequency according to: fref = fc/N, where

N = 32 is the PLL feedback divider ratio.

As depicted in figure 8 the TH72032 transmitter

consists of a fully integrated voltage-controlled

oscillator (VCO), a divide-by-32 divider, a phase-

frequency detector (PFD) and a charge pump (CP).

An internal loop filter determines the dynamic

behavior of the PLL and suppresses reference

spurious signals. A Colpitts crystal oscillator

(XOSC) is used as the reference oscillator of a

phase-locked loop (PLL) synthesizer. The VCO’s

output signal feeds the power amplifier (PA). The

RF signal power can be adjusted in four steps by

changing the value of resistor RPS or by varying the

voltage at pin PSEL. The open-collector output

(OUT) can be used either to directly drive a loop

antenna or to be matched to a 50Ohm load. Bandgap

biasing ensures stable operation of the IC at a power

supply range of 1.95 V to 5.5 V.

The PLL transmitter can be ASK-modulated by

applying a data stream directly at the pin ASKDTA.

This turns the internal current sources of the power

amplifier on and off and therefore leads to an ASK

signal at the output. The mode control logic allows

two different modes of operation as listed in the

following table. The mode control pin ENTX is

pulled-down internally. This guarantees that the

whole circuit is shut down if this pin is left floating.

After enabling the transmitter by the ENTX signal,

the power amplifier remains inactive for a time ton,

the transmitter start-up time. The crystal oscillator

starts oscillation and the PLL locks to the desired

output frequency within the time duration ton. After

successful PLL lock, the LOCK signal turns on the

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
198

Issue 4, Volume 7, April 2008

power amplifier, and then the RF carrier can be ASK

modulate – see figure 9.

Figure 8 TH72032 ASK transmitter

Figure 9 Timing diagram for ASK modulation

The TH71111 FSK/FM/ASK single-conversion

superheterodyne receiver IC is designed for

applications in the European 868 MHz industrial-

scientific-medical (ISM) band, according to the EN

300 220 telecommunications standard. It can also be

used for any other system with carrier frequencies

ranging from 800 MHz to 930 MHz

With the TH71111 receiver chip, various circuit

configurations can be arranged in order to meet a

number of different customer requirements. In ASK

configuration the RSSI signal is fed to an ASK

detector, which is constituted by the operational

amplifier. This receiver allows a higher degree of

image rejection achieved in conjunction with an RF

front-end filter. Efficient RF front-end filtering is

realized by using SAW, ceramic filter or helix filter

in front of the LNA and by adding an LC filter at the

LNA output

The TH71111 receiver IC consists of the following

building blocks:

- PLL synthesizer (PLL SYNTH) for generation

of the local oscillator signal LO. The parts of the

PLL SYNTH are: the high-frequency VCO1, the

feedback divider DIV_32, a phase –frequency

detector (PFD) with charge pump (CP) and a crystal-

based reference oscillator (RO).

- Low-noise amplifier (LNA) for high-sensitivity

RF signal reception

- First mixer (MIX1) for down-conversion of the

RF signal to the IF

- IF preamplifier which is a mixer cell (MIX2)

that operates as an amplifier

- IF amplifier (IFA) to amplify and limit the IF

signal and for RSSI generation

- Phase coincidence demodulator (DEMO) with

third mixer (MIX3) to demodulate the IF signal

- Operational amplifier (OA) for data slicing,

filtering and ASK detection.

- Bias circuitry for bandgap biasing and circuit

shutdown

Figure 10 TH71111 FSK/FM/ASK single-conversion superheterodyne receiver - block diagram

1 2

31
LNA

IN_LNA

3

OU
T_

LN
A

MIX1

X

4

IN
_M

IX
1

VE
E_

MI
X

5 10

VE
E_

IF 9 8

VC
C_

MI
X

6 7 IF1
P

MIX2 IF IF

IFA

11

IN
_IF

A 12 FB
C1

13 FB
C2

21 14

VC
C_

IF

MIX3

 X

15

OU
T_

IF
A

16

IN
_D

EM

DEMOD

OA

17 22 VE
E_

BI
AS

VC
C_

BI
AS

BIAS

28 EN
RX

25 27 VC
C_

PL
L

VE
E_

RO

32 30 VC
C_

LN
A

VE
E_

LN
A

DIV_32 PFD

LO

VCO1 CP RO

PLL_SYNTH

29 LF 26 RO
18

OUT_OA

19

OAN
20

OAP

24

23

OUTN

OUTP

antenna

matching

network

XTAL

CX1

3

mode

control 4

ENTX

ROI

8

XOSC XBUF

%32

PFD

- + CP
VCO

PLL

VCC

6

PA
OUT

low

voltage

detector

1

ASKDTA

5

PSEL

RPS

7

VEE

2

ASKDATA

ENTX

ton

RF carrier

LOCK

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
199

Issue 4, Volume 7, April 2007

4 Experimental setup and results
There were two experiments. One where we

tried to see the difference between the Manchester

encoding and our PWM encoding. In the other

experiment we tried to find out the effective range of

the radio connection, using the PWM encoding on

our current RF radio hardware.

In our experiments we used a MSP430F417

based sensor with a software emulated transmitter

which was adapted to use both our PWM encoding

and the Manchester encoding for the same data

structure and the hardware implementation

described above as the receiver – Figures 11 and 12 .

Figure 11 - MSP430F417 based sensor with transmitter

In the first experiment we were interested in the

time that it takes the receiver to get to the

functioning point once the transmission is started.

For this we looked at the output signal of the RF

radio receiver on the digital output that is connected

to the digital receiver implemented on the FPGA.

Figure 12 - TH71111 based receiver module

The results of the experiment are visible in the

Figures 13, 14 and 15 which are captured of the

oscilloscope. The Manchester encoding seems to be

somewhat better since it presents in average the

carrier wave 50% of the time every bit while our

PWM encoding achieves an average of 50% every

two bits for the data we transmit in the preamble.

The receiver settles after 7.37 ms in the case when

the Manchester encoding is used and at 10.3 ms in

the case where the PWM encoding is used. We

consider that the receiver is settled once the bit

lengths correspond to their desired value and the

timing on both the high voltage level and the low

voltage level is equal. In the beginning the receiver

seems to stay on the high level longer than on the

low level. From the experiments we could see that

around 3 bytes for the preamble is enough for the

Manchester encoding and 4 bytes are necessary for

the PWM encoding with 400 µs for the bit period.

Figure 13 Machester Encoding: received signal (left) – settling time measurement (right)

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
200

Issue 4, Volume 7, April 2008

Figure 14 PWM Encoding: received signal (left) – settling time measurement (right)

Figure 15 Machester Encoding: received signal (left) – PWM Encoding: received signal (right)

The difference in behavior is not significantly worse

in the case where we use our encoding and anyway

we use 8 byte for the preamble to make sure that the

receiver is working correctly when the real data

arrives.

In the second experiment we set the transmitter to

use the PWM encoding and to regularly send a data

package containing 6 bytes of effective data plus the

extra data required by our communication protocol.

We started out with the transmitter close to the

receiver and incremented the distance between the

transmitter and the receiver by one meter once a data

package was sent. On the receiver side we checked

to see if the receiver got the data with no errors.

Once the receiver started presenting systematic

errors we stopped moving the transmitter and

measured the distance between the two. Our

experiment was done inside the building and we

came up with a range of around 25 meters in this

configuration using the Melexis RF modules and the

PWM encoding.

5 Conclusion
The paper proposes the PWM data encoding as an

alternative encoding for wireless communication to

be used in low cost and low power sensors. The

main advantage of this encoding is the ability to

implement the transmitter and the receiver without

much hardware support and of being less sensitive

to timing errors. The paper also compares this type

of encoding to a more traditional encoding like

Manchester and shows from the experimental results

that the loss in performance is not significant.

Therefore we considered that the advantages of the

PWM encoding are greater than the loss in

performance as compared to the Manchester

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
201

Issue 4, Volume 7, April 2008

encoding and for our sensor network application we

decided to use the PWM encoding for the radio

communication.

References:

[1] nAN400-07, “nRF
TM

 Radio protocol

guidelines”, Nordic VLSI ASA application note,

December 2002.

[2] R.Forster, 'Made in Manchester', IEE Review,

March 2000, p. 42

[3] W. Stallings, Data and Computer

Communications (7th ed.). Prentice Hall, pp.

137-138. ISBN 0-13-100681-9, 2004.

[4] D. Steed, H. Nielsen, “Frequency hopping data

radio”, U. S. Patent 7103086, September 2006.

[5] AN070, “Verilog implementation of a

Manchester encoder/decoder in Philips CPLDs”.

Philips Semiconductors application note, 1997.

[6] XAPP339, “Manchester Encoder-Decoder for

Xilinx CPLDs”, Xilinx application note,

October, 2002

[7] S. K. An; S. I. Park; S. B. Jun; C. J. Lee; K. M.

Byun; J. H. Sung, “Design for a Simplified

Cochlear Implant System”, IEEE Transactions

on Biomedical Engineering, Volume 54, Issue 6,

June 2007 Page(s): 973 – 982.

[8] A. Mainwaring, J. Polastre, R. Szewczyk, D.

Culler, J. Anderson, “Wireless Sensor Networks

for Habitat Monitoring”, ACM International

Workshop on Wireless Sensor Networks and

Applications - WSNA’02, September 28, 2002,

Atlanta, Georgia, USA

[9] M. Varchola, M. Drutarovský, “Zigbee Based

Home Automation Wireless Sensor Network”

Acta Electrotechnica et Informatica, No. 4, Vol.

7, 2007, ISSN 1335-8243, Technical University

of Košice, Slovak Republic

[10] L. Youbok, Microchip Technology Inc."CRC

Algorithm for MCRF45X Read/Write Device"

http://ww1.microchip.com/downloads/en/AppNo

tes/00752a.pdf

[11] J. L. Hill, “System Architecture for Wireless

Sensor Networks” PhD Disertation, Univerisy

of California, Berkeley, 2003.

[12] K. Whitehouse, “The design of calamari: an ad-

hoc localization system for sensor networks.”

Masters Report, University of California at

Berkeley, 2003.

[13] A. Cerpa et al., “Habitat monitoring:

Application driver for wireless communications

technology”. ACM SIGCOMM Workshop on

Data Communications in Latin America and the

Caribbean, 2001.

[14] A. Woo, D. Culler, “Evaluation of Efficient

Link Reliability Estimators for Low-Power

Wireless Networks.”, Technical Report, UC

Berkeley, 2002.

[15] Y. Xu, , J. Heidemann, and D. Estrin,

“Geography-informed energy conservation for

Ad Hoc routing.” 2001, ACM Press:

SIGMOBILE: ACM Special Interest Group on

Mobility of Systems, Users, Data and

Computing. pp. 70 - 84.

[16] M. D. Yarvis et al., “Real-World Experiences

with an Interactive Ad Hoc Sensor Network.”,

International Conference on Parallel

Processing Workshops, 2002.

[17] Texas Instruments, MSP 430 Family, User’s

Guide, slau056c, 2003

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ciprian Seiculescu, Ioan Lie, Aurel Gontean

ISSN: 1109-2734
202

Issue 4, Volume 7, April 2008

