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Abstract: - Considered as a prototype of nonlinear system models the second order Volterra filter (FV2) is 
characterized by an increased complexity in comparison with a linear filter. This complexity is given by the 
large number of filter coefficients, as well as by the filter operations and it requires an increased computational 
power in technical applications. The filter based on the multi memory decomposition (MMD) structure 
represents a good approximation of the FV2 and significantly reduces the number of filter operations. In this 
paper we propose an efficient implementation of the MMD filter studied in a typical nonlinear identification 
problem. The simulations show the very good performance of our proposed MMD structure in comparison 
with the results obtained by using a second order LMS Volterra filter. We have evaluated the performance of 
our method based on the system response to different input signals. 
 
Key-Words: - second order Volterra filter, multi memory decomposition, efficient implementation, 
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1   Introduction 
Detection, representation and identification of 
different system nonlinearities represent important 
tasks in many applications and are a major 
contribution to the development of the main 
nonlinear modeling techniques. 
The Volterra series has been successfully and widely 
applied as a nonlinear system modeling technique 
and is able to represent a wide class of nonlinear 
systems [1].  
This generalized form of the Taylor series expansion 
can be used to represent a nonlinear system with 
memory [2]. 
The series is a sum of generalized convolutions 
which can be considered as an extension of the 
linear case. The resulting nonlinear filter is fully 
specified by a set of functions, called Volterra 
kernels, which can be estimated from the input-
output measurements performed on the system 
under study. The system kernels characterize the 
system input-output relationship and allow the 
prediction of the physical system response to an 
arbitrary input signal.  
For the discrete time Volterra filter of a given order 
the kernels represent the so-called filter coefficients.  
At present there exists no general method to 
determine the Volterra kernels for a nonlinear 
system model. This kernels can be calculated only 
for systems with a known and finite order. The 

values of the Volterra kernels depend on the order of 
the Volterra series representation used [1]. If the 
order of the Volterra model changes, the Volterra 
kernels values must be recalculated.  
Given an appropriate Volterra model of order N and 
memory M for a particular system representation, 
the accurate kernel estimation becomes a major 
problem.  
A significant advantage of the Volterra models, if 
compared with other nonlinear models, is that their 
input-output relation is linear with respect to the 
filter coefficients. The nonlinearity is reflected only 
by the multiple products between the delayed 
versions of the input signal. 
Due to this fact, many methods from the linear filter 
theory can be applied to the Volterra filter.  
For example, adaptive methods and algorithms are 
widely used in applications dealing with kernels 
estimation. Various Least Mean Square (LMS) and 
recursive least square (RLS) algorithms have been 
applied to the problem of Volterra kernel estimation 
[3], [4], [5], [6], [7], [8]. Some authors have used the 
frequency domain vector representations of a 
Volterra system and have computed the unknown 
frequency domain Volterra kernels using a MMSE 
criterion [9]. Recently more orthogonal search 
algorithms have been developed both in the time 
domain [10], [11] as well as in the frequency 
domain. 
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The major drawback of the Volterra filter is the 
large number of filter coefficients. Hence, the 
Volterra model implementation needs an increased 
computational power that represents a major 
drawback in real time applications [1]. Therefore, 
only low order nonlinearities can be modeled in an 
efficient way. 
It is well known that the second order Volterra filter 
[3], [12] is extremely popular and widely used in 
applications concerned with unwanted nonlinearities 
identification.  
In technical applications [4]-[9], [13], [14] accurate 
kernel estimation is very important because it 
directly influences the accuracy of the system 
model. The speed of the kernel estimation process is 
also important, since a fast kernel estimation method 
will result into a better system representation.  
This paper presents an efficient implementation of 
the second order Volterra filter based on the MMD 
approach proposed by [15].  
The proposed implementation of the FV2 , based on 
the MMD structure is studied in a typical nonlinear 
system identification problem. The results show the 
very good performance of our proposed 
implementation. 
Although the MMD structure requires only one 
fourth of the filter operations of the general Volterra 
filter it performs much better than the second order 
LMS Volterra filter. This is mainly due to the larger 
overall filter memory that can be achieved with the 
MMD model. 
The second order kernel of the MMD structure has 
been compared with that obtained using the LMS 
adaptive algorithm.  
The implementation of the LMS algorithm in the 
case of the Volterra filter was constructed as an 
extension of the LMS algorithm for linear filters due 
to the linearity of the input-output relation of the 
Volterra model. 
In order to evaluate the model performances, the 
responses of the MMD filter to different input 
signals were calculated and compared with those of 
the second order adaptive LMS Volterra filter. 
 
 
2   The second order Volterra filter 
For a discrete-time causal nonlinear system with 
memory, with input [ ]nx  and output [ ]nyV , as 
indicated in Fig.1, the Volerra series expansion is 
given by relation (1): 
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Fig.1 The Volterra model 
 
where N represents the model nonlinearity degree. 
In the above representation, the functions 

[ ] Nikkh iiV ,0,,,1 =�  represent the Volterra 
kernels associated to the nonlinear operators from 
relation (2). 
The input-output relation can also be written in 
terms of nonlinear operators, [ ]iH , as shown in 
equation (2). 
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The next step is to truncate the kernels memory to 
the length M , which generates the finite memory 
representation of (3): 
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Please note that the above representations have the 
same memory for all nonlinearity orders. In the most 
general case, the relation (3) uses a different 
memory for each nonlinearity order. Relation (3) can 
be further simplified by considering symmetric 
Volterra kernels. 
The kernel ],,[ 1 iiV kkh �  is symmetric if the indices 
can be exchanged without affecting its value. 
By choosing 2=N , in relation (4) we express the 
input-output relationship of the FV2 as follows: 
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In terms of nonlinear operators we have: 
 

[ ] [ ][ ] [ ][ ] [ ][ ]nxnxnxnyV 210 HHH ++=  (5) 

 
In relation (5) 0H=Vh0  denotes the DC term, 

[ ]11 kh V  represents the first order Volterra kernel and 

Nonlinear system 
with memory 

[ ]nx  [ ]nyV  
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[ ]212 , kkh V  stands for the second order Volterra 
kernel of the nonlinear system. 
The nonlinear model described by the relations (4) 
and (5) is referred to as the second order Volterra 
model.  
Next we consider a second order Volterra filter 
having the DC term and the first order kernel equal 
to zero. 
If the considered filter has a symmetric second order 
Volterra kernel, then it can be expressed as a 

)1( +MM quadratic matrix. 
In order to avoid redundancy in terms, the second 
order Volterra model with symmetric kernel can be 
written with the following summation limits: 
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If we consider symmetric kernels, as indicated 
above, the second order Volterra kernel [ ]212 , kkh V  

requires the computation of 
2

)1( +MM
 coefficients 

[3], [12].  
As it can be seen the number of filter coefficients 
increases with the square of the filter memory size 
M. For higher order Volterra kernels this 
dependency becomes more complicated. 
For example, the third order Volterra kernel needs 

the computation of 
6

)2)(1( ++ MMM
 coefficients. 

Many authors have aimed at finding Volterra filter 
implementations that reduce the complexity and the 
number of filter operations. 
One solution is to reduce the number of filter 
coefficients [1], [16], [17].  
Another possible solution is to find an efficient way 
of representing the “input signal” of the Volterra 
filter, which consists of multiple products and 
models the nonlinearity [4 ]. 
In this paper we propose an efficient implementation 
of the MMD filter that represents a good 
approximation of the second order Volterra kernel. 
This implementation reduces the number of filter 
coefficients and the number of filter operations. The 
simulations and the comparisons to the LMS 
approach show the good performance of our MMD 
approximation.  
 
 
3   The MMD approach 
The MMD approach represents an efficient 
approximation of the second order Volterra filter 

described by equation (6). The resulted filter, called 
the MMD filter, consists of 3 linear FIR filters and 
one multiplier, as indicated in Fig.2. 
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Fig.2 The structure of the MMD filter 
 
 
The input - output relation of the MMD filter is: 
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Where aM represents the memory length of the 
prefilters [ ]nh1  and [ ]nh2 . pM  denotes the memory 

length of the postfilter [ ]nhp . The total memory 

length of the MMD filter is 1−+ pa MM . The 

MMD filter requires pa MM +2  filter operations 

and one additional multiplication per time instance. 
Please note that, the number of the filter operations 
increases linearly with the memory length. This 
produces a significant reduction of the 
computational effort compared to the general second 
order Volterra filter implementation. 
The second order kernel of the MMD structure can 
be obtained by relations (6) and (7). 
The result is given in relation (8). 
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The multiplication of the prefilters [ ]nh1  and [ ]nh2  
outputs has as result a quadratic filter with separable 
second order kernel: [ ] [ ]nhnh 21 . This kernel is 
weighted by the coefficients of the post filter [ ]nhp  

and summed up for different memory length pM to 

generate the effective MMD kernel. Consequently, 
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the filter has a multi memory decomposition (MMD) 
structure. 
The MMD kernel is non-symmetric and identically 
zero for displacements larger than 1−aM . 
As indicated in [1], it is easy to obtain a symmetric 
MMD kernel which generates the same filter output 
by applying relation (9). 
 

[ ] [ ] [ ]( )ijhjihjih s ,,
2
1

, 222 +=  
 
(9) 

 
 
3.1  Computing the filter coefficients 
Two different approaches can be used to determine 
the optimal filter coefficients for [ ]nh1 , [ ]nh2  and 

[ ]nhp .  

The first one is based on the approximation of the 
effective MMD kernel with a given reference kernel. 
The second approach employs an adaptive algorithm 
which uses the input and output measurements of 
the unknown nonlinear system. 
The well known LMS algorithm is used to update 
the filter coefficients of the MMD structure. 
Let [ ]ne  be the difference between the desired filter 
output and the current adaptive filter output: 
 

[ ] [ ] [ ]nyndne −=  (10) 

 
The implementation proposed in this paper is based 
on the successive updates of the linear filters in the 
MMD structure. 
The equations used for updating are: 
 

[ ] [ ] [ ] [ ] [ ]nhnZnenhnh p2/12/12/1 21 µ+=+  (11) 

 
[ ] [ ] [ ] [ ]nznenhnh pp µ+=+ 21  (12) 

 
where: 
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The expression of [ ]nZ 2/1 is indicated in equation 
(14): 
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where ( )nx  is a 1×aM  vector of input signal 
values similar to the one shown in relation (13). 
 

3.2   Implementing the MMD structure  
To describe the proposed implementation we 
introduce the matrices ][1 nH , ][2 nH  and ][nH p  

which contain the coefficients of the transversal 
filters from the MMD structure: 
 

[ ] [ ] [ ] [ ][ ]11 1111 +−−= aMnhnhnhnH �  (15) 

 

[ ] [ ] [ ] [ ][ ]11 2222 +−−= aMnhnhnhnH �  
 
(16) 
 

 

[ ] [ ] [ ] [ ][ ]11 +−−= ppppp MnhnhnhnH �  
 
(17) 
 

 
The matrices are updated according to the adaptive 
algorithm at each time stamp. 
The following instant matrix is attached to the input 
signal: 
 

[ ] [ ] [ ] [ ][ ]11 +−−= ManxnxnxnX �  
 
(18) 
 

 
According to the above notations, the instant outputs 
of the linear filters [ ]nh1  and [ ]nh2  are: 
 

[ ] [ ] [ ]nHnXnz T
11 =  (19) 

 
and  
 

[ ] [ ] [ ]nHnXnz T
22 =  (20) 

 
The most important part of the proposed 
implementation is represented by the calculus of 
matrices 2/1Z  and Z  in the update equation (11), 
respectively (12). 
At each iteration step the columns of the 
matrices 2/1Z , having a )( pa MM ×  dimension are 

calculated as follows : 
 

[ ] [ ] ]1[1:, 1/22/1 +−=+ cnXnzcZ T  (21) 

 
In relation (21) the parameter c denotes the number 
of columns in the 2/1Z  matrices and takes pM  

values: 1,0 −pM . [ ]nX  is the input matrix that 

“runs” on the input signals values. 
The results are reported in the relations (22) and 
(23), presented at the end of the paper. 
The elements of matrix Z are computed as follows: 
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[ ] [ ] [ ]nznznz 21=  (24) 

 
with [ ]nz1  and [ ]nz2  given by the relation (19), 
respectively by (20).  
The adaptation error is calculated according to: 
 

[ ] [ ] [ ] [ ]nHnZndne T
p−=  (25) 

 
Finally, the MMD structure linear filters update 
equations are: 
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where µ  is the step size used in the adaptive 
algorithm.  
 
 
4 Experiments and performance   
     evaluation 
We studied our implementation of the MMD filter 
(MMDF) in the context of a typical nonlinear system 
identification application represented in Fig.3. We 
have determined the second order MMD kernel that 
models the nonlinear system with memory. 
The results have been compared with those obtained 
by using a LMS second order Volterra estimator as 
presented in [4] for the second order nonlinear 
system with memory.  
The implementation of the second order LMS 
Volterra filter is also presented. 
The second order kernels determined by using the 
two approaches have been represented and the 
results compared.  
The nonlinear system with memory used in our 
application consists of a linear filter, with impulse 
response [ ]nh , connected in cascade with a 
nonlinear system without memory as shown in Fig.3.  
The obtained system is a second order nonlinear 
system with memory that can be modeled using the 
Volterra series. 

The impulse response of the linear filter was 
implemented by sampling the continuous response 

( )th  from relation (29) as shown in relation (30). 
 
 

( ) ( ) ( )tttth σ−= )1231sin(2.251exp
98.0

1256    
(29) 

 
 
 

 
 
 

Fig.3 Nonlinear system identification using the 
MMD filter 
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T
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(30) 

 
In the above relation eT  denotes the sampling 
period. 
The input signal [ ]nx  was generated by coloring a 
white Gaussian sequence [ ]nu  with the filter 
described by the input – output relation: 

 
[ ] [ ] [ ] [ ]28.1122 −+−−= nunununx  (31) 

 

The matrices ][1 nH , ][2 nH  and ][nH p  containing 

the filter coefficients were initialized with small 
values randomly distributed in the interval (–0.01 
0.01).  
The important contribution of the adaptive 
implementation is represented by the update of the 
matrices 2/1Z , and Z  used by equations 2826 ÷ . 

The proposed formulas (21), (22) and (23) 
significantly reduce the computational effort. 
Next we present the results of our simulations which 
implemented in Matlab. 
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Fig.4 shows the evolution of the adaptation error 
corresponding to the experiment described in Fig.3. 
The values chosen for the length of the filter were: 

30=aM  and 25=pM . 

The figure shows that significant adaptation is 
achieved after a certain delay. After this initial 
period we observe a fast adaptation as the error 
becomes very small. 
The number of iterations can be reduced only if one  
linear filter is updated per iteration, but the 
adaptation process becomes very slow in that case.  
 
 

 
 

Fig.4 The error corresponding to the adaptive 
determination of the MMD filter coefficients 

 
In order to evaluate the performance of our method 
we repeated the experiment described in Fig.3 and 
replaced the MMD filter by a second order LMS 
Volterra filter as shown in Fig.5. 
 
 

 
 
Fig.5 Nonlinear system identification using the LMS 

Volterra filter 

The Volterra filter used in the nonlinear system 
identification described in Fig.5 is a second order 
filter having the dimension ( )MM × . 
The well known LMS update equation for the linear 
filter is: 
 

)1()1()1(
1 kkkk XeHH µ+=+  (32) 

 
where µ is a small positive constant (referred to as 
the step size) that determines the speed of 
convergence and also affects the final error of the 
filter output. Relation (32) can be extended to the 
second order Volterra filter if we make some 
changes and introduce vector notations as follows. 
First, the vector of the linear filter )1(

kH  having the 
length M : 
 

( ) ( )[ ] ( )[ ] ( )[ ][ ]1...10 1111 −= MhhhH kkk
T

k  (33) 

 
becomes the vector of the Volterra kernel 
coefficients. 
Second, the input vector )1(

kX :  
 

( ) [ ]11
1

+−−= Mkkk
T

k xxxX �  (34) 

 
which for the linear case contains only the input 
signal values becomes more complicated. 
In the equations (33) and (34) the filter order is 
marked by a superscript index. This notation will be 
kept consistent throughout the paper. 
The Volterra representation with symmetric kernels, 
consists of two parts: (1) the Volterra kernels and (2) 
the products of the delayed input signal values. 
If we express the Volterra kernels and the input 
signal products in a vector form, then we can 
formulate the adaptive Volterra filter output using 
the vector notation form which is very similar to the 
one used in the linear case.  
The vector corresponding to the second order 
Volterra kernel is given by: 
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As an input signal vector we consider the following 
vector: 
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1
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MkMkkkkk

T
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which contains all the products between the input 
signal values. 
Hence, the adaptive filter output is given by: 
 

)2()2(
k

T
kVk XHy =  (37) 

 
At the k-th iteration, the desired output is kd  and the 

Volterra output filter is Vky . 
According to the LMS algorithm the following 
equation has to be minimized: 
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T
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The vector )*2(H that minimizes equation (37) can 
be expressed as a solution of the normal equation: 
 

gRH 1
2

)*2( −=  (39) 

 
Where: [ ])2()2( T

kk XXER =  is the input correlation 
matrix containing the 4-th order moments of the 
input signal and [ ]kk dXEg )2(=  is the cross-
correlation vector between the input and the desired 
output. 
The update equation for the LMS Volterra filter can 
be written as: 
 

T
kVk

T
k

T
k XeHH )2(

2
)2()2(

1 µ+=+  (40) 

 
For the ( )MM ×  dimension of the second order 
Volterra kernel, Vh2 , we have chosen the value 

30=M . The evolution of the adaptation error is 
shown in Fig.6. 
 

 
 
Fig.6 The adaptation error for the second order LMS 

Volterra filter 

We computed the second order kernel of the MMD 
structure, based on the determined coefficient values 
of the filters [ ]nh1 , [ ]nh2  and [ ]nhp , using the 

relations (8) and (9).  
The result is shown in Fig.7. 
 
 

 
 
 

Fig.7 The second order kernel corresponding to the 
MMD structure 

 
 

The second order Volterra kernel determined using 
the adaptive LMS approach presented above is 
represented in Fig.8. 
 
 

 
 
 
 

Fig.8 The second order kernel computed using the 
LMS algorithm 
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It can be seen that the MMD kernel represents a 
good approximation of the second order Volterra 
kernel. 
Next we have calculated the frequency response of 
the MMD structure second order kernel as presented 
in [12]: 
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represent the frequency domain used for the 
representation and 30=M . 
We have also computed the frequency response of 
the second order Volterra kernel as follows: 
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using the same frequency domain. 
Figures (9) and (10) represent the frequency 
response of the MMD structure second order kernel 
respectively the frequency response of the second 
order Volterra kernel. 
 

 
 
 
Fig.9 The frequency response of the MMD structure 

second order kernel 
 

 
 
 

Fig.10 The frequency response of the second order 
Volterra kernel 

 
Again, we observe that the two representations are 
similar. 
In order to evaluate the model performances based 
on the estimated kernels we have computed the 
nonlinear system responses to some deterministic 
input signals, as well as to a white Gaussian input 
signal. The deterministic input signals are sinusoidal 
signals of different frequencies. 
The output signal of the MMD structure (MMD) 
was calculated according to relation (7) based on 
previously computed coefficient values of the filters 

[ ]nh1 , [ ]nh2  and [ ]nhp . 

The output signal of the Volterra filter (LMSV) is 
given by the relation (6), where [ ]212 ,kkh V  
represents again the values obtained by applying the 
adaptive LMS algorithm. 
We repeated this experiment for different 
frequencies of the input signal. 
In all cases, Fig.11 - Fig.14 the two graphs are 
highly similar, and only small differences can be 
detected.  
The accuracy of the proposed MMD method for the 
kernel calculus was evaluated with respect to its 
error according to relation (43) [10]: 
 
 

[ ] [ ]( )

[ ]�

�

=

=
−

=
N

n
V

N

n
V

c

ny

nyny
e

1

2
2

1

2
2

 (43) 

 

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Georgeta Budura, Corina Botoca

ISSN: 1109-2734
146

Issue 3, Volume 7, March 2008



where N denotes the length of a period in the output 
signal. 
 
 

 
 

 
Fig.11 The second order systems responses to a 

sinusoidal signal (f=100Hz) 
 
 

The error according to the relation (43) in the case 
of a sinusoidal input signal with the frequency of 

Hzf 100=  is: 0512,0=ce . 

 
 

 
 
 

Fig.12 The second order systems responses to a 
sinusoidal signal (f=200Hz) 

 
 

The error according to the relation (39) in case of a 
sinusoidal input signal with the frequency of 

Hzf 200=  is: 009,0=ce . 
 

 
 
 

Fig.13 The second order systems responses to a 
sinusoidal signal (f=250Hz) 

 
 

The error according to the relation (43) in the case 
of a sinusoidal input signal with the frequency of 

Hzf 250=  is: 0092,0=ce . 

 
 

 
 
 

Fig.14 The second order systems responses to a 
sinusoidal signal (f=300Hz) 
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The error according to the relation (43) in the case 
of a sinusoidal input signal with the frequency of 

Hzf 300=  is: 071,0=ce . 
A more useful and hard test of the relative accuracy 
of the kernel implementation technique is to 
calculate the responses of the second order kernels 
to a white Gaussian noise. 
 

 
 

Fig.15 The second order systems responses to a 
white Gaussian noise input signal 

 
 
The error according to the relation (43) in the case 
of a white Gaussian noise input signal is: 09,0=ce . 

In all the above presented experiments our method 
outperforms the LMS approach. 
 
 
5   Conclusions 
In this paper we present an efficient implementation 
of the second order discrete time Volterra filter 
widely used in technical applications. The proposed 
implementation is based on the MMD 
approximation of the Volterra filter. 
The major advantages of our approach are: (1) the 
reduced number of filter operations and (2) the 
proposed update equations during the adaptive 
algorithm for the MMD kernel calculus. The MMD 
filter requires only one fourth of the operations 
needed for the general Volterra filter and it displays 
a similar performance.  
The proposed implementation was evaluated in a 
typical nonlinear system identification application.  

In order to measure the performance of the model 
we used two nonlinear structures: the MMD filter 
and the LMSV filter. 
Based on the estimated kernel of the MMD structure 
we have computed and represented the equivalent 
second order kernel of the MMD filter and 
compared it to the LMSV second order kernel. 
The frequency responses of the two second order 
kernels were also computed and represented.  
We conclude that  the MMD structure represents a 
very good approximation of the second order 
Volterra filter. 
Further we have calculated and compared the 
nonlinear systems responses to some deterministic 
input signals and to the white Gaussian noise. The 
input signals were sinusoidal signals of different 
frequencies. 
In all cases the two compared output signals are 
highly similar and only insignificant differences can 
be detected. To evaluate these differences we have 

computed the error ce and concluded that the 
proposed implementation of the MMD structure 
represents a good approximation of the second order 
Volterra filter. 
Our approach is very useful in applications that need 
a large number of filter coefficients and where the 
accuracy of the estimated second order kernel is 
very important. 
As a future direction of this work, we plan to 
implement the MMD filter on a floating point digital 
signal processor. This implementation will be useful 
for real time applications as those of identifying 
unwanted nonlinearities.  
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Update equations (22), (23): 
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