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Abstract: - The continuity of capacitor voltages and inductor currents, well-known from the deterministic case, 
cannot be directly applied if the initial conditions are random. In this paper, new continuity relations for 
probability densities, mean values, correlation and covariance functions of the state variables are introduced. 
These continuity relations can be used for a global characterization of random transients. 
  New formulas for initial condition and forced components of transient statistical moments are also 
presented. These formulas offer a direct approach for random transient analysis. Deterministic transients can 
be regarded as particular, degenerated, random transients. On this basis, one can develop a unified treatment of 
deterministic and random transients in electrical circuits. This unified framework is certainly an advantage, not 
only in teaching activities related to transient phenomena. 
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1   Introduction 
Students find subjects related to random phenomena 
as difficult and vague [1]. Particularly, random 
transients can be analyzed using stochastic 
differential equations, which are also not very 
attractive for the average student [2], [3], [4], [5].  
Therefore, at least from a teaching point of view, a 
simple method extending the deterministic analysis 
approach to random transients is a justified attempt. 
     It is well known that solutions of differential 
equations describing deterministic transients in 
electrical circuits are based on the continuity of 
capacitor voltages and inductor currents [6], [7]. 
Supposing transient states released by closing or 
opening a switch at the moment , the 
continuity of the "initial conditions", can be written 
as  

0=t

)0()0()0( CCC vvv =−=+                 (1) 
for capacitor voltages, respectively, 

)0()0()0( LLL iii =−=+                   (2) 
for inductor currents. In these deterministic 
continuity relations, the notation  signifies “just 
after ” and  means “just before 

0+
0=t 0− 0=t ”. 

The physical reasons for the above continuity 

relations are obvious: according to 
dt

dv
C C

C =

C

i , in 

order for the capacitor voltage to change 
instantaneously, the capacitor current i , would 
have to be infinite. Similarly, in order for the 
inductor current to change instantaneously, the 
inductor voltage would have to be infinite. 
     This paper refers to random transients in linear 
electrical circuits, due to the uncertainty of the initial 
condition values or/and to the stochastic character of 
the input signals.  
     Section 2 presents some mathematical 
generalizations of the deterministic continuity 
relations, namely for probability densities, mean 
values, covariance and correlation functions. 
 New formulas for initial condition and forced 
components of transient statistical moments as a 
direct approach for random transient analysis are 
introduced in section 3. Two detailed illustrative 
examples are presented in section 4. Deterministic 
transients are regarded as particular, degenerated 
cases of random transients. On this basis, one can 
develop a unified treatment of deterministic and 
random transients in electrical circuits. The last 
section is dedicated to conclusion. 
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2   Generalized Continuity Relations 
In this section, the continuity relations (1) and (2) 
are generalized to include the case of random initial 
condition. The generalization is of pure 
mathematical nature and refers to probability density 
functions (p.d.f.), as well to first and second order 
statistical moments. 
 
 
2.1 Continuity of probability densities 
Obviously, the continuity of each possible value of a 
capacitor voltage assures the continuity of the p.d.f. 
of this voltage. This fact is expressed by the 
following relation:  

)()()( CCC vpvpvp == −+ .              (3) 
The continuity of the p.d.f. of an inductor current 
can be expressed by similar equalities:  

)()()( LLL ipipip == −+ .                 (4)  
In the relations (3) and (4), ,   and )(⋅−p )(⋅+p )(⋅p  
are representing the p.d.f. “just before ”, “just 
after ” and at the moment t = 0, respectively. 
With the same physical justification, one can state 
continuity relations for mutual p.d.f. of two or more 
random variables. 

0=t
0=t

     If  and  are continuous random variables, 
 in (3) and (4) are ordinary functions. However, 

if  and  are of discrete or mixed types, the 
corresponding p.d.f. contain Dirac impulses 
(generalized functions). In the particular case of 
deterministic initial conditions, the continuity 
relations (1) and (2) can be written as equivalent 
relations between probability densities: 

Cv Li
)(⋅p

Cv Li

=−−=+− −+ )]0([)]0([ CCCC vvvv δδ  
)]0([ CC vv −= δ          (5) 

)]0([)]0([ −−=+− −+
LLLL iiii δδ  

)]0([ LL ii −= δ          (6) 
In (5) and (6), ,  and ][⋅−δ ][⋅+δ ][⋅δ  are Dirac 
impulses positioned “just before ”, “just after 

” and at the moment t = 0, respectively. Thus, 
deterministic initial conditions can be considered as 
particular, degenerated cases of general random 
initial conditions. 

0=t
0=t

 
 
2.2 Continuity of statistical moments 
In electrical circuits, the capacitor voltages and 
inductor currents are state variables. Therefore it is 
suitable to consider the state-space description of a 
general electrical circuit (system) [8]. 

     A linear continuous-time system can be described 
by the so called state equation  

)()()( tXBtZAtZ ⋅+⋅=                      (7) 
and the output equation 

      )()()( tXDtZCtY ⋅+⋅= ,                   (8) 
where ,  and  represent the input 
vector, the state vector and the output vector 
respectively. The matrices

)(tX )(tZ )(tY

A , B , C  and  are the 
system parameters [8]. Together, equations (7) and 
(8) offer a state-space approach to analysis and 
design of physical continuous-time linear systems, 
including electrical circuits. 

D

The general solution of the state-space system, 
representing the transient state vector 

)()()( tZtZtZ FIC +=                       (9) 
has two components. Thus,  

)0()()( ZttZ IC ⋅Φ=                       (10) 
represents the initial condition response, or the 
natural response of the linear time-invariant (LTI) 
system [6], [8]. )(tΦ  in (10) is called the state 
transition matrix and can be obtained using the 
inverse Laplace, according to the formula [8]: 

}){()( 11 −− −==Φ AsILet At .             (11) 
For stable linear time-invariant systems, the initial 
condition response has always a transient character. 

The second component of the transient state 
vector,  

∫ ⋅⋅⋅−Φ=
t

F dτXBttZ
0

)()()( ττ          (12) 

is the forced solution, caused by the input vector, 
. According to the type of the input vector, the 

forced solution can have a permanent or transient 
character. However, if the inputs  have a 
permanent character (i.e. they are constant or 
periodic deterministic time functions, large sense 
stationary or periodically stationary random signals 
[1], etc.), the forced solution, also has a permanent 
character. 

)(tX

)(tX

     For an n-order system or circuit, the vector of the 
mean values of the state variables at moment 0=t , 
can be written in the form 

{ }
ni

mZEm iiZ

....,,2,1                              
;)0()0()0(

=

==
      (13) 

where {}⋅E  and ⋅  are denoting mathematical 
expectation and the matrix notation, respectively. In 
addition to the initial mean values, two second-order 
statistical moments at  are important 
characteristics of the state vector: the correlation 
matrix  

0=t
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{ }
( ) njir

ZZER

ij

jiZ

....,,2,1,;0             

)0()0()0,0(

==

=⋅=
        (14) 

and the covariance matrix 
{ }
( ) .....,,2,1,;0             

)0()0()0,0(

njic

ZZEC

ij

jCiCZ

==

=⋅=
           (15) 

In (14), ( ){ }⋅−⋅=⋅ ZEZZC )()(  represents a centred 
component of the state vector. 
  Using the continuity of the probability 
densities, one can prove the continuity of the 
statistical mean values of the state variables 
(Appendix A). Thus, one can state the continuity of 
the mean values, autocorrelation and covariance 
functions of the state variables:   

)0()0()0( ZZZ mmm =−=+ ;             (16) 
           )0,0()0,0()0,0( ZZZ RRR =−−=++ ;        (17) 

   )0,0()0,0()0,0( ZZZ CCC =−−=++ .       (18) 
     The continuity relations (3), (4), (16), (17) and 
(18) can be used for the calculation of random 
transients. On the other side, deterministic transients 
can be regarded as degenerated random transients, 
where the corresponding p.d.f. are Dirac impulse 
functions (distributions).  
 
 
3 Initial Condition and Forced 
Components of Statistical Moments 
Usually, random transients a described by stochastic 
differential equations [9]. To determine the transient 
mean values of state variables, one can apply the 
one-dimensional or two-dimensional Laplace 
transform [10], [11], [12]. We prefer a simple, direct 
approach, based on the separation of initial 
condition and forced components of the transient 
statistical moments.  Such a decomposition of the 
general transient mean values is possible due to the 
generalized continuity relations introduced 
previously (Appendix B). Actually, the transient 
mean of the state variables, can be expressed as 

( ) ( ) ( )tmtmtm IC
Z

F
ZZ +=             (19)  

with 

( ) ( ) ( )∫
∞−

⋅⋅⋅−Φ=
t

X
F
Z duumButtm            (20) 

and  
 ( ) ( ) ( ) ( ){ }00 F

ZZ
IC
Z mmttm −⋅Φ=                    (21) 

representing the forced and the initial condition 
(natural) components of the statistical mean, 
respectively. Similarly, for the covariance of the 
transient state vector, we obtain: 

( ) ( ) ( 212121 ,,, ttCttCttC IC
Z

F
ZZ += ) .              (22) 

In the important case when the input signals are 
realizations of white-noise processes, the forced 
component of the autocovariance is given by   

( ) ( )

( ) ( )[ ]
( )

( )2

,min
11

121

 

Φ,
21

t

duuBNBu

tttC

T

tt
TT

F
Z

Φ

⋅
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅Φ⋅⋅⋅⋅Φ

⋅=

∫
∞−

−−   (23) 

In (23), the notation “min(t1,t2)”stands for “the 
smallest of t1 and t2”. The initial condition 
autocovariance can be calculated as  

( ) ( ) ( ) ( )[ ] ( )2121 0,00,0, tCCtttC TF
ZZ

IC
Z Φ⋅−⋅Φ= . 

(24) 
Finally, the transient autocorrelation function can be 
written as the sum 

( ) ( ) ( 212121 ,,, ttRttRttR IC
Z

F
ZZ += )            (25) 

with 
( ) ( ) ( ) ( 212121 ,, ttCtmtmttR F

Z
F
Z

F
Z

F
Z +⋅= )       (26) 

representing the forced component. On the other 
side, the initial condition component of the transient 
autocorrelation function 

( ) ( ) ( ) ( )
( ) ( )[ ] ( ) ( )

( ) ( ) ( )
( ) ( )[ ] ( )[ ]
( ) ( ) ( )[ ] ( ).}00{

}00{

}0,02

0000

0,00,0{,

21

2

12

121

tmmtm

tmmm

ttC

mmmm

RRtttR

TTF
Z

T
Z

F
Z

TF
Z

F
ZZ

TF
Z

T
Z

F
Z

TF
ZZ

F
ZZ

IC
Z

Φ⋅−⋅

⋅⋅−

⋅Φ+Φ⋅⋅−

−⋅−⋅

−+⋅Φ=

     (27) 

looks rather complicated. However, we have the 
possibility to calculate the transient autocorrelation 
based on the previously determined mean value and 
autocovariance [1]: 

( ) ( ) )()(,, 212121 tmtmttCttR ZZZZ ⋅+= .       (28) 
One can observe that the initial condition 
components of the transient statistical moments, 
contain the effect of the mean value, autocovariance 
and autocorrelation at  and 0=t 021 == tt , 
respectively. These values can are known as a 
consequence of the established generalized 
continuity relations. 
  If, for simplicity, in the output equation (8) 
we consider, as usual the case is, the matrix 0D = ,  
the transient statistical moments of the output vector 
can be expressed by the following formulas: 

( ) tmCtm ZY ⋅ ( )= ,                           (29) 
( ) ( ) T

ZY CttCCttC ⋅⋅= 2121 ,, ,             (30) 
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( ) ( ) T
ZY CttRCttR ⋅⋅= 2121 ,, .             (31) 

 
 
4 Illustrative Examples 
 
4.1 Electrical circuit with random initial 
condition and deterministic input voltage 
In order to illustrate the utilization of the derived 
continuity relations, we consider the simple case of 
the RC circuit represented in Fig.1, with constant 
input voltage:  for . The coefficients 
of state equations (7) and (8) are: 

V1)( =tx 0≥t
;aA −=  

 and  with . For 
numerical computations the following values are 
considered: ; 

;aB = 1=C 0=D RCa /1=

Ω= kR 10 FC μ1=  resulting a time 
constant  and . The single 
state variable (the voltage on the capacitor) is also 
the output signal, . In this case, the 
state-space equations can be expressed as 

msRC 10= Hza 100=

)()( tytz =

)()()( txatyaty ⋅+⋅−=                 (32) 
with solution 

0;1)0()( ≥−+⋅= −− teyety atat .     (33) 
 
 

C 

R 

y(t) x(t) z(t) 

 
 

Fig.1 A simple system: the RC low-pass circuit 
 
     Contrary to the usual assumption, we consider 
that the initial voltage on the capacitor is unknown 
and has a uniform p. d. f. 

        
otherwise.                 0

        1
        

)0;()(

21
12

⎪⎩

⎪
⎨

⎧ ≤≤
−=

=−=−

vyv
vv

ypyp YY

          (34) 

We can now apply the continuity relation  
),;()()()( 21 vvyypypyp YYY Π=== +−      (35) 

Since  is unknown, according to (33), the 
output voltage is a linear transformation of the 
random variable  : 

)0(y

)0(Y
βα +⋅= )0()( YtY  

where  and . The p.d.f. of the 

output variable  is [1]: 

ate−=α ate−−= 1β

)(tY

 
otherwise.                       0

        
)(

1
),;();(

21
12

21

⎪⎩

⎪
⎨

⎧ +≤≤+
−=

=++Π=

βαβα
α

βαβα

vyv
vv

vvytypY

     (36) 

This p.d.f. is represented in Fig.2 for V11 −=v , 
V22 =v  at five different moments during the 

transient process: mst 0= , , ,  
and  The transient p.d.f. shows that with 
increasing time the random effect of the initial 
condition disappears and the output voltage becomes 
deterministic. The uniform p.d.f. approaches a Dirac 
impulse, for

ms10 ms20 ms30
.40ms

∞→t  
)1(),(lim −=

∞→
ytypYt

δ .                 (37) 

The initial condition of the mean value is 

∫
+

=
−

=
2

1

21

12 2
1)0(

v

v
Y

vv
dy

vv
ym .           (38) 

-1 -0.5 0 0.5 1 1.5 2
0

2

4

6

8

10

12

14

16

18

y(t) in [V]

Probability densities

t=0ms 

t=10ms 

t=20ms t=30ms t=40ms 

 
Fig.2 Probability density function of the output voltage 

for five distinct time values 
 
The transient mean value has the expression 

{ }
.1)0(          

)()(
at

Y
at

Y

eme
tYEtm

−− −+=

==
             (39) 

For 11 −=v  and 22 =v , the mean value of the 
output voltages can be written as 

at
Y etm −⋅−= 5.01)(                      (40) 

This particular mean value is represented in Fig.3, 
together with four transient output voltages 
corresponding to V5.0)0( −=y ; ;  and 

. Obviously, the mean value can be regarded as 
the output voltage for  initial condition. 

V0 V5.1
V2

V5.0)0( =y
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
-0.5

0

0.5

1

1.5

2

y(
t) 

in
 [V

]

Time in [s]

Transient output voltages

Mean value 

 
Fig.3 Particular transient voltages on the capacitor 

for different initial conditions 
 
     In order to determine the initial autocorrelation 
function we express the joint p.d.f. using the 
conditional p.d.f. [1]:  

)(),,(                         
)|()(),(

12211

12121

yyvvy
yypypyyp YYY

−⋅Π=
=⋅= −−−

δ
       (41) 

It follows, for every  , 0, 21 ≤tt
 

{ }

).0,0(
3

                             

)(),,(

)()(),(

2
221

2
1

211221121

2121

Y

Y

Rvvvv

dyydyyvvyyy

tYtYMttR

=
++

=

=−⋅Π⋅=

==

∫ ∫
∞

∞−

∞

∞−
δ

          (42) 

According to the definition of the autocorrelation 
function we obtain the general expression: 
 

{ }

( ) ( )
( ) ( )

( ) ( )21

12

21

)21(
2121

11

01

01

)0,0(

)()(),(

atat
Y

atat
Y

atat

tta
Y

ee

mee

mee

Re

tYtYMttR

−−

−−

−−

+−

−⋅−+

+⋅−+

+⋅−+

+⋅=

==

                  (43) 

For the particular values , , the 
transient autocorrelation function equals 

V11 −=v V22 =v

1
2
1

2
1

),(

21

21 )(
21

+⋅−⋅−

−=

−−

+−

atat

tta
Y

ee

ettR
               (44) 

 
This last expression is represented in the Fig.4, for 
the domain . Obviously, with 
increasing  and , the autocorrelation approaches 
a constant value equal to the square of the constant 
steady-state value of the output voltage. 

mstt 40,0 21 ≤≤

1t 2t

 

0 0.01 0.02 0.03 0.04
0

0.02
0.04
0.5

0.6

0.7

0.8

0.9

1

Delay t1

Autocorrelation Ry(t1,t2)

Delay t2  
Fig.4 The transient autocorrelation function, 

 msttttRY 40,0);,( 2121 ≤≤
 
     The initial value of the covariance function can 
be calculated using the centered initial p.d.f. 

⎟
⎠
⎞

⎜
⎝
⎛ −−

Π
2

,
2

; 1221 vvvvy  

It follows,  

( )

( ) ( ) (45)                                  0,0
12

)(
2

,
2

;,

2
12

2112

1221
2121

Y

Y

Cvv

dydyyy

vvvv
yyyttC

=
−

=

=−⋅

⋅⎟
⎠
⎞

⎜
⎝
⎛ −−

Π⋅= ∫ ∫
∞

∞−

∞

∞−

δ  

Finally, we obtain the transient covariance function, 
( ) )21(

21 )0,0(, tta
YY eCttC +−⋅= .          (46) 

For 11 −=v  and 22 =v , the covariance has the 
particular expression: 

( ) )(
21

21

4
3, tta

Y ettC +−⋅=                    (47) 

0 0.01 0.02 0.03 0.04

0

0.02

0.04
0

0.2

0.4

0.6

0.8

Delay t1

Covariance Cy(t1,t2)

Delay t2  
 

Fig.5 The transient autocovariance function,  
msttttCY 40,0);,( 2121 ≤≤  
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This autocovariance function is represented in Fig.5. 
For increasing  and  the autocovariance 
approaches zero because the steady-state value of 
the output voltage is a constant. This means also that 
for increasing  and , the output process becomes 
purely deterministic. 

1t 2t

1t 2t

 
Particular case 
One can think about a deterministic initial condition 
case as obtained for 012 →− vv , so that  

 is the known initial capacitor voltage.  
The initial p.d.f. of the state variable (and of the 
output voltage) is a Dirac impulse 

vvv == 21

)()( vyypY −=− δ .                      (48) 
Furthermore, for   the p.d.f. of the output 
voltage is a Dirac impulse moving, for 

0≥t
∞→t ,  

between  and : vmY =)0( 1)( =∞Ym
)]([ );( βαδ +⋅−= vytypY .               (49) 

The corresponding “mean value” of the degenerated 
random process is actually the purely deterministic 
capacitor voltage: 

ta
Y evvtm ⋅−⋅−+=+⋅= )1(1)( βα .        (50) 

The well-known input step voltage and the output 
exponential signal are shown in Fig.6 for the 
deterministic initial condition . V1−=v

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x(
t) 

an
d 

y(
t) 

in
 [V

]

Time in [s]

x(t) 

y(t) 

 
Fig.6 Input and output voltages 

in a deterministic case  
 

Obviously,  the autocovariance function equals zero, 
denoting the absence of any random fluctuation,   

( ) 0)0,0(, 21 == YY CttC .                   (51) 

With , one can easily determine the 
output autocorrelation function 

2)0,0( vRY =

( )
( ) ( ) ( )

).()(
111

1),(

21

2)(
21

2112

2121

tmtm
eevee

veevettR

YY

atatatat

atattta
Y

⋅=
=−⋅−+⋅−+

+⋅−+⋅=
−−−−

−−+−

(52)     
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-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Delay t1

 Autocorrelation Ry(t1,t2)

Delay t2  
 

Fig.7 The output autocorrelation 
 for the deterministic case,   V1−=v

 
The autocorrelation (52) is represented in Fig. 7. As 
a product of two mean values considered at different 
moments, the autocorrelation function brings no 
supplementary information, so its calculation is 
useless. Moreover,  is not so easy to 
interpret as the output signal shown in Fig.6. 

),(R 21y tt

     One can observe from this example, that the 
transient p.d.f., mean value, correlation and 
covariance functions offer a global description of all 
possible transients of the state variables or output 
signals in an electrical circuit. This global 
characterization is a valuable alternative in the case 
when, due to the random initial condition, one can 
not specify a particular deterministic transient 
process. On the other side, purely deterministic 
transients can be regarded as degenerated random 
processes. In such cases, the “mean value” of the 
degenerated random process, actually the 
deterministic signals of the circuit, offer a complete 
description of the transient state. The autocovariance 
function equals zero while the autocorrelation, 
containing only redundant information, is useless. 
However, the possibility of unified treatment of 
random and deterministic transients brings new 
insight in transient phenomena characterization. 
 
4.2 Electrical circuit with random input 
voltage and deterministic initial condition  
Once again we consider the simple system 
represented in Fig.1. This time, the initial condition, 

0)0()0( == zy , is deterministic, but the input 
signal is a non-centered white-noise with mean 
value and autocovariance given by: 
        Utmx =)( ;   )(),( 1121 ttNttCx −⋅= δ .   (53) 
In this case, the state transition matrix is simply 
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 .           (54) )exp()( atet att −=== −AeΦ
Using the relations (20), (21), (19) and (29), we 
obtain successively:  

        ;   ∫
∞−

=⋅⋅⋅−−=
t

F
z UdpUaptatm )](exp[)(

     ; )exp(]0[)exp()( atUUattmIC
z −⋅−=−⋅−=

)]exp(1[)()( atUtmtm zy −−== .          (55) 

With  and relations (23), (24), (22) and 
(30)  it results: 

0)0,0( =zC
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The transient autocovariance function (56) is 
represented in Fig.8 for  The transient 
behavior of the function is obvious. With increasing 
time, the output noise does not disappear and 
becomes stationary. 
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Fig.8 The transient autocovariance function,  

in the case of white-noise input 
 
 

To determine the transient autocorrelation, one can 
easily utilize the relations (28), (55) and (56): 
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Fig.9 The transient autocorrelation function  
in the case of white-noise input 

 
The function , is represented in Fig.9 for ),( 21 ttRY

1=U  and 04.0=N . It has the same shape 
as , but includes also the effect of the non-
zero mean value.  and  clearly 
show that, with increasing time, the output voltage 
approaches a stationary correlated not centered 
signal. The stationary autocorrelation and 
autocovariance can be obtained from (56) and (57) 
for 

),( 21 ttCY

),( 21 ttRY ),( 21 ttCY

∞→1t ,   ∞→2t  with finite τ=− 12 tt : 

)exp(
2

)( 2 ττ aaNURy −⋅
⋅

+= ;             (58) 

)exp(
2

)( ττ aaNC y −⋅
⋅

= .                    (59) 

These functions are represented in Fig.10. They are 
different only due to the mean value  of the 
stationary output signal. 

V1=U

 
Particular case 
Within this example one can obtain a pure 
deterministic transient process diminishing the noise 
component of the input signal. Thus, the 
deterministic step function  can be seen as 
the mean value of a degenerated random signal 
obtained for . According to (56), if  

Utx =)(

0→N 0=N ,  
0),( 21 =ttC y , denoting a deterministic process. 

The autocorrelation (57) becomes  
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2121
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tataUttR

yy

y
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where, according to (50) with  and 0=v 1≠U , the 
“mean value” of the degenerated output random 
process has the expression 

)]exp(1[)( atUtmy −−⋅= .                 (61) 
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Fig.10 Stationary autocorrelation and autocovariance 
functions, msmsCR YY 4040);( and )( ≤≤− τττ  

 
Once again, we see that the deterministic transient is 
complete described by the “mean value” (61), i.e. by 
the changing capacitor voltage. The output 
autocovariance equals zero while the output 
autocorrelation contains only redundant information. 
However, from a theoretical point of view is 
important to realize the possibility of a unified 
treatment of deterministic and random transients, so 
bringing new insight in transient phenomena 
characterization.  
 
 
5   Conclusion 
This paper presents continuity relations for 
probability densities, mean values, correlation and 
covariance functions of state variables in electrical 
circuits. The introduced relations are mathematical 
generalizations of the well known initial condition 
continuity relations from the deterministic case.  

New formulas for initial condition (natural) and 
forced components of the most important statistical 
moments (mean value, autocovariance and 
autocorrelation functions) are also presented. Two 
detailed computation examples, completed with 
graphical representation of relevant functions 
illustrate the use of the generalized continuity 
relations and of the natural and forced components 
of the statistical moments, for a global random 
transients characterization.   
     Deterministic transients can be regarded as 
particular, degenerated random transients. On this 
basis one can develop a unified analysis approach of 
deterministic and random transients in electrical 
circuits. This unified framework brings new insight 
in transient phenomena characterization and is 
certainly an advantage not only in teaching activities 
related to transient analysis. 

 
Appendix A 
     The continuity of statistical moments is a direct 
consequence of the continuity of the probability 
densities. For example, one can write 
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From (A2) the continuity of the mean values vector 
follows: 

)0()0()0( ZZZ mmm =−=+ .              (A3) 
     Using the continuity of joint densities of any two 
variables from the state vector, 
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we conclude the equality of second order expected 
values 
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and, finally, the continuity of the correlation matrix:  
)0,0()0,0()0,0( ZZZ RRR =−−=++ .       (A6) 

Using the continuity of joint p.d.f., the continuity of 
the covariance matrix can also be put into evidence. 
However, the continuity of the covariance can be 
proved from the continuity of the correlation and the 
mean functions. Actually, taking (A3) and (A6) into 
account and the following equalities for 021 == tt , 
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the continuity of the autocovariance matrix follows: 
 

)0,0()0,0()0,0( ZZZ CCC =−−=++ .          (A8) 
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Appendix B 
The general solution of the state equation (7) can be 
written as follows: 
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Taking into account that , 

,  and 

, we consider 

the expected value from (B1) and the relations (19), 
(20) and (21) are evident.  
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 For simplicity, let us consider input signals 
of centered white-noise type:  

;0=xm  ( ) ( 1221 , ttNttCx −⋅ )= δ .      (B2) 
According to the definition of autocovariance 
function and using (B1), one can write 
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If in (B3) we consider the statistical independence of 
the random variables 

   and     as well as 

the relation [9] 
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the decomposition (22) of the autocovariance, the 

forced component (23) and the initial condition 
component (24) result by identification. 
  The relations (25), (26) and (27) for the 
autocorrelation function can be obtained in a similar 
way. 
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