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Abstract: - In this paper a novel non-autonomous 4th order chaotic oscillator was investigated. This oscillator 
consists of a nonlinear resistance RN and a negative conductance Gn. We have studied the dynamics of the 
circuit for various values of the input sinusoidal signal vs(t) in the low frequency area, both theoretically and 
experimentally. We have demonstrated the birth and catastrophe of the Double-Bell strange attractor for 
different frequencies values, as the amplitude Vo of the input signal varies. This work is a precursor of future 
investigation of circuit’s application in secure communication systems.   
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1   Introduction 
Chaos can be defined as a system that diverges 
exponentially from initial positions varying by a 
small degree [1]. It has been found to be useful in 
analyzing many problems such as information 
processing, high-performance circuits and devices 
etc. 

There are two types of chaotic systems, 
autonomous and non-autonomous [2]. Although 
there are many known autonomous chaotic 
oscillators [3-11] very few non-autonomous have 
been introduced in the literature [12-18]. Non-
autonomous chaotic circuits form a class of systems 
which produce chaos while being driven by an 
external time varying source. The amplitude and 
frequency of the sinusoidal signal both contribute to 
the chaotic dynamics of the system.       

In this paper the low frequency response of a 4th 
order non autonomous, nonlinear circuit has been 
studied. The electronic circuit consists of two active 
elements, one linear negative conductance and one 
nonlinear resistor of N-type symmetrical v-i 
characteristic. The circuit also contains two 
capacitances C1 and C2, two inductances L1 and L2, 
and a sinusoidal voltage vs(t). 

 
 

2   Proposed Driven Chaotic Oscillator 
The circuit we have studied is shown in Fig.1. In 
Figs. 2(a) and 2(b) we can see the nonlinear 
resistance implementation and its v-i characteristic, 
while in Figs.2(c) and 2(d) the negative conductance 

implementation and its v-i characteristic are 
presented, respectively. 
 

 
Fig.1. The implemented 4th order driven electric 
circuit. 

 
The state equations of the system are: 

( )C1
L1

1

dv 1 i i
dt C

= −     (1) 

( )C2
n C2 L1 L2

2

dv 1 G v +i i
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( )L1
C2 C1 1 L1
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di 1 v v R i
dt L

= − +    (3) 

( )L2
C2 2 L2 s

2

di 1 v R i v (t)
dt L

= + −

C1 b C1 a b C1 p C1 pi=g(v )=G v +0.5(G -G )(|v +B |-|v -B |)

   (4) 

where the nonlinear function i is described by 
 

 (5) 
 
vs(t) is the input sinusoidal signal, while R2 denotes 
the internal resistance of the source. 
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(a) Circuit’s Elements: R3=1.0KΩ, R4=15.5KΩ, 
R5=4.1KΩ, R6=297Ω. 
 

 
(b) 

 
(c) Circuit’s Elements: R7=R8=R9=2.0KΩ 

 

 
(d) 

Fig.2. (a) Nonlinear resistance implementation (b) v-
i characteristic of N-type nonlinear element RN (c) 
Negative conductance implementation and (d) v-i 
characteristic of negative conductance Gn. 
 

The parameters of the circuit are considered 
unchangeable during our study. More particularly, 
we have that: L1 = 100mH, L2 = 100mH, C1 = 33nF, 
C2 = 75nF, R1 =1KΩ, Gn = -0.50mS = -Gp, LR =7.5V, 
Ga = -0.35mS, Gb = 5.0mS and Bp  = 0.8V. 

3   Low Frequency Response 
We have studied system’s response in low 
frequencies range. Particularly, the theoretical-
simulation and experimental phase portraits vC2 vs. 
vC1 for f=30Hz and f=35Hz and various values of 
the amplitude Vo of input sinusoidal signal vs(t) are 
shown in subsections 3.1 and 3.2, respectively. 
Moreover, we present the spectrum analysis, both 
theoretically and experimentally, for f=30Hz 
(subsection 3.1) and f=35Hz (subsection 3.2).  

All the experimental phase portraits were taken 
with HM507 Hameg Analog/ Digital oscilloscope, 
while spectrums were taken with TDS2024 
TEKTRONIX Digital oscilloscope. 
 
 
3.1   The Double-Bell Attractor for f = 30Hz 
In Figs.3, 5, 7 and 9 we can see the theoretical and 
experimental phase portraits vC2 vs. vC1 for f =30Hz 
and various values of the amplitude Vo of the input 
sinusoidal signal vs(t). Primarily, we can see the 
birth of the Double-Bell attractor (Fig.3) for 
Vo=0.60V.  

Hereupon, the evolution of Double-Bell attractor 
is presented (Figs. 5 and 7), as the two separate 
Bells penetrate to each other (Fig.7). 

 

 
(a) Simulation 

 
(b) Experimental 

Fig.3. Phase portrait vC2 vs. vC1 for Vo=0.60V. 
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(a) Simulation 

 
(b) Experimental 

Fig.4. Spectrum of vc2(t) for f=30Hz and Vo=0.60V. 

 
 
Finally, the catastrophe of the above 

phenomenon is occured (Fig.9) for high amplitudes 
of the input signal. 

 

 
(a) Simulation 

 
(b) Experimental 

Fig.5. Phase portrait vC2 vs. vC1 for Vo=0.75V. 
 

 
(a) Simulation 

 
(b) Experimental 

Fig.6. Spectrum of vc2(t) for f=30Hz and Vo=0.75V. 

 
 
In Figs.4, 6, 8 and 10 we observe the theoretical 

and experimental spectrums of vc2(t) for f =30Hz 
and various values of the input amplitude Vo. 

 

 
(a) Simulation 

 
(b) Experimental 

Fig.7. Phase portrait vC2 vs. vC1 for Vo=2.30V. 
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(a) Simulation 

 
(b) Experimental 

Fig.8. Spectrum of vc2(t) for f=30Hz and Vo=2.30V. 
 
 

 
(a) Simulation 

 
(b) Experimental 

Fig.9. Phase portrait vC2 vs. vC1 for Vo=7.80V. 
 
 

 
(a) Simulation 

 
(b) Experimental 

Fig.10. Spectrum of vc2(t) for f=30Hz and 
Vo=7.80V. 
 
 
3.2   The Double-Bell Attractor for f = 35Hz  
In this subsection (Figs.11-18) the same procedure 
for f=35Hz, as in for f=30Hz (§3.1), is repeated. 

 
(a) Simulation 

 
(b) Experimental 

Fig.11. Phase portrait vC2 vs. vC1 for Vo=0.60V. 
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(a) Simulation 

 
(b) Experimental 

Fig.12. Spectrum of vc2(t) for f=35Hz and 
Vo=0.60V. 

 
So, the phase portraits for amplitude Vo equal to 

0.60V, 0.75V, 2.30V and 7.50V are presented in 
Figs.11, 13, 15 and 17, respectively. The spectrums 
of vc2(t) for the same values of amplitude Vo of the 
input signal are also given in Figs.12, 14, 16 and 18. 

 
(a) Simulation 

 
(b) Experimental 

Fig.13. Phase portrait vC2 vs. vC1 for Vo=0.75V. 

 
(a) Simulation 

 
(b) Experimental 

Fig.14. Spectrum of vc2(t) for f=35Hz and 
Vo=0.75V. 
 
In those figures we can observe simultaneously the 
theoretical and experimental spectrums of vc2(t) for 
the driven 4th order proposed circuit. 
 
 

 
(a) Simulation 

 
(b) Experimental 

Fig.15. Phase portrait vC2 vs. vC1 for Vo=2.30V. 
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(a) Simulation 

 
(b) Experimental 

Fig.16. Spectrum of vc2(t) for f=35Hz and 
Vo=2.30V. 

 
 

 
(a) Simulation 

 

(b) Experimental 

Fig.17. Phase portrait vC2 vs. vC1 for Vo=7.50V. 
 

 

 
(a) Simulation 

 
(b) Experimental 

Fig.18. Spectrum of vc2(t) for f=35Hz and 
Vo=7.50V. 

 
 
We can clearly see that the evolution of Double-

Bell attractor for f=35Hz is exactly the same, as in 
for f=30Hz. 

 
 

4   Chaotic and Periodic Attractors   
Thereafter, we perform numerical simulations of the 
above system using Runge-Kutta algorithm. In 
subsections 4.1 and 4.2 we present the Poincare 
sections (vC2)p vs. (iL2)p for f =30Hz and f =35Hz, 
respectively. The data interval is equal to 0.05. 
 
 
4.1   Poincare Sections for f = 30Hz 
In Figs.19-22 we observe the Poincare sections 
(vC2)p vs. (iL2)p for f =30Hz.  

 
Fig.19. Poincare section (vC2)p vs. (iL2)p for 
Vo=0.60V. 
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Fig.20. Poincare section (vC2)p vs. (iL2)p for 
Vo=0.75V. 

 
Fig.21. Poincare section (vC2)p vs. (iL2)p for 
Vo=2.30V. 

 
Fig.22. Poincare section (vC2)p vs. (iL2)p for 
Vo=7.80V. 
 
 

The values of the amplitude of the input 
sinusoidal signal and the parameters of numerical 
simulations are the same as in subsection 3.1. 

We can see from Figs.19 (Vo=0.60V) and 20 
(Vo=0.75V) that the attractors seem to be chaotic, 
while for Vo=2.30V (Fig.21) and Vo=7.80V (Fig.22) 
the attractors are quasiperiodic and periodic (with 
period p-39), respectively.   
 
 

4.2   Poincare Sections for f = 35Hz 
In Figs.23-26 we present the Poincare sections (vC2)p 
vs. (iL2)p for f =35Hz and various values of the 
amplitude Vo of vs(t). The values of Vo and the 
parameters of numerical simulations are the same as 
in subsection 3.2. 

Similarly, as in for f=30Hz (subsection 4.1), we 
have a strong indication that the attractors for 
Vo=0.60V (Fig.23) and Vo=0.75V (Fig.24) could be 
chaotic, while for Vo=2.30V (Fig.25) and Vo=7.50V 
(Fig.26) are quasiperiodic and periodic (with period 
p-31), respectively. 

 
Fig.23. Poincare section (vC2)p vs. (iL2)p for 
Vo=0.60V. 

 
Fig.24. Poincare section (vC2)p vs. (iL2)p for 
Vo=0.75V. 

 
Fig.25. Poincare section (vC2)p vs. (iL2)p for 
Vo=2.30V. 
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Fig.26. Poincare section (vC2)p vs. (iL2)p for 
Vo=7.50V. 

 
 
5   Conclusion 
A sinusoidal-driven chaotic oscillator with a non 
linear resistor of N-type v-i characteristic and a 
negative conductance was proposed. We have 
studied the dynamics of the circuit for various 
values of the input sinusoidal signal vs(t) in the low 
frequency area, both theoretically and 
experimentally. 

In particularly, for f=30Hz, we have observed 
the birth of the Double-Bell strange attractor for 
Vo=0.60V (Fig.3), its evolution for Vo=0.75V 
(Fig.5) and Vo=2.30V (Fig.7), as the two separate 
Bells merge to each other and finally, the 
catastrophe of the above phenomenon (Fig.9) for 
high amplitude values of the input signal. We have 
also computed and presented the Poincare sections 
(Figs.19-22) and spectrums of vc2(t) (Figs.4, 6, 8 and 
10), from which we are concluding about circuit’s 
dynamic behavior. 

Afterwards, we have repeated the same 
procedure for f=35Hz. Hence, we have seen the 
birth of the Double-Bell strange attractor (Fig.11), 
its evolution (Figs.13 and 15) and finally, its 
catastrophe (Fig.17) for high amplitudes Vo of the 
input sinusoidal signal. We have also presented the 
Poincare sections (Figs.23-26) and spectrums of 
vc2(t) (Figs.12, 14, 16 and 18) of the circuit. 

The study of the above system has shown that 
the theoretical and experimental results agree to 
each other. We have seen chaotic, quasiperiodic and 
periodic attractors for various values of the 
amplitude of the input signal in low frequency area. 
Those features comprise an optimistic scenario for 
future investigation of circuit’s application in secure 
communication systems.       
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