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Abstract: - As semiconductor technology scales down, integration on a chip becomes higher and concerns 
complex algorithm implementation. Those algorithms concern plenty of applications in many fields. Thus, 
adequate scheduling techniques that cope with such a variety of applications are required. The method 
presented in this paper addresses that concern and takes advantage of both data flow and control flow 
approaches. Knowing that such a Controlled Data Flow Graph (CDFG) scheduling is not polynomial, an 
efficient heuristic-based approach is then needed. In addition, because time and resources are user-constraints 
that gain a particular attention, our heuristic-based method targets a minimal number of cycles. More, it detects 
exclusive operations of the same type that can be scheduled in the same control step and share the same 
resource. Because the power dissipation is a crucial problem for SOC designs, our tool automatically introduces 
additional constraints so that the switching power dissipation at a high design level is reduced. 
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1 Introduction 
The speed, area and power consumption are the 
main parameters that a VLSI system designer has to 
focus on during the design process (e.g. [32], [33]). 
The scheduling is a synthesis task conducted at a 
high design level and aims to achieve some 
objective in terms of area, speed and / or power 
consumption. In [3], the scheduling is performed 
only by considering time constraints, while in [4], 
[5] and [6] a low power-based scheduling is 
addressed. Because actual VLSI systems may 
include both data flow and control flow operations, 
appropriate scheduling techniques are required. 
Indeed, previous works ([7], [8], [9], [10], [11]) 
addressed only intensive data flow circuits (control 
structures are not included) such as DSPs, in which 
the parallelism of operations is the main goal, which 
is a severe limitation. Other earlier works ([12], 
[13], [14], [15]) that use control flow-based 
algorithms avoided such a limitation by determining 
which operations are exclusive and can be scheduled 
in the same control step while sharing the same 
resource. However, because the operation ordering 
is not changed, some of these techniques suffer from 

the fact that the parallelism in the schedule is 
limited. More enhanced methods ([16], [17], [18], 
[19]) addressed both the data flow and the control 
flow-based applications. Interesting ILP based-
methods ([6] and [29]) were developed but they are 
inefficient for large VLSI systems since they are not 
polynomial and suffer in terms of running time [2]. 
Thus, appropriate heuristic methods such as those 
based on genetic algorithms ([20], [21]) are more 
suitable for larger scale designs in order to output 
near-optimal solutions in a reasonable CPU time. In 
[30], a game theory-based approach is presented. It 
gives interesting results with the expense of CPU 
time due to its time complexity. 
   Our proposed tool is a set of techniques that 
efficiently deal with arbitrary circuits. It performs a 
global scheduling for SOC designs, and assumes 
that the operations are first flattened. Indeed, 
independent schedulings previously performed on 
those systems do not yield good results with respect 
to those obtained with a global scheduling. The 
computational complexity for each technique 
implemented in our tool is first studied: an exact 
algorithm is then developed for each polynomial 
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task, else a new efficient colored graph -based 
algorithm ([22], [23], [24]) is used (we will show 
that those non polynomial tasks are NP complete 
problems). Our tool allows the system designer to 
describe his system behaviour in a C-like code, 
which is less tedious than Controlled Data Flow 
Graphs (CDFGs) for complex circuits. The huge 
number of Data Flow Graphs (DFGs) contained in 
the CDFG is reduced thanks to an exact algorithm. 
Then, for each DFG, a first scheduling technique 
subject to the operation dependencies is performed 
with an exact algorithm, which leads to an optimal 
number of control steps. A Second scheduling 
technique follows then and addresses user 
constraints satisfaction. This latter problem is NP-
complete and was solved using a new efficient 
colored graph technique. Notice that these two 
scheduling steps are the main advantages of the data 
flow-based techniques since the amount of the 
parallelism in the schedule is increased. Because the 
power dissipation becomes a crucial problem for 
current designs (SOC designs), our tool allows the 
user to introduce additional constraints so that the 
tasks of the circuit are performed with a lower 
power budget. Obviously, further power reduction 
should be tackled at lower design levels. Finally, the 
results of the DFGs scheduling are synthesized and 
grouped into a single scheduling report in order to 
detect the exclusive operations. Such operations can 
be scheduled in the same control step and can share 
the same resource, which is the advantage of control 
flow-based techniques.  The paper is organized as 
follows: The next section shows how a C-like code 
is transformed into a set of traces (DFGs). Section 3 
then describes our technique for reducing the 
number of DFGs. In section 4, our scheduling 
technique is detailed, and in section 5, we present 
our technique that deals with the reduction of the 
switching power dissipation at a high design level. 
The results are described in section 6. Finally, 
section 7 concludes the paper. 
 

2 Algorithmic Transformation 
Our CAD tool deals with the scheduling of 
operations written in a C-like code. The first task 
our tool performs is the translation of a C-like code 
(Fig.2.1) into a set of traces. This latter format will 
allow the determination of the different Data Flow 
Graphs (DFG) contained in the CDFG (Fig.2.2). 
Then, the scheduling task is performed on each 
obtained DFG (also termed trace) thanks to an 
appropriate process that guarantees a polynomial 
time for scheduling the CDFG while targeting an 
advantageous number of cycles subject to resource 
and time constraints. The results obtained from the 

different DFGs are synthesized, then reported in a 
single file that contains the global scheduling, 
namely the CDFG scheduling. Finally, a reduction 
of the switching power dissipation (P) is performed 
in order to allow the user to obtain the desired trade-
off between the circuit performance and the 
switching power dissipation at a high design level 
(as shown in the flow depicted in Fig.2.3). 

 
x=1; 
y=x+1; 
if(A) 
then {z=x+y+4; 
          t=x+y-6; 
        } 
else t=8+y; 
endif 
if(B) 
then z=x+y-t ; 
else if(C) 
        then {z=y-x+9; 
                  t=z+y-3; 
                 } 
        else z=x-5 ; 
        endif 
 endif 
y=x+z-t ; 
 

Fig. 2.1 A simple algorithm in a C-like code. 
 
First, the different data graphs are extracted (notice 
that inner control structures are allowed) according 
to the control structures of the algorithm. For 
instance, the data graphs corresponding to the 
algorithm in Fig.2.1 are those depicted in Fig. 2.2. 
In general, the data graph number is equal to 

∏
=

N

i
in

1
where N is the number of the outer control 

structures and ni is the number of the paths 
contained in control structure i. We can see in the 
example given  in Fig.2.1, that there are two outer 
control structures (A and B) and six paths (2*3): 
 

trace 1 
True condition: A and B 

                                                                                                            
                                           x=1;                                                                            
                                           y=x+1 ; 

z=y+x+4; 
t=x+y-6 ; 
z=x+y-t ; 
y=x+z-t ; 

 
trace 2 

True condition: A and not(B) and C 
x=1 ; 

y=x+1 ; 
z=x+y+4 ; 
t=x+y-6 ; 
z=y-x+9 ; 
t=z+y-3 ; 
y=x+z-t ; 
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trace 3                 
True condition: A and not(B) and not(C)        

 
x=1; 

y=x+1; 
z=x+y+4; 
t=x+y-6; 
z=x-5 ; 

y=x+z-t ; 
 
 

trace 4 
True condition: not(A) and B 

 
x=1; 

y=x+1; 
t=8+y ; 

z=x+y-t ; 
y=x+z-t ; 

 
trace 5 

True condition: not(A) and not(B) and C              
 

x=1;                                                                                                                                         
y=x+1 ; 
t=8+y; 

z=y-x+9; 
t=z+y-3; 
y=x+z-t ; 

    
trace 6 

True condition: not(A) and not(B) and not(C) 
 

x=1 ; 
y=x+1 ; 
t=8+y; 
z=x-5 ; 

y=x+z-t ; 
 

Fig. 2.2 The six data graphs of the algorithm in 
Fig.2.1. 

 
Algorithmic_transformation(); 
      . Input:    a C-like code 
      . Output: a CDFG 
Collapsing_and_Cut_Operations(); // determination of the 

number of data graphs  
                                                        // allowing a polynomial  

scheduling 
      . Output: a set of DFGs (traces) 
Power= +∞ ; 
while(Power > P_desired && Power reduction feasible) 
do {for each trace 
        do {Perform the 1rst step of the scheduling subject to the 

operation dependencies 
                Perform the 2nd step of the scheduling subject to the 

user constraints 
              } 
        end 
        Synthesize the results, and then report the global 

scheduling into a single file; 
        Power= computed switching power dissipation(); 
       } 
End 
Fig.2.3 Overview of our low power scheduling tool 
 

   Let M1= ∏
=

N

i
in

1
. The overall scheduling algorithm 

(A) will be: 
 for i = 1 to M1 
 do schedule data graph i; 
 end for 
 Group the results into a single report; 
 
   The time complexity of this algorithm is                  
Tc=O(c * M1), c=max[O(ci)]; i=1,2,…,M1. This 
clearly shows that the time complexity is not 
polynomial. Notice that in case we have only two 
paths in each of the N outer control structures, the 
time complexity would be O(c * 2N). Thus, even if 
O(c) is time-polynomial, Tc will not be polynomial. 
Thus, an heuristic-based method is required to solve 
this problem. It is obvious that the time complexity 
of the heuristic method should be polynomial. In 
addition, the solution must be closer to the exact 
one. The rest of the paper is devoted to this 
challenge. 
 

3 Huge Data Graphs Number 
Reduction 

 
3.1 Conditional branches collapsing 
Due to the large number of data graphs inferred by 
N control structures, M1 value has to be reduced 
such that that algorithm (A) mentioned previously 
can be solved in a polynomial time. We recall that 
our tool deals with a CDFG scheduling subject to 
user-constraints (time and resource constraints). Let 
us consider the example depicted in Fig.3.1. As we 
can see, there are two traces in the CDFG depicted 
in that figure. Notice that there is a user-constraint 
concerning operations 2 and 6 of the CDFG, and 
that there is no constraint in the two branches of the 
structure controlled with logical variable A. Thus, 
the two paths [1, 2, 3, 4, 6] and [1, 2, 5, 6] will be 
scheduled in the same way, namely with the whole 
if-then-else contained in one state because the user-
constraint is independent from the operations inside 
the if branches. Thus, the 2 conditional branches can 
be collapsed into a super-node for scheduling 
purposes, resulting in a single (instead of two) data 
flow (Fig.3.2). Notice also that two or more 
operations scheduled in the same step are not 
simultaneously performed in case they are not 
subject to the same true condition (the scheduling 
and control steps have different meanings).       
  In general, such a way for collapsing conditional 
branches that do not contain constraints may 
considerably reduce the number of traces (from M1 
to M2), resulting in a new scheduling algorithm (B) 
which is similar to the previously described one 
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(algorithm A) with a prospective smaller loop (from 
1 to M2 instead of 1 to M1). Notice that 1 ≤ M2 ≤ M1 
and that M2=1(=M1) occurs in case all the control 
structures are collapsed (in case all the conditional 
branches contain at least one user-constraint). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 3.1 A simple CDFG 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.2 Control partitioning 
Because M2 may still be high, the time complexity 
of algorithm (B) may still be not polynomial. In 
order to cope with this problem, we have to use 
another strategy such that the CDFG scheduling can 
be feasible in a reasonable CPU time. This can be 
achieved with an appropriate number of cut 
insertions such that the quality of the solution 
(number of cycles) does not suffer. Indeed, as we 
will see after, the number of cycles gets higher as 
the number of the cut insertions increases. Such a 
cut (control step insertions) transforms a 

combinational control into sequential ones. To 
review this in details, let us consider the example 
depicted in Fig.3.3.  
 In case an if-then-else structure contains one or 
more user constraints, the paths containing such a 
structure cannot be scheduled in the same way, 
which prevents the collapse of these conditional 
branches. Indeed, in Fig.3.3.a, assuming that 
operation 4 is both independent from operations 8 
and 10, it is possible to schedule operations 4 and 10 
in the same cycle while this is not possible for 
operations 4 and 8 (because of the user constraint). 
Since some conditional branches cannot be 
collapsed and since the number of the data graphs is 
still high, the CDFG scheduling is not feasible in a 
reasonable CPU time. In order to cope with that 
problem, and in case conditional branch collapsings 
are not sufficient, an additional strategy based on a 
control partitioning should be used.  
 Unfortunately, the cycle number gets higher as the 
cut number increases.  Indeed, assuming that all the 
operations are independent, operations 3 and 10 in 
Fig.3.3.a can be scheduled in the same cycle but the 
CDFG scheduling operates on 8 (2*2*2) data 
graphs. On the other hand, in Fig.3.3.b, operation 10 
can be scheduled into the 2nd cycle with a 
scheduling operating on only 6 (2*2+2) traces 
thanks to a cut insertion. Finally, operation 10 in 
Fig.3.3.c is scheduled into the 3rd cycle with a 
scheduling operating on 6 (2+2+2) data flows 
thanks to 2 cut insertions. In this last case, the 
combinational control is totally transformed into a 
sequential one. This shows that:  
 
- the cut insertion increases the number of cycles 

and can decrease the number of  data flows 
- an arbitrary cut insertion may not decrease the 

number of data flows while the number of cycles 
increases (Fig.3.3.b and Fig.3.3.c) 

 
 The challenge is then to find  appropriate cut 
insertions such that the CDFG scheduling can be 
feasible in a reasonable CPU time while not 
decreasing the solution quality (number of cycles). 
   Our algorithm that performs cut insertions has a 
time complexity which is O(N2

cs) where Ncs is the 
number of the control structures. This algorithm is 
exact and recursive. Our proposed algorithm is 
shown below: 
 
 
 
 
 
 

A A 

1

2

3 

4 

5 

6 

A user-constraint 

{ 3 [A] ; 4 [A] ; 5 [not A] ; 6[1] ; } 

[1]

ST1

ST2

{ 1 [1] ; 2 [1] ;  } 

     Fig. 3.2 FSM corresponding to the CDFG in    
Fig. 3.1. 
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N_data_graphs= #data graphs fixed by the user 
Control_Partitioning(S) // initially, S includes all the CDFG  
                                           operations 
{ 
Calculate M3, the data graph number included in S; 
if(M3 > N_data_paths and at least one cut insertion is feasible) 
then  {Determine the best cut insertion (the one which best  
                                             decreases the data flow number); 
                     // this is merely done with a dichotomy- way 
           Partition the interested set Sj into 2 ones Sj1 and Sj2 (the  
             interested set is the one in which the cut insertion has  
             been done, the last operation of Sj1 is the one on              
             which a cut occurred, the 1st operation of Sj2  
             is the one which follows the interested operation in  set  

S);   
            S=S ∪ Sj1 ∪ Sj2 ; 
            Remove Sj from S; 
            Control_Partitioning(S); 
         } 
endif 
if(M3 > N_data_paths) 
then report(“Infeasible: all the conditional branches are   

   sequential”); 
else the operations in the same set Sj are 1st scheduled in the 

same cycle (there is a direct relationship between the 
obtained sets and the cycle numbers);  

endif 
 
Now, the CDFG scheduling algorithm is given as 
follows: 
 
for i=1 to M3 
do schedule data graph i according to the partial results obtained  
      with Control_Partitioning()  procedure; 
end for 
Synthesize the results then report the global scheduling into a 
single report; 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                                     
 

In the next section, we will discuss the scheduling of 
each data graph i. 
 

4 Data Graph Scheduling Technique 
 
4.1 Operation Dependencies 
The Control_Partitioning() procedure has given a 
partial scheduling. We recall that operations 
included in different sets are scheduled into different 
cycles. We now deal with the operations that belong 
to the same subset Sj. In each subset, the operations 
are again scheduled according to: 

- the dependencies (2 dependent operations 
are scheduled into 2 different new cycles) 

- the operation type (until now, our tool 
assumes that operations of type addition are 
performed within a single cycle while 
operations of type multiply require 2 cycles)  

 
For each subset Sj, the operations are again 
scheduled subject to the two above considerations 
while updating the number of cycles of the subsets 
that follow the interested one. 
 In [25], [26] and [27], the addressed problem is the 
switching power dissipation in CMOS circuits. In 
addition to many other parameters, this kind of 
power dissipation also depends on the gate levels. 
We determine the gate level in a polynomial time 
(O(N2) where N is the number of the gates) as 
follows: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3.3 A control partitioning 

3 

10 

4 

8 

Cut1

C C 

B B 

A A 

C C 

B B 

A A 

Cut1  

C C 

B B 

A A 

Cut1 

Cut2 
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Level(G)=1 if all the inputs of gate G are primary 
inputs 
Level(G)=1+k; k is the maximum among the levels 
of the gates that feed G 
  
In order to determine operation dependencies, the 
procedure that determines the gate levels has been 
transformed. Notice that there is a direct relationship 
between operations and gates, and between the 
initial scheduling steps and the gate levels. Finally, 
even if 2 operations belonging to the same subset 
are independent, they cannot be scheduled in the 
same cycle in case there exists a user-constraint 
preventing such a scheduling. The next subsection 
will deal with this problem. 
 
 4.2 Scheduling subject to User Constraints 
Let us assume that many operations of the same 
type (e.g addition) are scheduled in the same control 
step. Those operations can be then performed 
simultaneously, but with the expense of using the 
same number of resources (adders), which would 
require a great amount of silicon area. In order to 
overcome that problem, the designer can introduce 
some constraints so that some operations will be 
scheduled in different control steps even they are 
independent. In this way, the same resources would 
be used for different operations of the same type 
when they are not scheduled in the same control 
step. 
Let us suppose the operations in Fig.4.1 be all 
independent. Without the users-constraints a, b and 
c, the 6 operations can be scheduled in a single 
cycle. However, user-constraint a prevents us to 
schedule operations 1 and 5 in the same cycle. 
Similarly, the user-constraint b (c) prevents us to 
schedule operations 2 (3) and 4 (6) in the same cycle 
(in the remaining of this section we assume that the 
constraints concern independent operations which 
are first scheduled in the same cycle since the user 
constraints would be already satisfied else). One of 
some solutions consists to insert cuts after 
operations 1, 2 and 3. Then, the following 
scheduling results: 
Cycle i:      1; 
Cycle i+1:  2; 
Cycle i+2:  3;  
Cycle i+3:  4; 5; 6; 
 
On the other hand, inserting a cut after operation 3 
will yield the following scheduling: 
Cycle i:      1; 2; 3; 
Cycle i+1:  4; 5; 6; 
This clearly shows that an appropriate cut-insertion 
strategy leads to a better scheduling while satisfying  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
all the user constraints (in the last example, a good 
cut insertion achieved 50% reduction in the cycle 
number). Unfortunately, the problem being 
addressed is not a time-polynomial but rather a 
combinational one.  
 Many previous works have solved this problem 
using the interval graph-based technique. Let us 
consider the example depicted in Fig.4.2. The best 
solution such a technique can yield is obtained by 
inserting a cut after operation 2 (the cut is assigned 
to constraints a and b) and another after operation 5 
(the cut is assigned to constraint c).                                      
We then have the following scheduling: 
Cycle i:     1; 2; 
Cycle i+1: 3; 4; 5; 
Cycle i+2: 6; 
 
The cut insertion is done using the following 
strategy: 
 

a 

c

b 

1 

2 

3 

4 

5 

6 

Fig. 4.1 Operations subject to user-constraints. 

a 

c 

b 

6 

5 

4 

3 

2 

1 

a 

3 

1 

b 

4 

2 

c 

6 

5 

(a) user constraints                       (b) associated graph 

Fig.4.2 A graph transformation 
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Add 5 nodes 

Add 2 edges 

for each cut cti 
do {define Ii= max[min(constraintj ; j=1,2, …, number of  
        constraints assigned to cut cti)]; 
       insert cut cti at operation Ii; 
     } 
 end for 
 
 For the example in Fig.4.2, we obtain: 
I1= max [min(1,3), min(2,4)]=2 because cut1 is 
assigned to constraints a=[1,3] and b=[2,4] 
 I2= max [min(5,6)]=5 because cut2 is assigned to 
constraint c=[5,6]  
 Because our procedure concerning the user-
constraint satisfaction operates on independent 
operations (the dependence constraints are already 
solved), we have used another technique that gives 
better solutions. 
More precisely, the problem that is being addressed 
can be stated as follows: 
Find the minimal value of cycles while satisfying all 
the user-constraints, which problem is similar to the 
graph colouring one: 
 
Find function f minimizing K (1 ≤ K ≤ |V|) such that: 
f : V → {1,2, .... , K } 
f(vi) ≠ f(vj) ∀  (vi , vj) ∈ E   

 
 

The last problem is known as NP-complete and 
until now one conjecture that there exists no 
polynomial algorithm solving it [28]. Our problem 
under consideration can be polynomially 
transformed into the graph colouring one. Because 
we have previously developed a new efficient 
technique solving all  the NP-complete problems 
([22], [23], [24]), we can efficiently solve the 
problem being addressed by transforming it into the 
graph colouring one as follows: 
 
// Construct graph G=(V,E) 
for each operation Oi 
do create a node vi ∈ V 
end for 
(vi,vj) ∈ E iff Oi and Oj are subject to the same constraint 
Colour_G(); 
Transform the results into cycles; // there are as many cycles as 

// colours; 
 

 
Let us now briefly describe our graph colouring 
technique.  
For the graph colouring problem, the number of 
colours increases as |E| grows. This is clearly 
depicted in Fig.4.3 : Fig.4.3.a shows that the number 
of colours  remains unchanged although |V| has  
been increased. On the other hand, the number of 
colours gets higher in Fig.4.3.b even if |V| holds the 
same value. Thus, additional nodes do not affect the 
colour number in case the set of edges remains 

unchanged even the number of the new nodes is a 
large value. On the other hand, adding a few 
numbers of edges can increase the colour number, 
considerably. This means that the graph colouring 
problem is strongly dependent on the edges of the 
interested instance. However, the node degree order 
is also a parameter that affects the solution of the 
problem under consideration. For this purpose, let 
us sort the nodes of the graph instance that is 
depicted in Fig.4.4 according to the increased 
number of their degree. Giving a graph G=(V,E), we 
define the degree of a node i as the number of edges 
(i,j) ∈ E ; i ≠ j . The result of this node sorting is 
shown in Table1. 
 

Node v1 v4 v5 v6 v3 v2 
Degree 0 1 1 1 2 3 

Table 1. A node sorting according to the increased 
number of the node degrees. 

 
Let us colour the graph instance of Fig.4.4 using 

the greedy algorithm while maintaining the node 
degree order shown in Table 1. We obtain three 
colours (R,G,B). This result is given in Table 2. 

 
Node v1 v4 v5 v6 v3 v2 
Colour R R R R G B 

Table 2. A node colouring according to the 
increased number of the node degrees. 

 
  Considering the same instance that is depicted in 
Fig.4.4, let us now colour the nodes using the 
greedy algorithm according to the decreased number 
of their degree. The colour number is smaller (2 
instead of 3) as shown in Table 3. 
 
 
 
 
 
 
 
2 edges, 4 nodes                                            2 edges, 9 nodes                         
  2 colours                                                           2 colours                               
 
a. Adding nodes while maintaining the same edges does not    

increase the number of colours.                                                               
 
 
 
 
 
2 edges, 4 nodes                                              4 edges, 4 nodes                          
   2 colours                                                          3 colours 
 
b. Adding edges to graph G could increase the colour  number 

even if the number of nodes  remains the same. 
 
Fig.4.3. Variation of the colour number vs. the 
graph complexity 
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Node v2 v3 v4 v5 v6 v1 
Colour R G R G G G 

Table 3. A node colouring according to the 
decreased number  of the node degrees. 

 
The above results show that the sorting key 
(increased or decreased degrees) affects the colour 
number. However, it would be wrong to claim that a 
node colouring according to the decreased number 
of their degree yields fewer colours. The instance 
that is depicted in Fig.4.6 contradicts such a 
statement. 
Let the sorting key be the decreased node degrees. 
The result is shown in Table 4. 
 The node colouring according to the previous 
sorting key will yield 2 colours as shown in Table 5. 
 However, keeping the same node degree order and 
reordering only nodes v6 and v2 (that have the same 
degree), the obtained result is 3 colours as shown in 
Table 6. 
 Finally, notice that the minimum number of colours 
(2) can be obtained for the last instance when the 
increased node degree is considered. This is shown 
in Table 7. 
 We have just seen that the node degree order affects 
the colour number. More, we have seen that neither 
the increased node degree nor the decreased one will 
always yield the best result. Hence, the only way to 
guarantee the exact result is to consider all the node 
degree orders then to perform the graph colouring 
over them. Given an undirected graph G=(V,E), the 
number of such node degree orders is :                   
AN

N = N !/(N-N) ! = N ! ; N = |V| . 
Performing N ! graph colourings for the same 
instance is computationally infeasible for a large 
value of N. However, a single graph colouring can 
yield poor results. Therefore, a heuristic method that 
overcomes these two drawbacks can be the one that 
avoids either N ! graph colourings or a single one. 
Thus, considering m (1 ≤ m ≤  N !) node degree 
orders is a good tradeoff to make a large solution 
space exploration while maintaining a reasonable 
CPU time. However, the challenge consists in 
selecting m node degree orders among N ! ones 
while targeting good solutions.  The details of this 
technique are described in [22]. We merely say that 
our heuristic-based method groups the graph nodes 
into k classes (k << N). Then, instead of performing 
N ! node degree orders,  only k ! ones are 
considered : the node degree orders are performed 
over classes, regardless the order of the nodes 
belonging to the same class. 
Because the node assignment over the classes is not 
unique, we also need the best one. Our node 

assignment is the solution of   the following 
optimisation problem: 

          
such that          
              i) diffi = dMi - dmi ;  i=1,2,…,k;   (1) 
  

where dmi and dMi are the least and the greatest 
degree of the nodes included in class Cli , 
respectively. Notice that the motivation of this node 
assignment is detailed in [22]. 
Thanks to our algorithm which has just been 
presented, the graph corresponding to the 
constraints depicted in Fig. 4.2.a is the one shown in 
Fig.4.2.b(notice that the operations are independent) 
 
For Fig.4.2, the best solution obtained with our 
graph colouring technique can be only two colours: 

- colour 1: for operations 1, 2 and 5 
- colour 2: for operations 3, 4 and 6  

 Then, the following scheduling results: 
Cycle i:     1; 2; 5; 
Cycle i+1: 3; 4; 6;  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.4.6. Another graph instance. 
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Fig.4.4. A graph instance.

Fig.4.5. Another graph
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Notice that there is no operation reordering procedure 
(it is an implicit process thanks to our graph 
colouring-based strategy) and that the best solution 
given with the interval graph- based technique is 3 
(because the latter technique does not allow 
operations reordering). Finally, it is obvious that for a 
large set of user-constraints, our graph colouring-
based technique will considerably reduce the cycle 
number with respect to the graph interval-based one.       

 

Table 4. A node sorting according to the decreased  
number  of the node degrees. 

 

Table 5. A node colouring of the graph instance of 
Fig. 4.6. 

 

Table 6. Another node colouring of the graph instance   
of Fig. 4.6. 

Table 7. A node colouring according to the increased 
number of the node degrees. 

 
The node assignment is better explained by 
considering the graph instance that is depicted in 
Fig.4.5. The node degrees are given in Table 8 while 
Table 9 gives the value of (diff1+diff2+diff3) for each 
node assignment.  

  
 
 

Table 8.  Node degrees. 
 

 
 
 
 
 
 
 
 

Table 9. A node partitioning 
 
Assuming k=3, the third node partitioning (bold entry 
in Table 9) is the best since (4.1) is minimal (it is 
equal to 0) : Cl1={v1}, Cl2 = {v2,v3,v4} and    
Cl3={v5 }.  
The graph instance that is depicted in Fig.3.5 will be 
handled according to the (k !=3 ! = 6) following node 
degree orders: 

1st node degree order: 
Cl1,Cl2,Cl3  → {v1},{v2,v3,v4}, {v5} 
 
2nd node degree order: 
Cl2,Cl1,Cl3  → {v2,v3,v4},{v1},{v5} 
 
3rd node degree order: 
Cl3,Cl2,Cl1 → {v5},{v2,v3,v4},{v1} 
 
4th node degree order : 
Cl1,Cl3,Cl2 → {v1},{v5},{v2,v3,v4}   
 
5th node degree order : 
Cl3,Cl1,Cl2 → {v5},{v1},{v2,v3,v4}   
 
6th node degree order : 
Cl2,Cl3,Cl1 → {v2,v3,v4},{v5},{v1} 
   
Thus, our heuristic-based method performs like the 
exact method with the difference that {v2,v3,v4} is 
assumed as a ″node″ (the node degree orders 
concerning v2, v3 and v4 are not considered). 
However, in order to better improve the quality of the 
solution, we perform two graph colourings (from the 
left to the right and from the right to the left in the list 
of the nodes) for each node degree order. Let us 
consider for instance the 1st node order (Cl1, Cl2, Cl3). 
The two following node orders will be considered: 
-left to right: v1,v2,v3,v4,v5 (notice that this node 
order is different from the right to the left order in Cl3, 
Cl2, Cl1 which is v1,v4,v3,v2,v5) 
-right to left: v5,v4,v3,v2,v1 (notice that this node 
order is different from the left to the right order in Cl3, 
Cl2, Cl1 which is v5,v2,v3,v4,v1). 
 Therefore, k !*2 graph colourings are performed for a 
graph instance whose nodes are partitioned into k 
classes. For the graph instance that is depicted in 
Fig.4.5, the best solution has been 2 colours, which is 
also the exact one.  
 Finally, notice that our graph colouring technique: 
i) includes both the ascending node degree and the 

descending node degree strategies. For the graph 
instance depicted in Fig.4.5, these two strategies 
represent the following node degree orders: 
- left to right in Cl1, Cl2, Cl3 : v1, v2, v3, v4, v5 
- right to left in Cl1, Cl2, Cl3 : v5, v4, v3, v2, v1 
 

ii)  yields the exact solution in case k = |V|  
 
iii) yields the exact solution in case the solution is 

independent on the ordering of the nodes 
belonging to the same class  

 

Node v6 v4 v3 v2 v1 v7 v5 
Degree 2 2 2 2 2 1 1 

Node v6 v4 v3 v2 v1 v7 v5 
Colour R R R G G G G 

Node v2 v4 v3 v6 v1 v7 v5 
Colour R G R G B G R 

Node v5 v7 v1 v2 v3 v4 v6 
Colour R R R R G G G 

Node v1 v2 v3 v4 v5 
Degree 1 2 2 2 3 

Cl1 
#nodes diff1 

Cl2 
#nodes diff2 

Cl3 
#nodes diff3 

diff1+ 
diff2+  
diff3 

1              0 1              0 3              1 1 
1              0 2              0    2              1 1 
1              0 3              0 1              0 0 
2              1 1              0 2              1 2 
2              1 2              0 1              0 1 
3              1 1              0 1              0 1 
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5 Reduction of the Switching Power 
Dissipation at a High Design Level 

In current designs (SOC designs), the power 
dissipation is a crucial problem (limited life of a 
battery, reliability problem due to a temperature 
increase ...). Thus, we need low power designs to cope 
with this problem. The main components of the power 
dissipation are the switching activity, the short circuits 
and the leakage power.   
 The power dissipation due to short circuits can be 
minimized using appropriate technologies (e.g. 
CMOS) with techniques reducing the current due to 
short circuits. This current can be reduced by 
shortening the time transitions of the signals that feed 
the transistors (transistors N et P will conduct 
simultaneously in a very short time). The leakage 
power is reduced by assigning high threshold voltages 
to some transistors in a dual-threshold and a dual-VDD  
based-design. 
 In fact, the reduction of the power dissipation is 
tackled at each design level. Reducing the switching 
power can be done at earlier stages of the design.  We 
will see hereafter how our tool gives the user the 
ability to cope with the reduction of the switching 
power dissipation at a high design level.  
 We recall that two any operations subject to some 
constraint are scheduled in different steps. Because 
the switching power is as high as the number of the 
operations that are simultaneously performed is high, 
additional constraints are introduced such that the 
switching power is reduced. However, the 
introduction of constraints would be tedious and the 
user has no idea on how to introduce them in order to 
obtain less switching power dissipation, which needs 
an automated task.   
 The starting point of our heuristic for reducing the 
switching power dissipation is the results provided by 
the scheduling process. Indeed, many operations 
scheduled in the same control step will dissipate some 
amount of power. Thus, our heuristic introduces 
constraints for the operations scheduled in such 
control steps. Then, the operations are again 
scheduled subject to those new constraints. The 
process iterates while the switching dissipation 
remains higher than the desired one Pdesired. Notice that 
we need a minimal number of control steps while 
satisfying the power dissipation constraint.  Our 
heuristic is detailed in Fig.5.1. 
 
 
 
 
 
 
 
 

// Reduction of the Switching Power Dissipation at the Register  
// Transfer Level 
P= +∞; 
while(P > Pdesired) 
do { schedule_traces(); // use our previously described tool 
        P= -∞; 
        for each trace i 
        do {use SPOT ([25], [26], [27]) to determine POWER,  the 

switching power  dissipated per cycle;  
                if(POWER > P) 
                then P= POWER; 
                endif 
                 for j=1 to nb_cyclesi  
                   // nb_cyclesi is the number of cycles in trace i with  
                   // the current scheduling 
                 do if nb_ij > avg_nb_i 
                             // nb_ij is the number of operations of trace i  
                             // in cycle j of the current scheduling 
                             // avg_nb_i is the average number of the  
                             // operations  per cycle  in the next  
                             // scheduling 
                      then {kij = ⎣nb_ij / avg_nb_i⎦; 
                                construct Ngij = ⎡nb_ij / kij⎤ graphs G1,  G2, 

...,GNgij  such that: 
                                    . |Vk| = kij;  |Ek|=kij*(kij-1)/2;   
                                           k=1, 2, ..., Ngij 
                                n=Ngij*kij; 
                                if(n < nb_ij) 
                                then {construct an additional graph  

Ga=(Va,Ea) such that: 
                                                . |Va|=nb_ij – n=na_ij; 
                                                . |Ea|=na_ij*(na_ij-1)/2 
                                            } 
                                endif 
                                for each operation Il in cycle j of the current 

scheduling, there exists 1and  
                                        
                                         only 1 node vl in 
                                
                                for each graph Gk=(Vk,Ek)  (1 ≤ k ≤ Ngij) 
                                do for each edge elm ∈ Ek 
                                     do generate a constraint between 

operations Il and Im; 
                                     end 
                                     for each edge elm ∈ Ea  // if Ga exists 
                                     do generate a constraint between 

operations Il and Im; 
                                     end 
                                end 
                              } 
                      endif 
                 end 
              } 
         end 
      } 
end 
Fig.5.1. Algorithm balancing the throughput and the 

power dissipation of a circuit 
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Notice that in each iteration of the previous 
algorithm, the number of constraints is equal to:  
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where Ngij is the number of the graphs constructed for 
the jth cycle of the ith trace, kij is the number of nodes 
in each of the Ngij graphs, na_ij is the number of nodes 
in the prospective additional graph for the jth cycle of 
the ith trace, #c_i is the number of cycles in the current 
scheduling of trace i such that there are more than 
avg_nb_i operations in each of them.  
 As it is shown in the last equation, the number of 
constraints can be very high. So, an automated task is 
required to cope with the problem of their 
determination. 
 Notice that operation scheduling can be performed 
together with binding. Thus, we have developed a 
procedure that assigns resources to operations as 
follows: 

- in each cycle, the sum of areas of the selected 
resources (Sa) that perform operations 
scheduled in the same cycle must be less than 
a fixed area value A 

- assignment priority is given for the fastest 
resources whenever it is possible (area 
constraints met) 

- the power reduction is then performed by 
algorithm in Fig.5.1 

 
Current scheduling of the operations in trace i: 
 
 
 
    Cycle j:   Oi1, Oi2, ...., Oi26 

 
 
(a) Operations first scheduled in the same control step 

 
 
 
 
 
      j1:    Oi1, Oi5, Oi9, Oi13, Oi17, Oi21, Oi25                                                                                                      
                                                                                                                                                      
      j2:  Oi2, Oi6, Oi10, Oi14, Oi18, Oi22  Oi26 
                                                                                                                                                                                                                                                     
       j3:  Oi3, Oi7, Oi11, Oi15, Oi19, Oi23                                                                                                                                                                                            
 
      j4:  Oi4, Oi8, Oi12, Oi16, Oi20, Oi24         
 
 
(d) The new scheduling of operations Oi1, Oi2, ...,Oi24                     
      (Notice that 2 any operations subject to the same 
         constraint are scheduled in 2 different control steps and that  
         the cycle numbers of the other  operations are updated) 

Example: Let us explain the reduction technique with 
the following example. Let us assume that 26 (nb_ij) 
operations are scheduled in some control step j of 
some trace i of the CDFG. Let P be the calculated 
switching power dissipation of the circuit that 
represents the CDFG  at the register transfer level. Let 
us assume that P > Pdesired and that the average number 
of operations per cycle in the next scheduling is 8 
(avg_nb_i). We have to schedule the 26 operations in 
different cycles (not in the same cycle as they are 
currently). Thus, we have to introduce power 
constraints such that to reduce P. These constraints are 
built as follows: 

 
k=  ⎣nb_ij / avg_nb_i⎦ = ⎣26/8⎦=4 
 
- construct Ng= ⎡26/4⎤ = 6 graphs G1, G2, ..., G6 

   |Vk|=k=4; |Ek|= |Vk|*(|Vk|-1)/2 = 6;  k=1,2, ...,6 
 

- construct an additional graph Ga=(Va,Ea) 
          |Va|= nb_ij – Ng*|Vk| = 26 – 6*4 = 2 
 
- for each operation Ol (1 ≤  l ≤ 26) there is one and 
only one node vl in  

 
- generate a constraint between operations Il and Im if 

elm ∈ Ek ; k=1,2,...,6 (for each of the 24 operations 
there is a node  belonging to Vk ; k=1,2,...6 (see 
Fig.5.1) 

- generate a constraint between operations Il and Im   if 
elm ∈ Ea 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∪
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1=k
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(c) The new constraints added in the constraint 

(b) A graph construction 

Oi4 Oi3 Oi8 Oi7 Oi12 Oi11 

Oi1 Oi2 Oi5 Oi6 Oi9 Oi10 

Oi16 Oi15 

Oi13 Oi14 

Oi20 Oi19 

Oi17 Oi18 

Oi24 Oi23 

Oi21 Oi22 

Oi25 Oi26 

Oi1 Oi2 Oi3 Oi4 // there are 3 constraints:Oi1-Oi2,Oi1-Oi3,Oi1-Oi4 

Oi2  Oi1 Oi3 Oi4                    
Oi3  Oi1 Oi2 Oi4 
Oi4  Oi1 Oi2 Oi3 
Oi5  Oi6 Oi7 Oi8  
.............................. 
Oi24 Oi21 Oi22 Oi23 
Oi25 Oi26                              
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- we have to schedule at most 8 (avg_nb_i) operations 
per cycle 

- the control step j is replaced with = |Vk|= 4 new 
cycles (notice that there is a trade off between the 
circuit performance and the switching power 
dissipation). 

 
 The scheduling is then performed as depicted in 
Fig.2.3 and accordingly to the algorithm which is 
previously described. 

 

6 Results 
 

 Our tool first transforms a C-like code description 
into a set of  DFGs. Then, scheduling techniques are 
performed on each DFG, followed by a result 
synthesis then a report of the global scheduling. In 
case the number of DFGs is huge, techniques for 
reducing the number of DGS are required such that 
the CDGF scheduling can be possible (section 3). The 
first reducing technique of that number aims to 
collapse an       if-then-else branch into a super-node 
in case that branch does not include operations subject 
to constraints. Because the time complexity of this 
technique is O(Ncs

2), where Ncs is the number of the 
control structures, we have developed an exact 
reducing technique that detects and collapses all the 
conditional branches including constraint-free 
operations. 
The results given in Table 10 show an interesting 
CPU time (measured on an Intel i386-based processor 
running at 863 MHz) for reducing a large number of 
DFGs into a single one (in order to consider the worst 
case, we have assumed that no conditional branch 
includes operations subject to constraints). Notice that 
although our machine is not able to deal with values 
greater than 1.7*10308, our tool is able to process such 
instances (e.g. 2100000 and 2500000 DFGs in Table 10). 
Table 10 shows interesting CPU times (that include 
both the C-like code translation into a set of traces and 
control structure collapsings). Unfortunately, most of 
designs are subject to user constraints, which prevent 
to collapse some conditional branches. Thus, a control 
partitioning-based technique (subsection 3.2) is 
required. The challenge is to find optimal cuts such 
that the amount of parallelism is not decreased. Notice 
that the best cut insertion is then needed. For a 
complex CDFG, an adequate reducing technique has 
to be used. 
Using the procedure Control_Partitioning() described 
in subsection 3.2, the results that represent the cut 
insertions are shown in Table 11. This table shows the 
efficiency of our control partitioning procedure. 
Indeed, a minimal number of cuts achieved a great 
reduction of the number of DFGs. For example, 

- only 1 cut achieved a reduction of 1.980704*1028 
DFGs (ip#) into 2.81475*1014 ones (op#) when the 
number of DFGs defined by the user is 9.90352*1027. 
Notice that the ratio op# / ip# is very low 
- only 1008 cuts achieved a reduction of 
8.98846*10307 DFGs into 2526 ones (the ratio is very 
low) when the required number of DFGs is 5000 
Notice that: 
- entries 1, 5, 9 and 13 in Table 11 represent the case 
in which the required number of DFGs is greater than 
or equals to the initial number (the number of cuts is 
then 0) 
- entries 4, 8, 12 and 16 in Table 11 represent the case 
in which the required number of DFGs is less than the 
minimal one (the number of  cuts is then maximal and 
equals  to 93, 1022, 99999 and 499999, respectively). 
For such cases, the obtained numbers are equal to the 
minimal ones and still be greater than the required 
ones 
- entries 3, 7, 11 and 15 in Table 11 represent the case 
in which the required number of DFGs equals to the 
minimal one. In this case, the number of cuts is less 
(because i*22 =i*(2+2), 0 cut achieves the same 
number of DFGs than 1 cut for each couple of i 
disconnected couples of control structures) than or 
equal to N-1, N is the number of control structures 
- entries 2, 6, 10 and 14 in Table 11 represent the case 
in which the required number of DFGs is greater than 
the minimal one and less than the initial one. The 
results in that table show that a minimal number of 
cuts (1, 1008, 97956 and 497956) achieves very low 
ratios (obtained #paths / initial #paths): 1.42*10-14 , 
2.81*10-305 , 2-98977 and 2-499981 , respectively while the 
obtained number of DFGs is less than or equal to the 
required one 
- the CPU times represent the C-like code 
transformation and the control partitioning. For huge 
values of the initial numbers of DFGs (e.g. 
8.98846*10307), the CPU times equal to 0 second. 
Only 5867 s (nearly 1h38mn) achieved the processing 
of a very large number of initial numbers of DFGs 
(2500000). In addition, notice that for entries 4, 8, 12 
and 16, the CPU times still be low even for a huge 
number of initial DFGs (e.g. 2500000) because in case 
the required number of the DFGs is less than the 
minimal one, our tool delivers a message indicating 
that impossibility. For the last case, the CPU time 
actually represents the C-like code transformation and 
the computation of the minimal numbers of the DFGs 
and the cuts. Finally, we have to notice that our tool 
does not fail for values that are greater than 1.7*10308 
(the greatest value that can be stored in our machine) 
as it is shown in Table 11 for the numbers 2100000 and 
2500000 that are both greater than 1.7*10308. 
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(*) in order to deal with the worst case, we assumed that all the control structures could be 
collapsed. 

Table 10. A conditional branch collapsing 
 
 

Table 11. A control partitioning 

 
 
 

Table13. A CDFG scheduling 
 

 

 
 
 
 
 
 
 
 

 
 

 
 
 

 
 

 

Initial #DFGs Obtained #DFGs (*) CPU Time (s) 
1.980704*1028 1 0 
8.98846*10307 1 0 

2100000 1 12 
2500000 1 239 

Entry # # Control 
Structures 

Initial 
 #paths 

Required 
# paths 

Obtained 
# paths 

#cuts CPU Time 
(s) 

1 94 1.980704*1028 294 294 0 0 
2 94 1.980704*1028 9.90352*1027 2.81475*1014 1 0 
3 94 1.980704*1028 188 188 92 0 
4 94 1.980704*1028 187 188 93 0 
5 1023 8.98846*10307 9.0*10307 8.988466*10307 0 0 
6 1023 8.98846*10307 5.0*103 2526 1008 0 
7 1023 8.98846*10307 2046 2046 1020 0 
8 1023 8.98846*10307 2045 2046 1022 0 
9 100000 2100000 2100000 2100000 0 13 

10 100000 2100000 1.0*10308 8.988466*10307 97956 3809 
11 100000 2100000 2.0*105 2.0*105 99997 3845 
12 100000 2100000 15.0*104 2.0*105 99999 13 
13 500000 2500000 2500000 2500000 0 81 
14 500000 2500000 1.69*10308 8.988466*10307 497956 5256 
15 500000 2500000 1.0*106 1.0*106 499997 5867 
16 500000 2500000 0.5*106 1.0*106 499999 74 

%error average  8.60  1.92  

DIMACS 
benchmark 

instance 

Exact solution #colours 
(#classes = 1) 

% error CPU Time 
(s) 

(#colours, 
#classes) 

% error CPU 
Time (s) 

1.   anna 11 11 0 0 (11 , 1) 0 0 
2.   david 11 11 0 0 (11 ,1 ) 0 0 
3.   myciel3 4 4 0 0 (4 , 1) 0 0 
4.   myciel4 5 5 0 0 (5 , 1) 0 0 
5.   myciel5 6 6 0 0 (6 , 1) 0 0 
6.   myciel6 7 7 0 0 (7 , 1) 0 0 
7.   huck 11 11 0 0 (11 , 1) 0 0 
8.   zeroin.i.3 30 30 0 0 (30 , 1) 0 0 
9.   miles750 31 31 0 0 (31 , 1) 0 0 
10. miles500 20 20 0 0 (20 , 1) 0 0 
11. miles1500 73 73 0 4 (73 , 1) 0 4 
12. miles1000 42 42 0 1 (42 , 1) 0 1 
13. games120 9 9 0 0 (9 , 1) 0 0 
14. jean 10 10 0 0 (10 , 1) 0 0 
15. myciel7 8 9 12.5 0 (8 , 3) 0 0 
16. queen5_5 5 7 40 0 (5 , 7) 0 2 
17. miles250 8 9 12.5 0 (8 , 3) 0 0 
18. queen6_6 7 10 42.86 0 (8 , 8) 14.29 49 
19. queen8_8 9 14 55.56 0 (11 ,8 ) 22.22 1858 

 
#paths 

 
#cuts 

 
⎡average #cycles⎤ 

(no user constraint) 

 
⎡average  #cycles⎤ 

(22 user constraints) 

 
CPU Time 

(s) 
16384 0 7 11 12671 
256 1 8 11 0 
152 2 9 12 0 
48 3 10 12 0 

Table12. Experimental results for the graph colouring problem 
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Although the graph colouring problem is NP-
complete, the exact solution is known for some 
DIMACS benchmarks. The results in Table 12 show 
the efficiency of our graph colouring technique. 
Indeed, using only one class, the CPU time does not 
exceed 4 s for allowing our technique to yield the 
exact solution for the 14 first instances given in Table 
12. For the 15th, 16th and 17th instance, the exact 
solution is obtained with k=3 (k is the number of 
classes), k=7 and k= 3, respectively. A closer solution 
to the exact one is obtained for the 18th instance 
(#colours=8, k=8) and the 19th one (#colours=11, 
k=8). It is also shown that 30’58” allowed a closer 
solution (11) to the exact one (9) than that obtained 
(14) with one class instead with 8 ones. Finally, this 
table shows that the average of the error percentage 
decreases from 8.60 to only 1.92 when more than one 
class is used for the node assignment.  
  The results in Table 13 represent the 2 steps of the 
CDFG scheduling (data dependencies and user 
constraints satisfaction): 
- the 1st entry of Table 10 shows that instructions 
included in 16384 DFGs are scheduled in 7 cycles (11 
cycles) when there is no partitioning and no user 
constraint (22 user constraints). Notice that the 1st step 
of the scheduling requires 7 cycles 
 
 

Table14. Experimental results for scheduling 
 

- noticing that a cut increases the number of cycles 
but in the same time can satisfy some user constraints 
(whose  satisfaction requires extra cycles), the average 
numbers of the cycles after the two scheduling steps 
are nearly the same (11 and 12)                                                     
  As expected from the results of our graph colouring 
technique, Table 13 shows that: 
- 22 user constraints yielded only 4 extra cycles, 
which shows that our constraint satisfaction procedure 
is efficient 
- the average number of the cycles is determined from 
the obtained cycle numbers resulted from the different 
DFGs schedulings  
- the CPU time includes the C-like code 
transformation, the cut partitioning and the 2 steps of 
the scheduling. We recall that in order to obtain very 
close results to the exact ones, different graph 
colourings of the same graph instance are processed 
([22], [23], [24]) with the expense of the CPU time 
(but within a fixed time duration: to the best of our 
knowledge, it is not advantageous to obtain very low 
CPU times with the expense of poor results which will 
implement an integrated circuit whose life time will 
be some years). 
     
 
 
 

 
 

[29] [30] Our Method 
With binding ; Without binding 

Bench. 
Circuit 

Lat. 
(cycles) 

Pwr 
(mW) 

Run 
Time 

(s) 

Lat. 
(cycles) 

Pwr 
(mW) 

Run 
Time 

(s) 

Lat. 
(cycles) 

MaximalPower 
(mW) 

Average 
Power 
(mW) 

Run Time 
(s) 

Diff. eqn 4 22.9 35 5 16.0 37 4 ; 4 25.00 ; 25.00 20.00 ; 20.00 0 ; 20 

Diff. eqn       5 ; 5 20.00 ; 25.00 16.00 ; 16.00 0 ; 20 

Diff. eqn       7 ; 8 14.29 ; 14.01 11.43 ; 11.39 0 ; 20 

FIR 10 61.7 221 10 50.4 165 9 ; 9 13.06 ; 13.06 10.44 ; 10.44 0 ; 91 

FIR       10 ; 11 11.75 ; 11.58 9.40 ; 9.38 0 ; 91 

FIR       13 ; 12 9.04 ; 9.26 7.23 ; 7.36 0 ; 91 

IIR 8 12.8 100 9 11.2 96 8 ; 8 15.31 ; 15.31 12.25 ; 12.25 0 ; 74 

IIR       9 ; 9 13.61 ; 13.61 10.89 ; 10.89 0 ; 74 

IIR       11 ; 12 11.14 ; 11.06 8.91; 8.88 0 ; 74 

Lattice 9 66.3 207 10 55.9 161 8 ; 9 80.63 ; 8.47 64.50 ; 64.47 0 ; 153 

Lattice       10 ; 10 65.75 ; 65.75 51.60 ; 51.60 0 ; 153 

Lattice       19 ; 18 33.95 ; 34.06 27.16 ; 27.41 0 ; 153 

Ellip 17 204.0 259 19 191.3 204 16 ; 16 137.19 ; 137.19 109.75 ; 109.75 0 ; 188 

Ellip       20 ; 21 119.20 ; 119.04 87.80 ; 87.74 0 ; 188 

Ellip       24 ; 24 91.46 ; 91.46 73.17 ; 73.17 0 ; 188 

WAVE 26 201.2 427 27 179.2 332 24 ; 25 304.38 ; 304.03 243.50 ; 243.46 194 ; 326 

WAVE       25 ; 26 292.20 ; 191.85 233.76 ; 233.73 216 ; 326 

WAVE       29 ; 28 251.90 ; 252.06 201.52 ; 201.57 265 ; 326 

NC filter 27 324.3 501 27 286.7 377 25 ; 26 371.80 ; 371.65 297.44 ; 297.32 196 ; 364 

NC filter       29 ; 31 320.52 ; 320.17 256.41 ; 256.13 211 ; 364 

NC filter       33 ; 32 281.67 ; 282.09 225.33  ; 225.39 256 ; 364 
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Table15. Trade off between the throughput and the 
switching power dissipation of a circuit 

 
With the advent of new silicon technologies, SOC 
designs are possible. However, the reduction of the 
power dissipation is required at different levels of 
abstraction. Unfortunately, one cannot improve both 
the power consumption and the throughput of a VLSI 
system, which needs appropriate techniques to deal 
with. Our tool allows the designer to introduce 
constraints in order to achieve a good balancing of 
those two parameters. Table 14 shows our results and 
those of two earlier methods. It is shown that: 

- in general, the game-theoretic scheduling and 
binding method [30] gives better results than the 
ILP-based scheduling & LP-based binding one 
[29] 

- our values of the power dissipation are closer to 
those of [30] than to those of [29] (notice 
however, that for fir instance,  our value of the 
power dissipation is very far from that obtained 
with the 2 other methods and that the fir instance 
we dealt with come from [31]) 

- our method is faster than the two other ones (the 
1rst one is an ILP-based method, while the 2nd is a 
game theory-based method whose time 
complexity is O(NS *N*S) for an N player game 
with S strategies for each player. In contrast, our 
method performs as shown in Fig.2.3.) 

- our method is more flexible than the two first ones 
since it outputs different pairs of the power 
dissipation and the throughput for the same 
circuit, which allows the designer to select the 
best trade-off 

 
  Table 15 better shows the variation of the power 
dissipation by considering different numbers of 
constraints.  The first entry  of that table shows that 
operations of the VLSI system are scheduled in 28 
cycles in case the circuit is subject to no power-
constraint and that the average (maximal) switching 
power dissipation given by SPOT ([25], [26], [27]) is 
11.87 mW (20.0 mW) for a user-fixed value of 15 
mW. Starting with this first result, the user can 
iteratively introduce power-constraints in order to 
obtain the desired trade off between the circuit 
performance and the power dissipation. Notice also  
 

 
 
 
 
 
 
 
 

 
 
that the number of the power constraints can be high 
(e.g. one need 123700 power constraints to achieve a 
switching power dissipation of 0.4999mW for a 
circuit performing its operations in 634 cycles versus 
a dissipation of 11.870mW for operations subject to 
no power constraint and scheduled in 28 cycles). This 
clearly shows that an automatic task is required to 
generate appropriate power constraints so that the 
desired switching power dissipation at the register 
transfer level is achieved. 
 
7 Conclusion 
 In this paper, we have shown that there are two major 
scheduling approaches: the data flow based and the 
control flow based ones. The former deals with the 
data flow dominated circuits (such as DSP 
applications) while the second deals with the control 
flow dominated ones (e.g. controllers). We have 
shown that our method deals with both types of 
circuits and have also shown that our tool deals with 
huge numbers of data flows, which is useful for 
current designs. Also, our method is able to yield 
good scheduling results in interesting CPU times 
thanks to either exact techniques or near optimal ones 
when the time complexity is not polynomial. Notice 
that the non-polynomial part of the target problem has 
been tackled by a graph colouring technique but can 
also be solved by another appropriate technique such 
as genetic or evolutionary algorithms that feature a 
simple parallelisation for an efficient solution space 
exploration. 
  Finally, because the power dissipation is a critical 
problem for current circuits, in particular for SOC 
ones, our tool is able to automatically introduce power 
constraints so that the desired trade off between the 
throughput and the switching power dissipation of a 
circuit (at the register transfer level) is obtained.  
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