
A Low-Power Scheduling Tool for System On a Chip Designs

ALI MAHDOUM1, NADJIB BADACHE2, HAMID BESSALAH3
Division of Microelectronics & Nanotechnologies1

Division of System Architecture and Multimedia3
Centre de Développement des Technologies Avancées1,3

BP 17 Baba Hassan 16303 Algiers, Algeria1,3

Department of Computer Science2

Université des Sciences et de la Technologie Houari Boumediene2

BP 32 Bab Ezzouar 16111 Algiers, Algeria2

a_mahdoum@yahoo.com http://www.cdta.dz

Abstract: - As semiconductor technology scales down, integration on a chip becomes higher and concerns
complex algorithm implementation. Those algorithms concern plenty of applications in many fields. Thus,
adequate scheduling techniques that cope with such a variety of applications are required. The method
presented in this paper addresses that concern and takes advantage of both data flow and control flow
approaches. Knowing that such a Controlled Data Flow Graph (CDFG) scheduling is not polynomial, an
efficient heuristic-based approach is then needed. In addition, because time and resources are user-constraints
that gain a particular attention, our heuristic-based method targets a minimal number of cycles. More, it detects
exclusive operations of the same type that can be scheduled in the same control step and share the same
resource. Because the power dissipation is a crucial problem for SOC designs, our tool automatically introduces
additional constraints so that the switching power dissipation at a high design level is reduced.

Key-Words: - CDFG; scheduling; heuristic; user constraints; variety of domain applications; low power design,
efficient cycle number, high design level, SOC designs

1 Introduction
The speed, area and power consumption are the
main parameters that a VLSI system designer has to
focus on during the design process (e.g. [32], [33]).
The scheduling is a synthesis task conducted at a
high design level and aims to achieve some
objective in terms of area, speed and / or power
consumption. In [3], the scheduling is performed
only by considering time constraints, while in [4],
[5] and [6] a low power-based scheduling is
addressed. Because actual VLSI systems may
include both data flow and control flow operations,
appropriate scheduling techniques are required.
Indeed, previous works ([7], [8], [9], [10], [11])
addressed only intensive data flow circuits (control
structures are not included) such as DSPs, in which
the parallelism of operations is the main goal, which
is a severe limitation. Other earlier works ([12],
[13], [14], [15]) that use control flow-based
algorithms avoided such a limitation by determining
which operations are exclusive and can be scheduled
in the same control step while sharing the same
resource. However, because the operation ordering
is not changed, some of these techniques suffer from

the fact that the parallelism in the schedule is
limited. More enhanced methods ([16], [17], [18],
[19]) addressed both the data flow and the control
flow-based applications. Interesting ILP based-
methods ([6] and [29]) were developed but they are
inefficient for large VLSI systems since they are not
polynomial and suffer in terms of running time [2].
Thus, appropriate heuristic methods such as those
based on genetic algorithms ([20], [21]) are more
suitable for larger scale designs in order to output
near-optimal solutions in a reasonable CPU time. In
[30], a game theory-based approach is presented. It
gives interesting results with the expense of CPU
time due to its time complexity.
 Our proposed tool is a set of techniques that
efficiently deal with arbitrary circuits. It performs a
global scheduling for SOC designs, and assumes
that the operations are first flattened. Indeed,
independent schedulings previously performed on
those systems do not yield good results with respect
to those obtained with a global scheduling. The
computational complexity for each technique
implemented in our tool is first studied: an exact
algorithm is then developed for each polynomial

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS
Manuscript received Nov. 4, 2007; revised Dec. 29, 2007

Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 608 Issue 12, Volume 6, December 2007

task, else a new efficient colored graph -based
algorithm ([22], [23], [24]) is used (we will show
that those non polynomial tasks are NP complete
problems). Our tool allows the system designer to
describe his system behaviour in a C-like code,
which is less tedious than Controlled Data Flow
Graphs (CDFGs) for complex circuits. The huge
number of Data Flow Graphs (DFGs) contained in
the CDFG is reduced thanks to an exact algorithm.
Then, for each DFG, a first scheduling technique
subject to the operation dependencies is performed
with an exact algorithm, which leads to an optimal
number of control steps. A Second scheduling
technique follows then and addresses user
constraints satisfaction. This latter problem is NP-
complete and was solved using a new efficient
colored graph technique. Notice that these two
scheduling steps are the main advantages of the data
flow-based techniques since the amount of the
parallelism in the schedule is increased. Because the
power dissipation becomes a crucial problem for
current designs (SOC designs), our tool allows the
user to introduce additional constraints so that the
tasks of the circuit are performed with a lower
power budget. Obviously, further power reduction
should be tackled at lower design levels. Finally, the
results of the DFGs scheduling are synthesized and
grouped into a single scheduling report in order to
detect the exclusive operations. Such operations can
be scheduled in the same control step and can share
the same resource, which is the advantage of control
flow-based techniques. The paper is organized as
follows: The next section shows how a C-like code
is transformed into a set of traces (DFGs). Section 3
then describes our technique for reducing the
number of DFGs. In section 4, our scheduling
technique is detailed, and in section 5, we present
our technique that deals with the reduction of the
switching power dissipation at a high design level.
The results are described in section 6. Finally,
section 7 concludes the paper.

2 Algorithmic Transformation
Our CAD tool deals with the scheduling of
operations written in a C-like code. The first task
our tool performs is the translation of a C-like code
(Fig.2.1) into a set of traces. This latter format will
allow the determination of the different Data Flow
Graphs (DFG) contained in the CDFG (Fig.2.2).
Then, the scheduling task is performed on each
obtained DFG (also termed trace) thanks to an
appropriate process that guarantees a polynomial
time for scheduling the CDFG while targeting an
advantageous number of cycles subject to resource
and time constraints. The results obtained from the

different DFGs are synthesized, then reported in a
single file that contains the global scheduling,
namely the CDFG scheduling. Finally, a reduction
of the switching power dissipation (P) is performed
in order to allow the user to obtain the desired trade-
off between the circuit performance and the
switching power dissipation at a high design level
(as shown in the flow depicted in Fig.2.3).

x=1;
y=x+1;
if(A)
then {z=x+y+4;
 t=x+y-6;
 }
else t=8+y;
endif
if(B)
then z=x+y-t ;
else if(C)
 then {z=y-x+9;
 t=z+y-3;
 }
 else z=x-5 ;
 endif
 endif
y=x+z-t ;

Fig. 2.1 A simple algorithm in a C-like code.

First, the different data graphs are extracted (notice
that inner control structures are allowed) according
to the control structures of the algorithm. For
instance, the data graphs corresponding to the
algorithm in Fig.2.1 are those depicted in Fig. 2.2.
In general, the data graph number is equal to

∏
=

N

i
in

1
where N is the number of the outer control

structures and ni is the number of the paths
contained in control structure i. We can see in the
example given in Fig.2.1, that there are two outer
control structures (A and B) and six paths (2*3):

trace 1
True condition: A and B

 x=1;
 y=x+1 ;

z=y+x+4;
t=x+y-6 ;
z=x+y-t ;
y=x+z-t ;

trace 2

True condition: A and not(B) and C
x=1 ;

y=x+1 ;
z=x+y+4 ;
t=x+y-6 ;
z=y-x+9 ;
t=z+y-3 ;
y=x+z-t ;

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 609 Issue 12, Volume 6, December 2007

trace 3
True condition: A and not(B) and not(C)

x=1;

y=x+1;
z=x+y+4;
t=x+y-6;
z=x-5 ;

y=x+z-t ;

trace 4
True condition: not(A) and B

x=1;

y=x+1;
t=8+y ;

z=x+y-t ;
y=x+z-t ;

trace 5

True condition: not(A) and not(B) and C

x=1;
y=x+1 ;
t=8+y;

z=y-x+9;
t=z+y-3;
y=x+z-t ;

trace 6

True condition: not(A) and not(B) and not(C)

x=1 ;
y=x+1 ;
t=8+y;
z=x-5 ;

y=x+z-t ;

Fig. 2.2 The six data graphs of the algorithm in
Fig.2.1.

Algorithmic_transformation();
 . Input: a C-like code
 . Output: a CDFG
Collapsing_and_Cut_Operations(); // determination of the

number of data graphs
 // allowing a polynomial

scheduling
 . Output: a set of DFGs (traces)
Power= +∞ ;
while(Power > P_desired && Power reduction feasible)
do {for each trace
 do {Perform the 1rst step of the scheduling subject to the

operation dependencies
 Perform the 2nd step of the scheduling subject to the

user constraints
 }
 end
 Synthesize the results, and then report the global

scheduling into a single file;
 Power= computed switching power dissipation();
 }
End
Fig.2.3 Overview of our low power scheduling tool

 Let M1= ∏
=

N

i
in

1
. The overall scheduling algorithm

(A) will be:
 for i = 1 to M1
 do schedule data graph i;
 end for
 Group the results into a single report;

 The time complexity of this algorithm is
Tc=O(c * M1), c=max[O(ci)]; i=1,2,…,M1. This
clearly shows that the time complexity is not
polynomial. Notice that in case we have only two
paths in each of the N outer control structures, the
time complexity would be O(c * 2N). Thus, even if
O(c) is time-polynomial, Tc will not be polynomial.
Thus, an heuristic-based method is required to solve
this problem. It is obvious that the time complexity
of the heuristic method should be polynomial. In
addition, the solution must be closer to the exact
one. The rest of the paper is devoted to this
challenge.

3 Huge Data Graphs Number
Reduction

3.1 Conditional branches collapsing
Due to the large number of data graphs inferred by
N control structures, M1 value has to be reduced
such that that algorithm (A) mentioned previously
can be solved in a polynomial time. We recall that
our tool deals with a CDFG scheduling subject to
user-constraints (time and resource constraints). Let
us consider the example depicted in Fig.3.1. As we
can see, there are two traces in the CDFG depicted
in that figure. Notice that there is a user-constraint
concerning operations 2 and 6 of the CDFG, and
that there is no constraint in the two branches of the
structure controlled with logical variable A. Thus,
the two paths [1, 2, 3, 4, 6] and [1, 2, 5, 6] will be
scheduled in the same way, namely with the whole
if-then-else contained in one state because the user-
constraint is independent from the operations inside
the if branches. Thus, the 2 conditional branches can
be collapsed into a super-node for scheduling
purposes, resulting in a single (instead of two) data
flow (Fig.3.2). Notice also that two or more
operations scheduled in the same step are not
simultaneously performed in case they are not
subject to the same true condition (the scheduling
and control steps have different meanings).
 In general, such a way for collapsing conditional
branches that do not contain constraints may
considerably reduce the number of traces (from M1
to M2), resulting in a new scheduling algorithm (B)
which is similar to the previously described one

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 610 Issue 12, Volume 6, December 2007

(algorithm A) with a prospective smaller loop (from
1 to M2 instead of 1 to M1). Notice that 1 ≤ M2 ≤ M1
and that M2=1(=M1) occurs in case all the control
structures are collapsed (in case all the conditional
branches contain at least one user-constraint).

Fig. 3.1 A simple CDFG

3.2 Control partitioning
Because M2 may still be high, the time complexity
of algorithm (B) may still be not polynomial. In
order to cope with this problem, we have to use
another strategy such that the CDFG scheduling can
be feasible in a reasonable CPU time. This can be
achieved with an appropriate number of cut
insertions such that the quality of the solution
(number of cycles) does not suffer. Indeed, as we
will see after, the number of cycles gets higher as
the number of the cut insertions increases. Such a
cut (control step insertions) transforms a

combinational control into sequential ones. To
review this in details, let us consider the example
depicted in Fig.3.3.
 In case an if-then-else structure contains one or
more user constraints, the paths containing such a
structure cannot be scheduled in the same way,
which prevents the collapse of these conditional
branches. Indeed, in Fig.3.3.a, assuming that
operation 4 is both independent from operations 8
and 10, it is possible to schedule operations 4 and 10
in the same cycle while this is not possible for
operations 4 and 8 (because of the user constraint).
Since some conditional branches cannot be
collapsed and since the number of the data graphs is
still high, the CDFG scheduling is not feasible in a
reasonable CPU time. In order to cope with that
problem, and in case conditional branch collapsings
are not sufficient, an additional strategy based on a
control partitioning should be used.
 Unfortunately, the cycle number gets higher as the
cut number increases. Indeed, assuming that all the
operations are independent, operations 3 and 10 in
Fig.3.3.a can be scheduled in the same cycle but the
CDFG scheduling operates on 8 (2*2*2) data
graphs. On the other hand, in Fig.3.3.b, operation 10
can be scheduled into the 2nd cycle with a
scheduling operating on only 6 (2*2+2) traces
thanks to a cut insertion. Finally, operation 10 in
Fig.3.3.c is scheduled into the 3rd cycle with a
scheduling operating on 6 (2+2+2) data flows
thanks to 2 cut insertions. In this last case, the
combinational control is totally transformed into a
sequential one. This shows that:

- the cut insertion increases the number of cycles

and can decrease the number of data flows
- an arbitrary cut insertion may not decrease the

number of data flows while the number of cycles
increases (Fig.3.3.b and Fig.3.3.c)

 The challenge is then to find appropriate cut
insertions such that the CDFG scheduling can be
feasible in a reasonable CPU time while not
decreasing the solution quality (number of cycles).
 Our algorithm that performs cut insertions has a
time complexity which is O(N2

cs) where Ncs is the
number of the control structures. This algorithm is
exact and recursive. Our proposed algorithm is
shown below:

A A

1

2

3

4

5

6

A user-constraint

{ 3 [A] ; 4 [A] ; 5 [not A] ; 6[1] ; }

[1]

ST1

ST2

{ 1 [1] ; 2 [1] ; }

 Fig. 3.2 FSM corresponding to the CDFG in
Fig. 3.1.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 611 Issue 12, Volume 6, December 2007

N_data_graphs= #data graphs fixed by the user
Control_Partitioning(S) // initially, S includes all the CDFG
 operations
{
Calculate M3, the data graph number included in S;
if(M3 > N_data_paths and at least one cut insertion is feasible)
then {Determine the best cut insertion (the one which best
 decreases the data flow number);
 // this is merely done with a dichotomy- way
 Partition the interested set Sj into 2 ones Sj1 and Sj2 (the
 interested set is the one in which the cut insertion has
 been done, the last operation of Sj1 is the one on
 which a cut occurred, the 1st operation of Sj2
 is the one which follows the interested operation in set

S);
 S=S ∪ Sj1 ∪ Sj2 ;
 Remove Sj from S;
 Control_Partitioning(S);
 }
endif
if(M3 > N_data_paths)
then report(“Infeasible: all the conditional branches are

 sequential”);
else the operations in the same set Sj are 1st scheduled in the

same cycle (there is a direct relationship between the
obtained sets and the cycle numbers);

endif

Now, the CDFG scheduling algorithm is given as
follows:

for i=1 to M3
do schedule data graph i according to the partial results obtained
 with Control_Partitioning() procedure;
end for
Synthesize the results then report the global scheduling into a
single report;

In the next section, we will discuss the scheduling of
each data graph i.

4 Data Graph Scheduling Technique

4.1 Operation Dependencies
The Control_Partitioning() procedure has given a
partial scheduling. We recall that operations
included in different sets are scheduled into different
cycles. We now deal with the operations that belong
to the same subset Sj. In each subset, the operations
are again scheduled according to:

- the dependencies (2 dependent operations
are scheduled into 2 different new cycles)

- the operation type (until now, our tool
assumes that operations of type addition are
performed within a single cycle while
operations of type multiply require 2 cycles)

For each subset Sj, the operations are again
scheduled subject to the two above considerations
while updating the number of cycles of the subsets
that follow the interested one.
 In [25], [26] and [27], the addressed problem is the
switching power dissipation in CMOS circuits. In
addition to many other parameters, this kind of
power dissipation also depends on the gate levels.
We determine the gate level in a polynomial time
(O(N2) where N is the number of the gates) as
follows:

Fig.3.3 A control partitioning

3

10

4

8

Cut1

C C

B B

A A

C C

B B

A A

Cut1

C C

B B

A A

Cut1

Cut2

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 612 Issue 12, Volume 6, December 2007

Level(G)=1 if all the inputs of gate G are primary
inputs
Level(G)=1+k; k is the maximum among the levels
of the gates that feed G

In order to determine operation dependencies, the
procedure that determines the gate levels has been
transformed. Notice that there is a direct relationship
between operations and gates, and between the
initial scheduling steps and the gate levels. Finally,
even if 2 operations belonging to the same subset
are independent, they cannot be scheduled in the
same cycle in case there exists a user-constraint
preventing such a scheduling. The next subsection
will deal with this problem.

 4.2 Scheduling subject to User Constraints
Let us assume that many operations of the same
type (e.g addition) are scheduled in the same control
step. Those operations can be then performed
simultaneously, but with the expense of using the
same number of resources (adders), which would
require a great amount of silicon area. In order to
overcome that problem, the designer can introduce
some constraints so that some operations will be
scheduled in different control steps even they are
independent. In this way, the same resources would
be used for different operations of the same type
when they are not scheduled in the same control
step.
Let us suppose the operations in Fig.4.1 be all
independent. Without the users-constraints a, b and
c, the 6 operations can be scheduled in a single
cycle. However, user-constraint a prevents us to
schedule operations 1 and 5 in the same cycle.
Similarly, the user-constraint b (c) prevents us to
schedule operations 2 (3) and 4 (6) in the same cycle
(in the remaining of this section we assume that the
constraints concern independent operations which
are first scheduled in the same cycle since the user
constraints would be already satisfied else). One of
some solutions consists to insert cuts after
operations 1, 2 and 3. Then, the following
scheduling results:
Cycle i: 1;
Cycle i+1: 2;
Cycle i+2: 3;
Cycle i+3: 4; 5; 6;

On the other hand, inserting a cut after operation 3
will yield the following scheduling:
Cycle i: 1; 2; 3;
Cycle i+1: 4; 5; 6;
This clearly shows that an appropriate cut-insertion
strategy leads to a better scheduling while satisfying

all the user constraints (in the last example, a good
cut insertion achieved 50% reduction in the cycle
number). Unfortunately, the problem being
addressed is not a time-polynomial but rather a
combinational one.
 Many previous works have solved this problem
using the interval graph-based technique. Let us
consider the example depicted in Fig.4.2. The best
solution such a technique can yield is obtained by
inserting a cut after operation 2 (the cut is assigned
to constraints a and b) and another after operation 5
(the cut is assigned to constraint c).
We then have the following scheduling:
Cycle i: 1; 2;
Cycle i+1: 3; 4; 5;
Cycle i+2: 6;

The cut insertion is done using the following
strategy:

a

c

b

1

2

3

4

5

6

Fig. 4.1 Operations subject to user-constraints.

a

c

b

6

5

4

3

2

1

a

3

1

b

4

2

c

6

5

(a) user constraints (b) associated graph

Fig.4.2 A graph transformation

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 613 Issue 12, Volume 6, December 2007

Add 5 nodes

Add 2 edges

for each cut cti
do {define Ii= max[min(constraintj ; j=1,2, …, number of
 constraints assigned to cut cti)];
 insert cut cti at operation Ii;
 }
 end for

 For the example in Fig.4.2, we obtain:
I1= max [min(1,3), min(2,4)]=2 because cut1 is
assigned to constraints a=[1,3] and b=[2,4]
 I2= max [min(5,6)]=5 because cut2 is assigned to
constraint c=[5,6]
 Because our procedure concerning the user-
constraint satisfaction operates on independent
operations (the dependence constraints are already
solved), we have used another technique that gives
better solutions.
More precisely, the problem that is being addressed
can be stated as follows:
Find the minimal value of cycles while satisfying all
the user-constraints, which problem is similar to the
graph colouring one:

Find function f minimizing K (1 ≤ K ≤ |V|) such that:
f : V → {1,2, , K }
f(vi) ≠ f(vj) ∀ (vi , vj) ∈ E

The last problem is known as NP-complete and
until now one conjecture that there exists no
polynomial algorithm solving it [28]. Our problem
under consideration can be polynomially
transformed into the graph colouring one. Because
we have previously developed a new efficient
technique solving all the NP-complete problems
([22], [23], [24]), we can efficiently solve the
problem being addressed by transforming it into the
graph colouring one as follows:

// Construct graph G=(V,E)
for each operation Oi
do create a node vi ∈ V
end for
(vi,vj) ∈ E iff Oi and Oj are subject to the same constraint
Colour_G();
Transform the results into cycles; // there are as many cycles as

// colours;

Let us now briefly describe our graph colouring
technique.
For the graph colouring problem, the number of
colours increases as |E| grows. This is clearly
depicted in Fig.4.3 : Fig.4.3.a shows that the number
of colours remains unchanged although |V| has
been increased. On the other hand, the number of
colours gets higher in Fig.4.3.b even if |V| holds the
same value. Thus, additional nodes do not affect the
colour number in case the set of edges remains

unchanged even the number of the new nodes is a
large value. On the other hand, adding a few
numbers of edges can increase the colour number,
considerably. This means that the graph colouring
problem is strongly dependent on the edges of the
interested instance. However, the node degree order
is also a parameter that affects the solution of the
problem under consideration. For this purpose, let
us sort the nodes of the graph instance that is
depicted in Fig.4.4 according to the increased
number of their degree. Giving a graph G=(V,E), we
define the degree of a node i as the number of edges
(i,j) ∈ E ; i ≠ j . The result of this node sorting is
shown in Table1.

Node v1 v4 v5 v6 v3 v2
Degree 0 1 1 1 2 3

Table 1. A node sorting according to the increased
number of the node degrees.

Let us colour the graph instance of Fig.4.4 using

the greedy algorithm while maintaining the node
degree order shown in Table 1. We obtain three
colours (R,G,B). This result is given in Table 2.

Node v1 v4 v5 v6 v3 v2
Colour R R R R G B

Table 2. A node colouring according to the
increased number of the node degrees.

 Considering the same instance that is depicted in
Fig.4.4, let us now colour the nodes using the
greedy algorithm according to the decreased number
of their degree. The colour number is smaller (2
instead of 3) as shown in Table 3.

2 edges, 4 nodes 2 edges, 9 nodes
 2 colours 2 colours

a. Adding nodes while maintaining the same edges does not

increase the number of colours.

2 edges, 4 nodes 4 edges, 4 nodes
 2 colours 3 colours

b. Adding edges to graph G could increase the colour number

even if the number of nodes remains the same.

Fig.4.3. Variation of the colour number vs. the
graph complexity

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 614 Issue 12, Volume 6, December 2007

Node v2 v3 v4 v5 v6 v1
Colour R G R G G G

Table 3. A node colouring according to the
decreased number of the node degrees.

The above results show that the sorting key
(increased or decreased degrees) affects the colour
number. However, it would be wrong to claim that a
node colouring according to the decreased number
of their degree yields fewer colours. The instance
that is depicted in Fig.4.6 contradicts such a
statement.
Let the sorting key be the decreased node degrees.
The result is shown in Table 4.
 The node colouring according to the previous
sorting key will yield 2 colours as shown in Table 5.
 However, keeping the same node degree order and
reordering only nodes v6 and v2 (that have the same
degree), the obtained result is 3 colours as shown in
Table 6.
 Finally, notice that the minimum number of colours
(2) can be obtained for the last instance when the
increased node degree is considered. This is shown
in Table 7.
 We have just seen that the node degree order affects
the colour number. More, we have seen that neither
the increased node degree nor the decreased one will
always yield the best result. Hence, the only way to
guarantee the exact result is to consider all the node
degree orders then to perform the graph colouring
over them. Given an undirected graph G=(V,E), the
number of such node degree orders is :
AN

N = N !/(N-N) ! = N ! ; N = |V| .
Performing N ! graph colourings for the same
instance is computationally infeasible for a large
value of N. However, a single graph colouring can
yield poor results. Therefore, a heuristic method that
overcomes these two drawbacks can be the one that
avoids either N ! graph colourings or a single one.
Thus, considering m (1 ≤ m ≤ N !) node degree
orders is a good tradeoff to make a large solution
space exploration while maintaining a reasonable
CPU time. However, the challenge consists in
selecting m node degree orders among N ! ones
while targeting good solutions. The details of this
technique are described in [22]. We merely say that
our heuristic-based method groups the graph nodes
into k classes (k << N). Then, instead of performing
N ! node degree orders, only k ! ones are
considered : the node degree orders are performed
over classes, regardless the order of the nodes
belonging to the same class.
Because the node assignment over the classes is not
unique, we also need the best one. Our node

assignment is the solution of the following
optimisation problem:

such that
 i) diffi = dMi - dmi ; i=1,2,…,k; (1)

where dmi and dMi are the least and the greatest
degree of the nodes included in class Cli ,
respectively. Notice that the motivation of this node
assignment is detailed in [22].
Thanks to our algorithm which has just been
presented, the graph corresponding to the
constraints depicted in Fig. 4.2.a is the one shown in
Fig.4.2.b(notice that the operations are independent)

For Fig.4.2, the best solution obtained with our
graph colouring technique can be only two colours:

- colour 1: for operations 1, 2 and 5
- colour 2: for operations 3, 4 and 6

 Then, the following scheduling results:
Cycle i: 1; 2; 5;
Cycle i+1: 3; 4; 6;

Fig.4.6. Another graph instance.

∑
=

k

i
idiff

1
min

;)
1

NClii
k

i i =∑
=

v6

v4 v3

v5

v1 v2

Fig.4.4. A graph instance.

Fig.4.5. Another graph

v3

v2 v4

v5

v1

v7 v3 v1

v6v2 v4v5

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 615 Issue 12, Volume 6, December 2007

Notice that there is no operation reordering procedure
(it is an implicit process thanks to our graph
colouring-based strategy) and that the best solution
given with the interval graph- based technique is 3
(because the latter technique does not allow
operations reordering). Finally, it is obvious that for a
large set of user-constraints, our graph colouring-
based technique will considerably reduce the cycle
number with respect to the graph interval-based one.

Table 4. A node sorting according to the decreased
number of the node degrees.

Table 5. A node colouring of the graph instance of
Fig. 4.6.

Table 6. Another node colouring of the graph instance
of Fig. 4.6.

Table 7. A node colouring according to the increased
number of the node degrees.

The node assignment is better explained by
considering the graph instance that is depicted in
Fig.4.5. The node degrees are given in Table 8 while
Table 9 gives the value of (diff1+diff2+diff3) for each
node assignment.

Table 8. Node degrees.

Table 9. A node partitioning

Assuming k=3, the third node partitioning (bold entry
in Table 9) is the best since (4.1) is minimal (it is
equal to 0) : Cl1={v1}, Cl2 = {v2,v3,v4} and
Cl3={v5 }.
The graph instance that is depicted in Fig.3.5 will be
handled according to the (k !=3 ! = 6) following node
degree orders:

1st node degree order:
Cl1,Cl2,Cl3 → {v1},{v2,v3,v4}, {v5}

2nd node degree order:
Cl2,Cl1,Cl3 → {v2,v3,v4},{v1},{v5}

3rd node degree order:
Cl3,Cl2,Cl1 → {v5},{v2,v3,v4},{v1}

4th node degree order :
Cl1,Cl3,Cl2 → {v1},{v5},{v2,v3,v4}

5th node degree order :
Cl3,Cl1,Cl2 → {v5},{v1},{v2,v3,v4}

6th node degree order :
Cl2,Cl3,Cl1 → {v2,v3,v4},{v5},{v1}

Thus, our heuristic-based method performs like the
exact method with the difference that {v2,v3,v4} is
assumed as a ″node″ (the node degree orders
concerning v2, v3 and v4 are not considered).
However, in order to better improve the quality of the
solution, we perform two graph colourings (from the
left to the right and from the right to the left in the list
of the nodes) for each node degree order. Let us
consider for instance the 1st node order (Cl1, Cl2, Cl3).
The two following node orders will be considered:
-left to right: v1,v2,v3,v4,v5 (notice that this node
order is different from the right to the left order in Cl3,
Cl2, Cl1 which is v1,v4,v3,v2,v5)
-right to left: v5,v4,v3,v2,v1 (notice that this node
order is different from the left to the right order in Cl3,
Cl2, Cl1 which is v5,v2,v3,v4,v1).
 Therefore, k !*2 graph colourings are performed for a
graph instance whose nodes are partitioned into k
classes. For the graph instance that is depicted in
Fig.4.5, the best solution has been 2 colours, which is
also the exact one.
 Finally, notice that our graph colouring technique:
i) includes both the ascending node degree and the

descending node degree strategies. For the graph
instance depicted in Fig.4.5, these two strategies
represent the following node degree orders:
- left to right in Cl1, Cl2, Cl3 : v1, v2, v3, v4, v5
- right to left in Cl1, Cl2, Cl3 : v5, v4, v3, v2, v1

ii) yields the exact solution in case k = |V|

iii) yields the exact solution in case the solution is

independent on the ordering of the nodes
belonging to the same class

Node v6 v4 v3 v2 v1 v7 v5
Degree 2 2 2 2 2 1 1

Node v6 v4 v3 v2 v1 v7 v5
Colour R R R G G G G

Node v2 v4 v3 v6 v1 v7 v5
Colour R G R G B G R

Node v5 v7 v1 v2 v3 v4 v6
Colour R R R R G G G

Node v1 v2 v3 v4 v5
Degree 1 2 2 2 3

Cl1
#nodes diff1

Cl2
#nodes diff2

Cl3
#nodes diff3

diff1+
diff2+
diff3

1 0 1 0 3 1 1
1 0 2 0 2 1 1
1 0 3 0 1 0 0
2 1 1 0 2 1 2
2 1 2 0 1 0 1
3 1 1 0 1 0 1

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 616 Issue 12, Volume 6, December 2007

VV a
k k

Ngij
∪

=
U

1

5 Reduction of the Switching Power
Dissipation at a High Design Level

In current designs (SOC designs), the power
dissipation is a crucial problem (limited life of a
battery, reliability problem due to a temperature
increase ...). Thus, we need low power designs to cope
with this problem. The main components of the power
dissipation are the switching activity, the short circuits
and the leakage power.
 The power dissipation due to short circuits can be
minimized using appropriate technologies (e.g.
CMOS) with techniques reducing the current due to
short circuits. This current can be reduced by
shortening the time transitions of the signals that feed
the transistors (transistors N et P will conduct
simultaneously in a very short time). The leakage
power is reduced by assigning high threshold voltages
to some transistors in a dual-threshold and a dual-VDD
based-design.
 In fact, the reduction of the power dissipation is
tackled at each design level. Reducing the switching
power can be done at earlier stages of the design. We
will see hereafter how our tool gives the user the
ability to cope with the reduction of the switching
power dissipation at a high design level.
 We recall that two any operations subject to some
constraint are scheduled in different steps. Because
the switching power is as high as the number of the
operations that are simultaneously performed is high,
additional constraints are introduced such that the
switching power is reduced. However, the
introduction of constraints would be tedious and the
user has no idea on how to introduce them in order to
obtain less switching power dissipation, which needs
an automated task.
 The starting point of our heuristic for reducing the
switching power dissipation is the results provided by
the scheduling process. Indeed, many operations
scheduled in the same control step will dissipate some
amount of power. Thus, our heuristic introduces
constraints for the operations scheduled in such
control steps. Then, the operations are again
scheduled subject to those new constraints. The
process iterates while the switching dissipation
remains higher than the desired one Pdesired. Notice that
we need a minimal number of control steps while
satisfying the power dissipation constraint. Our
heuristic is detailed in Fig.5.1.

// Reduction of the Switching Power Dissipation at the Register
// Transfer Level
P= +∞;
while(P > Pdesired)
do { schedule_traces(); // use our previously described tool
 P= -∞;
 for each trace i
 do {use SPOT ([25], [26], [27]) to determine POWER, the

switching power dissipated per cycle;
 if(POWER > P)
 then P= POWER;
 endif
 for j=1 to nb_cyclesi
 // nb_cyclesi is the number of cycles in trace i with
 // the current scheduling
 do if nb_ij > avg_nb_i
 // nb_ij is the number of operations of trace i
 // in cycle j of the current scheduling
 // avg_nb_i is the average number of the
 // operations per cycle in the next
 // scheduling
 then {kij = ⎣nb_ij / avg_nb_i⎦;
 construct Ngij = ⎡nb_ij / kij⎤ graphs G1, G2,

...,GNgij such that:
 . |Vk| = kij; |Ek|=kij*(kij-1)/2;
 k=1, 2, ..., Ngij
 n=Ngij*kij;
 if(n < nb_ij)
 then {construct an additional graph

Ga=(Va,Ea) such that:
 . |Va|=nb_ij – n=na_ij;
 . |Ea|=na_ij*(na_ij-1)/2
 }
 endif
 for each operation Il in cycle j of the current

scheduling, there exists 1and

 only 1 node vl in

 for each graph Gk=(Vk,Ek) (1 ≤ k ≤ Ngij)
 do for each edge elm ∈ Ek
 do generate a constraint between

operations Il and Im;
 end
 for each edge elm ∈ Ea // if Ga exists
 do generate a constraint between

operations Il and Im;
 end
 end
 }
 endif
 end
 }
 end
 }
end
Fig.5.1. Algorithm balancing the throughput and the

power dissipation of a circuit

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 617 Issue 12, Volume 6, December 2007

Notice that in each iteration of the previous
algorithm, the number of constraints is equal to:

]2/)1(**]2/)1* __

#

1

_#

1
([[−+−∑ ∑

= =
nnNgkk ijaijaijij

traces

i

ic

j
ij

)]1(**)]1(*[[
2
1

__

#

1

_#

1
−−= +∑ ∑

= =
nnNgkk ijaijajij

traces

i

ic

j
ij i

where Ngij is the number of the graphs constructed for
the jth cycle of the ith trace, kij is the number of nodes
in each of the Ngij graphs, na_ij is the number of nodes
in the prospective additional graph for the jth cycle of
the ith trace, #c_i is the number of cycles in the current
scheduling of trace i such that there are more than
avg_nb_i operations in each of them.
 As it is shown in the last equation, the number of
constraints can be very high. So, an automated task is
required to cope with the problem of their
determination.
 Notice that operation scheduling can be performed
together with binding. Thus, we have developed a
procedure that assigns resources to operations as
follows:

- in each cycle, the sum of areas of the selected
resources (Sa) that perform operations
scheduled in the same cycle must be less than
a fixed area value A

- assignment priority is given for the fastest
resources whenever it is possible (area
constraints met)

- the power reduction is then performed by
algorithm in Fig.5.1

Current scheduling of the operations in trace i:

 Cycle j: Oi1, Oi2,, Oi26

(a) Operations first scheduled in the same control step

 j1: Oi1, Oi5, Oi9, Oi13, Oi17, Oi21, Oi25

 j2: Oi2, Oi6, Oi10, Oi14, Oi18, Oi22 Oi26

 j3: Oi3, Oi7, Oi11, Oi15, Oi19, Oi23

 j4: Oi4, Oi8, Oi12, Oi16, Oi20, Oi24

(d) The new scheduling of operations Oi1, Oi2, ...,Oi24
 (Notice that 2 any operations subject to the same
 constraint are scheduled in 2 different control steps and that
 the cycle numbers of the other operations are updated)

Example: Let us explain the reduction technique with
the following example. Let us assume that 26 (nb_ij)
operations are scheduled in some control step j of
some trace i of the CDFG. Let P be the calculated
switching power dissipation of the circuit that
represents the CDFG at the register transfer level. Let
us assume that P > Pdesired and that the average number
of operations per cycle in the next scheduling is 8
(avg_nb_i). We have to schedule the 26 operations in
different cycles (not in the same cycle as they are
currently). Thus, we have to introduce power
constraints such that to reduce P. These constraints are
built as follows:

k= ⎣nb_ij / avg_nb_i⎦ = ⎣26/8⎦=4

- construct Ng= ⎡26/4⎤ = 6 graphs G1, G2, ..., G6

 |Vk|=k=4; |Ek|= |Vk|*(|Vk|-1)/2 = 6; k=1,2, ...,6

- construct an additional graph Ga=(Va,Ea)
 |Va|= nb_ij – Ng*|Vk| = 26 – 6*4 = 2

- for each operation Ol (1 ≤ l ≤ 26) there is one and
only one node vl in

- generate a constraint between operations Il and Im if

elm ∈ Ek ; k=1,2,...,6 (for each of the 24 operations
there is a node belonging to Vk ; k=1,2,...6 (see
Fig.5.1)

- generate a constraint between operations Il and Im if
elm ∈ Ea

∪
6

1=k
kV

(c) The new constraints added in the constraint

(b) A graph construction

Oi4 Oi3 Oi8 Oi7 Oi12 Oi11

Oi1 Oi2 Oi5 Oi6 Oi9 Oi10

Oi16 Oi15

Oi13 Oi14

Oi20 Oi19

Oi17 Oi18

Oi24 Oi23

Oi21 Oi22

Oi25 Oi26

Oi1 Oi2 Oi3 Oi4 // there are 3 constraints:Oi1-Oi2,Oi1-Oi3,Oi1-Oi4

Oi2 Oi1 Oi3 Oi4
Oi3 Oi1 Oi2 Oi4
Oi4 Oi1 Oi2 Oi3
Oi5 Oi6 Oi7 Oi8
..............................
Oi24 Oi21 Oi22 Oi23
Oi25 Oi26

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 618 Issue 12, Volume 6, December 2007

- we have to schedule at most 8 (avg_nb_i) operations
per cycle

- the control step j is replaced with = |Vk|= 4 new
cycles (notice that there is a trade off between the
circuit performance and the switching power
dissipation).

 The scheduling is then performed as depicted in
Fig.2.3 and accordingly to the algorithm which is
previously described.

6 Results

 Our tool first transforms a C-like code description
into a set of DFGs. Then, scheduling techniques are
performed on each DFG, followed by a result
synthesis then a report of the global scheduling. In
case the number of DFGs is huge, techniques for
reducing the number of DGS are required such that
the CDGF scheduling can be possible (section 3). The
first reducing technique of that number aims to
collapse an if-then-else branch into a super-node
in case that branch does not include operations subject
to constraints. Because the time complexity of this
technique is O(Ncs

2), where Ncs is the number of the
control structures, we have developed an exact
reducing technique that detects and collapses all the
conditional branches including constraint-free
operations.
The results given in Table 10 show an interesting
CPU time (measured on an Intel i386-based processor
running at 863 MHz) for reducing a large number of
DFGs into a single one (in order to consider the worst
case, we have assumed that no conditional branch
includes operations subject to constraints). Notice that
although our machine is not able to deal with values
greater than 1.7*10308, our tool is able to process such
instances (e.g. 2100000 and 2500000 DFGs in Table 10).
Table 10 shows interesting CPU times (that include
both the C-like code translation into a set of traces and
control structure collapsings). Unfortunately, most of
designs are subject to user constraints, which prevent
to collapse some conditional branches. Thus, a control
partitioning-based technique (subsection 3.2) is
required. The challenge is to find optimal cuts such
that the amount of parallelism is not decreased. Notice
that the best cut insertion is then needed. For a
complex CDFG, an adequate reducing technique has
to be used.
Using the procedure Control_Partitioning() described
in subsection 3.2, the results that represent the cut
insertions are shown in Table 11. This table shows the
efficiency of our control partitioning procedure.
Indeed, a minimal number of cuts achieved a great
reduction of the number of DFGs. For example,

- only 1 cut achieved a reduction of 1.980704*1028
DFGs (ip#) into 2.81475*1014 ones (op#) when the
number of DFGs defined by the user is 9.90352*1027.
Notice that the ratio op# / ip# is very low
- only 1008 cuts achieved a reduction of
8.98846*10307 DFGs into 2526 ones (the ratio is very
low) when the required number of DFGs is 5000
Notice that:
- entries 1, 5, 9 and 13 in Table 11 represent the case
in which the required number of DFGs is greater than
or equals to the initial number (the number of cuts is
then 0)
- entries 4, 8, 12 and 16 in Table 11 represent the case
in which the required number of DFGs is less than the
minimal one (the number of cuts is then maximal and
equals to 93, 1022, 99999 and 499999, respectively).
For such cases, the obtained numbers are equal to the
minimal ones and still be greater than the required
ones
- entries 3, 7, 11 and 15 in Table 11 represent the case
in which the required number of DFGs equals to the
minimal one. In this case, the number of cuts is less
(because i*22 =i*(2+2), 0 cut achieves the same
number of DFGs than 1 cut for each couple of i
disconnected couples of control structures) than or
equal to N-1, N is the number of control structures
- entries 2, 6, 10 and 14 in Table 11 represent the case
in which the required number of DFGs is greater than
the minimal one and less than the initial one. The
results in that table show that a minimal number of
cuts (1, 1008, 97956 and 497956) achieves very low
ratios (obtained #paths / initial #paths): 1.42*10-14 ,
2.81*10-305 , 2-98977 and 2-499981 , respectively while the
obtained number of DFGs is less than or equal to the
required one
- the CPU times represent the C-like code
transformation and the control partitioning. For huge
values of the initial numbers of DFGs (e.g.
8.98846*10307), the CPU times equal to 0 second.
Only 5867 s (nearly 1h38mn) achieved the processing
of a very large number of initial numbers of DFGs
(2500000). In addition, notice that for entries 4, 8, 12
and 16, the CPU times still be low even for a huge
number of initial DFGs (e.g. 2500000) because in case
the required number of the DFGs is less than the
minimal one, our tool delivers a message indicating
that impossibility. For the last case, the CPU time
actually represents the C-like code transformation and
the computation of the minimal numbers of the DFGs
and the cuts. Finally, we have to notice that our tool
does not fail for values that are greater than 1.7*10308
(the greatest value that can be stored in our machine)
as it is shown in Table 11 for the numbers 2100000 and
2500000 that are both greater than 1.7*10308.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 619 Issue 12, Volume 6, December 2007

(*) in order to deal with the worst case, we assumed that all the control structures could be
collapsed.

Table 10. A conditional branch collapsing

Table 11. A control partitioning

Table13. A CDFG scheduling

Initial #DFGs Obtained #DFGs (*) CPU Time (s)
1.980704*1028 1 0
8.98846*10307 1 0

2100000 1 12
2500000 1 239

Entry # # Control
Structures

Initial
 #paths

Required
paths

Obtained
paths

#cuts CPU Time
(s)

1 94 1.980704*1028 294 294 0 0
2 94 1.980704*1028 9.90352*1027 2.81475*1014 1 0
3 94 1.980704*1028 188 188 92 0
4 94 1.980704*1028 187 188 93 0
5 1023 8.98846*10307 9.0*10307 8.988466*10307 0 0
6 1023 8.98846*10307 5.0*103 2526 1008 0
7 1023 8.98846*10307 2046 2046 1020 0
8 1023 8.98846*10307 2045 2046 1022 0
9 100000 2100000 2100000 2100000 0 13

10 100000 2100000 1.0*10308 8.988466*10307 97956 3809
11 100000 2100000 2.0*105 2.0*105 99997 3845
12 100000 2100000 15.0*104 2.0*105 99999 13
13 500000 2500000 2500000 2500000 0 81
14 500000 2500000 1.69*10308 8.988466*10307 497956 5256
15 500000 2500000 1.0*106 1.0*106 499997 5867
16 500000 2500000 0.5*106 1.0*106 499999 74

%error average 8.60 1.92

DIMACS
benchmark

instance

Exact solution #colours
(#classes = 1)

% error CPU Time
(s)

(#colours,
#classes)

% error CPU
Time (s)

1. anna 11 11 0 0 (11 , 1) 0 0
2. david 11 11 0 0 (11 ,1) 0 0
3. myciel3 4 4 0 0 (4 , 1) 0 0
4. myciel4 5 5 0 0 (5 , 1) 0 0
5. myciel5 6 6 0 0 (6 , 1) 0 0
6. myciel6 7 7 0 0 (7 , 1) 0 0
7. huck 11 11 0 0 (11 , 1) 0 0
8. zeroin.i.3 30 30 0 0 (30 , 1) 0 0
9. miles750 31 31 0 0 (31 , 1) 0 0
10. miles500 20 20 0 0 (20 , 1) 0 0
11. miles1500 73 73 0 4 (73 , 1) 0 4
12. miles1000 42 42 0 1 (42 , 1) 0 1
13. games120 9 9 0 0 (9 , 1) 0 0
14. jean 10 10 0 0 (10 , 1) 0 0
15. myciel7 8 9 12.5 0 (8 , 3) 0 0
16. queen5_5 5 7 40 0 (5 , 7) 0 2
17. miles250 8 9 12.5 0 (8 , 3) 0 0
18. queen6_6 7 10 42.86 0 (8 , 8) 14.29 49
19. queen8_8 9 14 55.56 0 (11 ,8) 22.22 1858

#paths

#cuts

⎡average #cycles⎤

(no user constraint)

⎡average #cycles⎤

(22 user constraints)

CPU Time

(s)
16384 0 7 11 12671
256 1 8 11 0
152 2 9 12 0
48 3 10 12 0

Table12. Experimental results for the graph colouring problem

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 620 Issue 12, Volume 6, December 2007

Although the graph colouring problem is NP-
complete, the exact solution is known for some
DIMACS benchmarks. The results in Table 12 show
the efficiency of our graph colouring technique.
Indeed, using only one class, the CPU time does not
exceed 4 s for allowing our technique to yield the
exact solution for the 14 first instances given in Table
12. For the 15th, 16th and 17th instance, the exact
solution is obtained with k=3 (k is the number of
classes), k=7 and k= 3, respectively. A closer solution
to the exact one is obtained for the 18th instance
(#colours=8, k=8) and the 19th one (#colours=11,
k=8). It is also shown that 30’58” allowed a closer
solution (11) to the exact one (9) than that obtained
(14) with one class instead with 8 ones. Finally, this
table shows that the average of the error percentage
decreases from 8.60 to only 1.92 when more than one
class is used for the node assignment.
 The results in Table 13 represent the 2 steps of the
CDFG scheduling (data dependencies and user
constraints satisfaction):
- the 1st entry of Table 10 shows that instructions
included in 16384 DFGs are scheduled in 7 cycles (11
cycles) when there is no partitioning and no user
constraint (22 user constraints). Notice that the 1st step
of the scheduling requires 7 cycles

Table14. Experimental results for scheduling

- noticing that a cut increases the number of cycles
but in the same time can satisfy some user constraints
(whose satisfaction requires extra cycles), the average
numbers of the cycles after the two scheduling steps
are nearly the same (11 and 12)
 As expected from the results of our graph colouring
technique, Table 13 shows that:
- 22 user constraints yielded only 4 extra cycles,
which shows that our constraint satisfaction procedure
is efficient
- the average number of the cycles is determined from
the obtained cycle numbers resulted from the different
DFGs schedulings
- the CPU time includes the C-like code
transformation, the cut partitioning and the 2 steps of
the scheduling. We recall that in order to obtain very
close results to the exact ones, different graph
colourings of the same graph instance are processed
([22], [23], [24]) with the expense of the CPU time
(but within a fixed time duration: to the best of our
knowledge, it is not advantageous to obtain very low
CPU times with the expense of poor results which will
implement an integrated circuit whose life time will
be some years).

[29] [30] Our Method
With binding ; Without binding

Bench.
Circuit

Lat.
(cycles)

Pwr
(mW)

Run
Time

(s)

Lat.
(cycles)

Pwr
(mW)

Run
Time

(s)

Lat.
(cycles)

MaximalPower
(mW)

Average
Power
(mW)

Run Time
(s)

Diff. eqn 4 22.9 35 5 16.0 37 4 ; 4 25.00 ; 25.00 20.00 ; 20.00 0 ; 20

Diff. eqn 5 ; 5 20.00 ; 25.00 16.00 ; 16.00 0 ; 20

Diff. eqn 7 ; 8 14.29 ; 14.01 11.43 ; 11.39 0 ; 20

FIR 10 61.7 221 10 50.4 165 9 ; 9 13.06 ; 13.06 10.44 ; 10.44 0 ; 91

FIR 10 ; 11 11.75 ; 11.58 9.40 ; 9.38 0 ; 91

FIR 13 ; 12 9.04 ; 9.26 7.23 ; 7.36 0 ; 91

IIR 8 12.8 100 9 11.2 96 8 ; 8 15.31 ; 15.31 12.25 ; 12.25 0 ; 74

IIR 9 ; 9 13.61 ; 13.61 10.89 ; 10.89 0 ; 74

IIR 11 ; 12 11.14 ; 11.06 8.91; 8.88 0 ; 74

Lattice 9 66.3 207 10 55.9 161 8 ; 9 80.63 ; 8.47 64.50 ; 64.47 0 ; 153

Lattice 10 ; 10 65.75 ; 65.75 51.60 ; 51.60 0 ; 153

Lattice 19 ; 18 33.95 ; 34.06 27.16 ; 27.41 0 ; 153

Ellip 17 204.0 259 19 191.3 204 16 ; 16 137.19 ; 137.19 109.75 ; 109.75 0 ; 188

Ellip 20 ; 21 119.20 ; 119.04 87.80 ; 87.74 0 ; 188

Ellip 24 ; 24 91.46 ; 91.46 73.17 ; 73.17 0 ; 188

WAVE 26 201.2 427 27 179.2 332 24 ; 25 304.38 ; 304.03 243.50 ; 243.46 194 ; 326

WAVE 25 ; 26 292.20 ; 191.85 233.76 ; 233.73 216 ; 326

WAVE 29 ; 28 251.90 ; 252.06 201.52 ; 201.57 265 ; 326

NC filter 27 324.3 501 27 286.7 377 25 ; 26 371.80 ; 371.65 297.44 ; 297.32 196 ; 364

NC filter 29 ; 31 320.52 ; 320.17 256.41 ; 256.13 211 ; 364

NC filter 33 ; 32 281.67 ; 282.09 225.33 ; 225.39 256 ; 364

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 621 Issue 12, Volume 6, December 2007

Table15. Trade off between the throughput and the
switching power dissipation of a circuit

With the advent of new silicon technologies, SOC
designs are possible. However, the reduction of the
power dissipation is required at different levels of
abstraction. Unfortunately, one cannot improve both
the power consumption and the throughput of a VLSI
system, which needs appropriate techniques to deal
with. Our tool allows the designer to introduce
constraints in order to achieve a good balancing of
those two parameters. Table 14 shows our results and
those of two earlier methods. It is shown that:

- in general, the game-theoretic scheduling and
binding method [30] gives better results than the
ILP-based scheduling & LP-based binding one
[29]

- our values of the power dissipation are closer to
those of [30] than to those of [29] (notice
however, that for fir instance, our value of the
power dissipation is very far from that obtained
with the 2 other methods and that the fir instance
we dealt with come from [31])

- our method is faster than the two other ones (the
1rst one is an ILP-based method, while the 2nd is a
game theory-based method whose time
complexity is O(NS *N*S) for an N player game
with S strategies for each player. In contrast, our
method performs as shown in Fig.2.3.)

- our method is more flexible than the two first ones
since it outputs different pairs of the power
dissipation and the throughput for the same
circuit, which allows the designer to select the
best trade-off

 Table 15 better shows the variation of the power
dissipation by considering different numbers of
constraints. The first entry of that table shows that
operations of the VLSI system are scheduled in 28
cycles in case the circuit is subject to no power-
constraint and that the average (maximal) switching
power dissipation given by SPOT ([25], [26], [27]) is
11.87 mW (20.0 mW) for a user-fixed value of 15
mW. Starting with this first result, the user can
iteratively introduce power-constraints in order to
obtain the desired trade off between the circuit
performance and the power dissipation. Notice also

that the number of the power constraints can be high
(e.g. one need 123700 power constraints to achieve a
switching power dissipation of 0.4999mW for a
circuit performing its operations in 634 cycles versus
a dissipation of 11.870mW for operations subject to
no power constraint and scheduled in 28 cycles). This
clearly shows that an automatic task is required to
generate appropriate power constraints so that the
desired switching power dissipation at the register
transfer level is achieved.

7 Conclusion
 In this paper, we have shown that there are two major
scheduling approaches: the data flow based and the
control flow based ones. The former deals with the
data flow dominated circuits (such as DSP
applications) while the second deals with the control
flow dominated ones (e.g. controllers). We have
shown that our method deals with both types of
circuits and have also shown that our tool deals with
huge numbers of data flows, which is useful for
current designs. Also, our method is able to yield
good scheduling results in interesting CPU times
thanks to either exact techniques or near optimal ones
when the time complexity is not polynomial. Notice
that the non-polynomial part of the target problem has
been tackled by a graph colouring technique but can
also be solved by another appropriate technique such
as genetic or evolutionary algorithms that feature a
simple parallelisation for an efficient solution space
exploration.
 Finally, because the power dissipation is a critical
problem for current circuits, in particular for SOC
ones, our tool is able to automatically introduce power
constraints so that the desired trade off between the
throughput and the switching power dissipation of a
circuit (at the register transfer level) is obtained.

References:
[1] M.R. Garey, D.S. Johnson, Computers and

Intractability: A Guide to the Theory of NP-
Completeness, Freeman, 1979.

[2] D. Gajski, N. Dutt, A. Wu, S. Lin, High Level
Synthesis: Introduction to Chip and System
Design, Kluwer Academic Publishers, 1997.

Entry
(#traces=

50)

power constraints # cycles Average switching
power (mW)

Maximal switching
power (mW)

User-fixed
switching power

(mW)
1 0 28 11.870 20.000 15.0
2 15400 56 8.239 11.000 10.0
3 15400+7000=22400 68 5.402 8.500 7.0
4 22400+6800=29200 90 4.533 6.500 5.0
5 29200+94500=123700 634 0.4999 0.500 0.5

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 622 Issue 12, Volume 6, December 2007

[3] D. Ku, G. De Micheli, Relative Scheduling under
Timing Constraints, DAC’90, pp. 59-64.

[4] N. K. Jha, Low-Power System Scheduling and
Synthesis, ICCAD’2001, pp. 259-263.

[5] C. G. Lyuh, T. Kim, C. L. Liu, An Integrated Data
Path Optimization for Low Power Based on
Network Flow Methods", ICCAD’2001, pp. 553-
559.

[6] I. Kadayif, M. T. Kandemir, U. Sezer, An ILP
Based Approach for Parallelizing Applications in
On-Chip Multiprocessors, DAC’02, pp. 703-708.

 [7] S. Davidson, D. Landskov, B. Shriver, P. Mallet,
Some Experiments in Local Microcode
Compaction for Horizontal Machines, IEEE
Transactions on Computers, C30, 1981,
pp. 460-477.

[8] P.G. Paulin, J. P. Knight, Force-Directed
Scheduling for the Behavioural Synthesis of
ASIC’s, IEEE Transactions on Computer-Aided-
Design, Vol.8, 1989, pp. 661-679.

[9] A. C. Parker, J. T. Pizarro, M. Mlinar, MAHA: A
Program for Datapath Synthesis, 23rd ACM/IEEE
DAC, 1986, pp. 461-466.

[10] B. M. Pangrle, D. Gajski, State Synthesis and
Connectivity Binding for Microarchitecture
Compilation, ACM/IEEE ICCAD, 1986, pp. 210-
213.

[11] S. M. Heemstra De Groot, S. H. Gerez, O. E.
Hermann, Range-Chart Guided Iterative Data
Flow Graph Scheduling, IEEE Transactions on
Circuits and Systems, Vol.39, 1992, pp. 351-364.

[12] W. Wolf, A. Takach, C. Y. Huang, R. Manno,
The Princeton University Behavioral Synthesis
System, 29th ACM/IEEE DAC, 1992, pp. 182-
187.

[13] R. Camposano, Path-Based Scheduling for
Synthesis, IEEE Transactions on CAD, Vol.10,
No.1, 1991, pp. 85-93.

[14] R. A. Bergamashi, R. Composano, M. Payer,
Scheduling under Resource Constraints and
Module Assignment, INTEGRATION: The VLSI
Journal, Vol.12, 1991, pp. 1-19.

[15] A. Jerraya, I. Park, K. O’Brien, AMICAL : An
Interactive High Level Synthesis, IEEE European
Conference on Design Automation, 1993.

[16] R. A. Bergamashi, D. J. Allerton, A Graph-Based
Silicon Compiler for Concurrent VLSI Systems,
IEEE CompEuro Conference, 1988, pp. 36-47.

[17] K. Wakabayashi, H. Tanaka, Global Scheduling
Independent of Control Dependencies Based on
Condition Vectors, 29th ACM/IEEE DAC, 1992,
pp. 112-115.

[18] R. A. Bergamashi, S. Raje, I. Nair, L. Trevillyan,
Control-Flow Versus Data-Flow-Based
Scheduling : Combining both Approaches in an

Adaptive Scheduling System, IEEE Transactions
on VLSI, Vol.5, No.1, 1997, pp. 82-100.

[19] Y. Xie, W. Wolf, Allocation and Scheduling of
Conditional Task Graph in Hardware/Software
Co-Synthesis, DATE’01, 2001, pp. 620-625.

[20] J. Teich, T. Blickle, L. Thiele, System-Level
Synthesis Using Evolutionary Algorithms,
CODES/CASHE’97, 1997, pp. 167-171.

[21] H. Motallebpoor, C. Lucas, P. Jabbehdar,
M. Nourani, Data Flow Graph Scheduling Using
Genetic Algorithms, ICEE’99, 1999, pp. 125-132.

[22] H. Belkouche, F. Louiz, A. Mahdoum,
FEWERCOLORS: A New Technique for Solving
the Graph Coloring Problem, 15th Design of
Circuits and Integrated Systems Conference,
2000, pp. 806-812.

[23] H. Belkouche, F. Louiz, A. Mahdoum,
FEWERCOLORS: A New Technique for Solving
the Graph Coloring Problem, Designer’s Forum
Proceedings of DATE’02 Conference, 2002,
p 262.

[24] A. Mahdoum, H. Belkouche, F. Louiz,
FEWERCOLORS: A New Technique for Solving
the Graph Coloring Problem, 7th IEEE/ICECS,
2000.

[25] A. Mahdoum, SPOT: An Estimation of the
Switching Power Dissipation in CMOS Circuits
and Data Paths Tool, accepted in SASIMI’97,
1997, Osaka, Japan.

[26] A. Mahdoum, SPOT: Un Outil à Base d’un
Algorithme Génétique pour Estimer la
Consommation Maximale de la Puissance
Dynamique des Circuits CMOS, CSCA’99,
1999, pp. 94-103.

[27] A. Mahdoum, SPOT: An Estimation of the
Maximal and the Average Switching Power
Dissipation in CMOS Circuits and Data Paths,
Designer’s Forum Proceedings of DATE’02
conference, 2002, p 260.

[28] The P versus NP Problem, Millenium prize
problems,
http://www.claymath.org/millennium/P_vs_NP/.

[29] W.T. Shiue, C. Chakrabarti "ILP-Based Scheme
for Low Power Scheduling and Resource Binding,
Proc. Intl. Symp. On Circuits and Systems, 2000,
pp. 279-282.

[30] N. Ranganathan, Ashok K. Murugavel, A Low
Power Scheduler Using Game Theory,
CODES+ISSS’03, 2003, pp 126-131.

[31]http://poppy.snu.ac.kr/inspire/CDFG/ftp/benchma
rks.tar.gz.

[32] T. M. Wendt, L. M. Reindl, Reduction of Power
Consumption in Wireless Sensor Networks through
Utilization of Wake up Strategies, Proc. 11th WSEAS

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 623 Issue 12, Volume 6, December 2007

International Conference on Systems, 2007, pp. 255-
258.
[33] J. Colomen, A. Saiz, P. Miribel, J. Maña, J.
Bufeau, M. Puiz, J. Sanitier, Sensor Temperature for a

Low-Power Low-Voltage Self-Power System Using
Vibration Scavenging, Proc. 11th WSEAS
International Conference on Circuits, 2007, pp. 136-
142.

WSEAS TRANSACTIONS on CIRCUITS AND SYSTEMS Ali Mahdoum, Nadjib Badache, Hamid Bessalah

ISSN: 1109-2734 624 Issue 12, Volume 6, December 2007

