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Abstract: - This paper proposes an efficient algorithm and Processing Element (PE) architecture for a Multiple 
Word Radix 4 Montgomery Modular (MWR4MM) multiplier. This architecture is developed considering an 
important design factor - power consumption - in addition to other design factors that is considered previously 
in many publications such as performance and scalability. To increase performance, we used a recoding scheme 
that eliminates the reduction step in the Montgomery algorithm and the PE architecture is based on the Carry-
Save Adder (CSA). To achieve scalability, we implement the algorithm based on the multiple-word operation. 
Lastly to lower power consumption, we devised several effective techniques for reducing the glitches and the 
Expected Switching Activity (ESA) of high fan-out signals.  
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1 Introduction 

Nowadays, most cryptography applications use 
modular multiplication extensively. Many 
cryptography applications, such as the encryption 
/decryption operations of the RSA algorithm [1], the 
Digital Signature Standard [2], the Diffie-Hellman 
key exchange algorithm [3], and elliptic curve  
cryptography [4], all has an extensive use of 
modular multiplication and modular exponentiation. 
The modular exponentiation operation applies 
modular multiplication operation repeatedly [5, 6, 7, 
8, 9]. So, the performance of any cryptography 
application widely depends on the efficiency of the 
modular multiplication operation. 
     There are several approaches for computing the 
modular multiplication operation. The most efficient 
approach is the Montgomery modular Multiplication  
(MM) algorithm [10, 11]. The main advantage of 
this algorithm over ordinary modular multiplication 
algorithms is that the modulus reduction of the 
partial product is done by shift operations which are 
easy to implement in hardware.  
     There are several papers published about the 
scalable Montgomery multipliers. The most 
important of them that are published by A. F. Tenca 
and Ç. K. Koç [12, 13, 14, 15]. In their publications, 
they introduced what is called word-based 

Montgomery multiplication algorithm to implement 
the scalability. However, they did not consider their 
hardware from the low power consumption point of 
view. 
     In high radix implementation of MM algorithm, 
a modified Booth recoding scheme [16] is used to 
improve the performance by reducing the number of 
iterations to a number depends on the radix of 
computation. As the radix of computation increases 
as the number of iterations reduces. By using this 
recoding scheme, the publishers can achieve on-the-
fly and simple calculation of the partial product 
[17].  
     The goal of this work is to describe a new radix-
4 scalable architecture that is developed considering 
all kinds of design factors such as performance, 
scalability and power consumption.  
     This paper is organized as follows. Section 2 
presents the proposed Multiple-Word Radix-4 
Montgomery Multiplication (MWR4MM) algorithm 
with recoding . In this section, we also introduce a 
specialized recoding scheme as well as the well-
known Booth recoding scheme. Section 3 presents 
the architecture of the modular multiplier that 
implements (MWR4MM) algorithm. Section 4 
presents the architecture of the Processing Element 
(PE) of the MWR4MM algorithm. Section 5 
describes several techniques to decrease power 
dissipation. Experimental results, with power, area, 
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and maximum speed are given in Section 6. Finally 
Section  7 concludes the paper. 
 
 

2 MWR4MM Algorithm 
The notation used in this paper is as follows.  

•  M  : modulus. 
•  : a single bit of M at position j. jm
•  A  : multiplier operand. 
• B  : multiplicand operand. 
• n   :  operand’s precision. 
• R : a constant (called a Montgomery 
           parameter), . nR 2=
• S  : intermediate partial product , or final 
           result of modular multiplication. 
•  :  coefficient determines the multiples of jqa

                the multiplicand B ( ). Bqa j ∗

• :  coefficient determines the multiples of jqm

                 the modulus M ( ). Mqm j ∗

• w   :  word size (in number of  bits)of either B  
                , M or S. 

• ⎥⎥
⎤

⎢⎢
⎡=

w
ne :  number of words in either B, M or 

                      S. 
•   : carry bits. ba CC ,
• : word vector of B. ),,....,( )0()1()1( BBB e−

•  : word vector of M. ),,....,( )0()1()1( MMM e−

•  :  word vector of S. ),,....,( )0()1()1( SSS e−

• :  bits k - 1 to 0 from the  word of S. )(
0....1

i
kS −

thi
      
Fig. 1 shows the MWR4MM algorithm. This 
algorithm is an extension of the Multiple-Word 
High-Radix ( kR2 ) Montgomery Multiplication 
(MW kR2 MM) algorithm presented in [14],  but we 
used a recoding scheme to recode . jqm
     we will use PP and PM to represent a partial 
product and a multiple of modulus 

, respectively. 
)( Bqa j ∗

)( Mqm j ∗

     In the case of radix-4, ,  are 2-bit 
numbers. Thus the value sets of PP and PM are as 
follows: 

jqa jqm

PP ∈  {0,A,2A,3A},     PM ∈  {0,M,2M,3M} 
to calculate 3A and 3M on the fly, we need two extra 
adders. To remove the burden of calculating 3A in 
the PP’s value set, a modified Booth recoding 
scheme is popularly used. Let the  and  are 

 
   
 

  4. . 
 

 1. th recoding scheme. 

      

quotient for 
oded 

PP 

1,ja 0,ja

the two bits in the thj  significant digit of A. Radix-4 
modified Booth recoding scheme takes a bit stream 

21,0,1, ),,( −jjj aaa  as input and generates a recoded PP 

according to Table 1, where 1,1−a  is defined to be 0 
and  jqa  the recoded quotient digit for a PP at the 

 
   

thj  iteration. 

     

        Fig.  Scalable MWR4MM algorithm

Table  Boo

Three input bits Recoded Rec

PP 
1,ja  0,ja  a  qa  1,−j j PP 

0 0 0 0 0 
0 0 1 +1 +A 
0 1 0 +1 +A 
0 1 1 +2 +2A 
1 0 0 -2 -2A 
1 0 1 -1 -A 
1 1 0 -1 -A 
1 1 1 0 0 

1:    0=S

     01  =−a   

2:    For  j = 0  to  n-1  step 2 

 3:      )( 1..1 −+= jjj aBoothqa  

4:      )(),( BqaSSC ∗+=  

(( 1)0(
0..1

)0(
0..1

−
−∗= MSMontgqm j  

r  i:= 1 to e-1 

8:            

9:         i MqmSCSC ∗++=  

   

or; 

 )0()0()0(
ja

5:       4 )4mod)

6:        )0()0()0( )(),( MqmSSC jb ∗+=

7:     Fo
)()()( )(),( i

j
i

a
i

a BqaSCSC ∗++=

)()()( )(),( i
j

i
bb

10:        ),( )1(
2..1

)(
0..1

)1( −
−

− = i
w

ii SSS

        End F

11:        baa CorCC =  

12:        (eS ),( )1
2..1

)1( −
−

− = wa
e CsignextS  

       End for; 
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Table 2.  Montgomery recoding scheme. 

 
     Booth recoding scheme transforms the value set 
of PP into {–2A, –A, 0, +A, +2A}. All elements in 
the set are calculated by simple operations such as 
bit-inversion and/or bit-shift. However, 3M still 
remains in the value set of PM, and this problem 
cannot be solved by the Booth recoding scheme. In 
this paper, we adopt a specialized recoding method 
[17] to transform the original value set of PM into 
the one that also has easily obtainable elements 
only. We will give this method the name 
“Montgomery recoding scheme”. Let  
be the 2 bits in the Least Significant Digit (LSD) of  
SP = S + PP and  be the 2 bits in the 
LSD of M. According to the input condition that M 
has to be odd,  is always ‘1’. Then, 
Montgomery recoding scheme takes a bit stream 

 as input and generates a recoded 
PM according to Table 2, where  is the recoded 

quotient digit for a PM at the th  iteration. 

20,01,0 ),( spsp

20,01,0 ),( mm

0,0m

21,00,01,0 ),,( mspsp

jqm

j
     Montgomery recoding scheme transforms the 
value set of PM into {–M, 0, +M, +2M}. The proof 
that the algorithm is still correct after applying 
Montgomery recoding scheme comes from the fact 
that 4mod13 −≡ . 
     Due to adopting the two recoding schemes, it is 
easy to calculate all the elements in the value sets of 
PP and PM. But the recoding schemes cause one 
negative effect: that is, all operands except for M are 
changed to the signed numbers that are more 
complicated to deal with than the unsigned ones. 
    
 

3 MWR4MM Overall Architecture 
Fig. 2 shows the overall architecture of the 
Montgomery modular multiplier implementing the 
MWR4MM algorithm (Fig. 1). It consists of two 

words of B, M and S (represented in a Carry-Save 
form as SS and SC) and k bits of A. with k = 1 for a 
radix-2 , k = 2 for radix-4, k = 3 for radix-8, etc. The 
outputs are w-bit words of the new partial product S 
( koutSS , koutSC ).      
     We use the superscript star (∗ ) to indicate that 
the signal is one word of the

main functional blocks: Kern loc  
block is separated into tw ontrol nd 
datapath. The Kernel’s datapath implements the 
computations of the M R4MM algorithm e 
Kernel’s control block supplies the control signals 
that synchronize the sy m.  
     The interface for the user is provided by the IO 
block. The im entation of  th  
the application where the multip
and/or e s em’s chitecture in which the 
multiplier wil  embedded. So, there are different 
ways that we can use to implement this block. 
     The inputs to the Kernel’s datapath are bit 

parated y registers (see Fig. 3). Each clock cycle, 

ages  the peline tage 

 bits of A are oaded stage.
path outputs one word of 

ach SS and SC. The outputs are named 

cycle, , the 2 LSBs of and the recoded 

el and IO b ks. Each
 ao parts: c

W . Th

ste

plem is block depends on
lier will be applied 

 th yst  ar
l be

w-

 corresponding vector. 
The signals )(∗B , )(∗M , )(∗SS and )(∗SC  represent 
one word of each vector B , M, SS and SC, 
respectively. )(∗B , )(∗M , )(∗SS and )(∗SC words 
change every clock cycle. 
 
 
3.1 Kernel Datapath 
All computations of the MM algorithm are 
implemented by The kernel’s datapath. The kernel 
datapath [18] is organized as a pipeline of PEs 
se  b
the kernel datapath gets as inputs one word of B, M, 
SS and SC. Additionally, it gets (NS*k) bits of A 
over (2*NS) clock cycles, where NS represents the 
number of st  in pi . A s consists of 
a PE and a register as shown in Fig. 3. Every second 
clock cycle, k  l  in a  Every 
clock cycle, the kernel data
e koutSS )(∗  
and koutSC )(∗ . 

 
 

4 MWR4MM PE Architecture 
Fig. 4 shows the block diagram of radix-4 PE. The 
PE  is divided into two sections. The first section 
computes only the first 2 Least Significant Bits 
(LSBs) of each word of BqaS j ∗+ . One can 

observe that jqm  depends on 2 LSBs of the partial 
product S from the previous computational 

)0(
0..1S )0(B , 

Three input bits Recoded 
quotient 
for PM 

Recoded 
PM 

1,0sp  0,0sp  1,0m  jqm  PM 

0 0 0 0 0 
0 0 1 0 0 
0 1 0 -1 -M 
0 1 1 +1 +M 
1 0 0 +2 +2M 
1 0 1 +2 +2M 
1 1 0 +1 +M 
1 1 1 -1 -M 
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multiplier digit jqa . The word size for S  
be at its 

 needs to
 least 4 b , since the 2 LSBs of S for the 

next pipeline stage will be available well before the 
whole word  is available, and so they can be 
used in determining  for the next computation. 

tation of 

[14]

)0(S
j

     The second section completes the compu
qm

the word bits of BqaS j ∗+ and the addition of full 
words of MqmS j ∗+ . 
 

jA

(∗)B

)(∗M

)(∗SS

)(∗SC

outSS ∗

outSC∗

 
 

    Fig. 2.  Overall architecture of MWR4MM. 
 

     The computation done on the LSBs by the first 
section is also done for all the other remaining 
operand words. So, while the leftmost adder works 
on the LSBs of a word of BqaS j ∗+ , the topmost 
adder (after the input register) works on the other 
bits of the same word, therefore, there is one clock 
cycle difference between the two circuits. 
 

)0:(kAj

inB )(∗

inM )(∗

inSS )(∗

inS )(∗ koutSC )(∗

C

koutSS )(∗

 
Fig. 3.  Kernel datapath. 

  

5 Low  Power Techniques 
n this section we further improve our ha

   

rdware to 
issipate less power than the one implemented 

directly. Inevitably all digital devices have spurious 
transitions or glitches internally due to unbalanced 
path delays, which causes worthless dynamic power 

dissipation. Furthermore, if fan-outs of the glitchy 
signals are big, then the amount of worthlessly 
dissipated power is significant. Such signals are the 
outputs from the two circuit modules in charge of 
the Booth and Montgomery recordings. Because the 
modules comprise only combinational logic circuits 
according to Table 1 and Table 2, their outputs must 
have glitches. Also, the fan-outs of the outputs are w 
that is usually very large number. To reduce the 
glitching pow some latches 
and force the latches. If all 
flip-flops and registers capture their inputs at the 

are transparent 
e outputs of the 

I
d

er dissipation, we put in 
outputs to through pass 

clock’s rising edge, then the latches 
when the clock is in a low state. If th
two recoding modules can reach their stable values 
before the clock’s falling edge, none of the glitches 
can propagate to the fan-out modules driven by the 
outputs. We name these latches “glitch blockers”. 
The glitch blockers are also very effective for 
reducing the glitches appearing in the CSA since 
they synchronize the arrival of PP and PM at the 
CSA’s inputs. 
 

 
Fig. 4.  Radix-4 PE architecture. 

 
     PP generator makes a PP by modifying a word of 
B according to the Booth recoder’s outputs, SEL_PP 
and EN_PP. PM generator makes a PM by 
modifying a word of M according to the 
Montgomery recoder’s outputs, SEL_PM and 
EN_PM. Several glitch blockers are located at the 
outputs of the two recoders.  
     When PP is zeroed by EN_PP, PP outputted from 
the PP generator does not depend on SEL_PP. Thus, 
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keeping SEL_PP frozen at that time is effective for 
reducing power dissipation. Same reasoning also 
applies to SEL_PM. We place two 1-bit flip-flops 
and construct feedback loops for SEL_PP and 
SEL_PM to implement this idea. 
     Booth recoding scheme has a feature that +2B 
cannot follow +B or +2B and –2B cannot follow –B 
or –2B. Utilizing this feature to decrease power 
consumption, we suggest a binary coding method 
for SEL_PP as follows: 

SEL_PP for +B = ~(SEL_PP for +2B) 
SEL_PP for –B = ~(SEL_PP for –2B) 

where ‘~’ denotes bit-inversion. This binary coding 
method minimizes the ESA(Effective Switching 
Activity) of SEL_PP. 
 
 

6 Experimental Results and Analysis 
 
6.1  Synthesis and simulation environment    
The exper resented 

e 
pipelin of the 

 of NS and w - for our radix 4 
esign and 256-bit and 1024-bit operands 
spectively.  

s 
l 

mputational time graphs -  as a function of NS 
 

operands respectively. 

imental data, for area and time, p
in this paper was genera d by “FPFA Advantage 
5.0” package from Mentor Graphics corporation. 
The power estimation was generated using “XPower 
analyzer” tool from Xilinx corporation.  The target 
technology was set to xc3s1600e-5fg484 (Spartan 
3E) FPGA. The designs compared in this paper 
were described in VHDL and then simulated in 
ModelSim for functional co

te

rrectness. They were 
synthesized using Leonardo synthesis tool for the 
mentioned technology. 
 
 
6.2  Comparison with previous work 
In this section we will compare our proposed 
MWR4MM architecture -  in terms of time, area, 
and power consumption - with previous two 
architectures [12, 14].   
     In [12] a scalable radix 2 modular multiplier is 
presented. Figs 5 and 6 show the total computational 
time -  as a function of the number of stages in th

e (NS), as well as the word size (w) 
operan  
1024-bit operand’s precision respectively.  
     Figs 7 and 8 show the total computational time 
graphs -  as a function

ds - graphs for radix 2 design and 256-bit and

d
re
     In [14] a scalable radix 8 modular multiplier i
presented. Figs 9 and 10 show the tota
co
and w - for  radix 8 design and 256-bit and 1024-bit

 

 
Fig. 5. Total time for radix 2 design, 256-bit 

and is as 

d 4 are close to each other. 
n configuration (w, NS), 

the area increases with the radix, i.e., A2 < A4 < A8. 
 

operands. 
 

         Figs 5, 6,7, 8, 9, 10 show that the faster design 
is achieved with word size of 8 bits. NS = 16 - for 
all designs – is the design point at which the design 
is close to the fastest for 256 bit precision 
fast as for 1024 bit operands. 
    The area of the PE of the three designs depends 
on the word size (w), and the number of stages in 
the pipeline (NS). The area increases as NS, and/or 
w of the operands increase. At w = 8, the radix 2 
design PE area is 6 CLB Slices (CLBS), and our 
radix-4 design PE is 8 CLBS. The radix-8 design PE 
has area of about 20 CLBS at the same word size. 
The area of radix 2 an

e notice that, for a giveW

 
Fig. 6. Total time for radix 2 design, 1024-bit 

operands. 
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Fig. 7. Total time for our radix 4 design, 256-bit 

operands. 
 

 
Fig. 8. Total time for radix 4 kernel, 1024-bit 

operands. 
 

     
Fig. 9. Total time for radix 8 design, 256-bit 

operands. 
 

     Table 3 shows the total computational time in 
µsec for the three radices at the same area (95 
CLBS). The improvement of the radix 4 design over 

the radices 2 and 8 designs is also shown in the 
Table. Other points on the figures have more gain 
and others have less. We conclude that our proposed 
radix 4 design has a significant gain in reducing the 
total computational time over the radices 2 and 8 
designs. So, we can say that the proposed radix 4 
design has the best performance among the three 
radices. 

 

        
Fig. 10. Total time for radix 8 design, 1024-bit 

operands. 
  
     Table 4 shows the power consumption in mW for 
the three radices at the same area (95 CLBS). The 
improvement of the radix 4 design over the radices 
2 and 8 designs is also shown in the table. We 
conclude that our pro d radix 4 design has a 
si ption 
over the radices 2 a s. 
 

f critical path. Power optimization was 
achieved through decreasing the glitches and the 
ESA of high fan-out signals. We compared the 
proposed scalable radix 4 architecture with other 
recent scalable architectures. Hardware 
implementation results show that our radix 4 
architecture introduced in this work has a significant 
gain in reducing the total computation time and 
power consumption over the other architectures. 
Due to its low-power and high-performance 

pose
gnificant gain in reducing the power consum

nd 8 design

7 Conclusion 
In this paper, we proposed an efficient architecture 
and implementation methodology for a scalable 
radix 4 Montgomery multiplier. Scalability was 
achieved through the multiple-word operation. High 
performance was achieved through a radix-4 
multiplier architecture based on CSA accumulation. 
Applying Booth and Montgomery recoding schemes 
reduces the amount of hardware resources and the 
length o
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fe
b

atures, t  prese ted Mo tgo ip
e appl to o ev  

card IC s C ss

3 arison between the total computation 
(µsec) for the three designs taken at area (95 
CLBS) with 256-bit operand precision.  

 
le p b  th er 
tion (mW) for the three designs taken at 

area (95 CLBS) with 256-bit operand precision 
(@10MHZ and 1.8V). 
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