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Abstract: - Plague formation leading to stenosis and occlusion of arterial blood vessels causes altered flow
conditions, such as separation and flow-reversal zones and plays an important role in the development of
arterial diseases. Computational simulations of blood flow can help to understand the hemodynamics in blood
vessels and to predict the outcomes of surgeries. The paper presents a three dimensional numerical method of
steady and pulsatile blood flow simulation in arteries by the finite element method. In this study the
biochemical and mechanical interactions between blood and vascular tissue are neglected and no-slip boundary
conditions are considered at the artery wall. Velocity field is calculated by a mixed method using a smoothed
deviatoric stress field in order to obtain an improvement of the finite element method performance. Stabilized
finite element formulations to properly treat incompressible and high Reynolds number flows are presented.
Velocity and wall shear stress fields are visualized for a better understanding of flow characteristics such as
distributions of the flow pattern, stagnation flow and recirculation zones. Simulated results are compared and
validated with literature data obtained from ultrasound measurements.
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1 Introduction adaptations of the vascular wall provides an
The accumulation of plaques on an artery wall is a effective way of obtaining detailed flow patterns
progressive disease induced by local irregular flow associated with diseases that can have useful clinical
field. Although clinical symptoms of this disease applications, especially in the design of devices that
become evident when the stenosis percentage is mimic or alter blood flow as in reconstruction and
around  70%, modifications of the flow revascularization operations [14-16]. o
characteristics such as separation and flow-reversal Flow visualization techniques and non-invasive
zones, occur at milder degrees of stenosis. It is well medical imaging data acquisition such as computed
established that once a mild stenosis is formed in the tomography, angiography or magnetic resonance
artery, biomechanical parameters resulting from the imaging, make feasible to construct three
altered blood flow and stress distribution in the dimensional models of blood vessels. Colour
arterial wall contribute to further progression of the Doppler ultrasound  provides real-time  cross-
disease [1-3]. Upstream from a stenosis high shear sectional images of endovascular structure and
stress exists while downstream regions are exposed measuring techniques have improved to provide
to low shear stress and flow separation. Fluid shear accurate information on the flow fields. Validated
stresses, flow reversal and stagnation zones induce computational fluid dynamics (CFD) models using
vascular oxidation stress, pro-inflammatory states data obtained by these currently available
and arterial internal thickening. measurement techniques [11, 12, 17-19] can be very
Hemodynamic finite element simulation studies valuable in the early detection of vessels at risk and
have been frequently used to gain a better prediction of future disease progression.
understanding of functional, diagnostic and The arterial wall is a composite of three layers,
therapeutic aspects of the blood flow [4-13]. each containing different amounts of elastin,
The mechanics of blood flow in arteries plays an collagen, vascular smooth ~muscle cells and
important role in the health of individuals and its extracellular - matrix. Endothelial cells form a
study represents a central issue of the vascular monolayer that constitutes the primary interface
research. A detailed understanding of local between the bloodstream and all extravascular
hemodynamic environment, influence of wall tissue. The endothelial cell layer acts mostly as a
modifications on flow patterns and long-term wall sensing and responding to shear stress and

hemodynamic forces plays an important role in
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stimulating vascular remodelling and probable
development of lesions. Experimental data show
that arteries in regions of denuded endothelium lose
the capacity to adapt their diameter in response to
modifications of blood flow. In diseased vessels
which are often the subject of interest, the arteries
are less compliant, wall motion is reduced and in
most approximations the assumption of rigid vessel
flow is reasonable.

Blood is a suspension of different particles in an
aqueous polymer solution, the plasma. About 45%
volume consists of formed elements, mostly red
blood cells, and about 55% of plasma. Due to its
complex nature blood is a non-Newtonian fluid. In
large and medium size vessels, blood is usually
modelled as a Newtonian liquid. However in smaller
vessels blood is a complex rheological mixture
showing several non-Newtonian properties, as
shear-thinning or viscoelasticity [5,10]. The
temperature and the presence of pathological
conditions may also contribute to non-Newtonian
behaviour.

For the steady flow case Himeno [10] showed
that the non-Newtonian effect is small except for the
peak shear stress and that for the pulsatile case the
Newtonian effect in the artery is small and
negligible. Perktold and co-workers [5] examined
non-Newtonian viscosity models in carotid artery
bifurcation and although the Newtonian assumption
yields no change in the essential flow characteristics
they concluded that predicted shear stress magnitude
resulted in differences on the order of 10% as
compared with Newtonian models.

The objective of this paper is to report the
development of two finite element approaches of a
three dimensional numerical simulation system for
the clinical study of arterial blood flow under steady
and pulsatile conditions. Considering blood flow an
incompressible non-Newtonian flow, the fluid flow
is governed by the incompressible Navier-Stokes
equations. There are two potential sources of
numerical instability in the Galerkin finite element
solution of these equations. The first is due to the
numerical treatment of the saddle-point problem
arising from the variational formulation of the
incompressible  flow equations. The second
difficulty is related to the solution of a convection-
dominated transport problem by the standard
Galerkin method which leads to spurious node-to-
node oscillations; this problem requires the use of
stabilized finite element formulations to properly
treat high Reynolds number flows. Some of the
approaches for calculating 3D numerical solutions
are presented in this study aiming numerical
stability and computer time reduction.
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The developed code is validated using
experimental and numerical data obtained from the
literature.

2 Problem Formulation

A number of important phenomena in fluid
mechanics are described by the Navier-Stokes
equations. They are a statement of the dynamical
effect of the externally applied forces and the
internal forces due to pressure and viscosity of the
fluid. A peculiar feature of blood flow is the
pulsatility induced by the periodic contractive and
relaxing motion of the heart. The time dependent
flow of a fluid is governed by the mass, momentum
and energy conservation equations; the blood is a
viscous incompressible fluid, and under isothermal
conditions the Navier-Stokes equations, for blood
flow are given as:

p(%+(u.V)uj =V.o+f

Vau=0

)

where u and o are the velocity and the stress
fields, p the blood density and f the volume force
per unit mass of fluid. The components of the stress
tensor are defined by the Stokes’ law:

o=—pl+2ug(u)=—pI+S 2
where p is the pressure, T the unit tensor, [ the
dynamical viscosity, €(u) the strain rate tensor and

S the deviatoric stress. Considering a three
dimensional formulation, momentum and mass
conservation equations from Eq. (1) become:

p[%+uj%J—HVZquaa—p:forL(u)—f:O

X X

! ' 3)
Mo =123

0%

This equation system, Eq. (3) can be solved for
the velocity and the pressure given appropriate
boundary and initial conditions. In this study the
biochemical and mechanical interactions between
blood and vascular tissue are neglected. The
innermost lining of the arterial wall in contact with
the blood is a layer of firmly attached endothelial
cells and it appears to be reasonable to assume no
slip at the interface with the rigid vessel wall; at the
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flow entrance Dirichelet boundary conditions for all
points are considered prescribing the time dependent
value up for the velocity on the portion ', of the
boundary:

u(x,t) =up (x,t),

xelp 4)

The condition describing surface traction force h at
an outflow boundary T, can be described

mathematically by the condition:

ou; Ou;
—p&;i + | —+—L||Ini=h i,j=123 (5
( Pojj ﬂ[axj OX; ]J = b ®

where n;

pointing unit vector at the outflow boundary and &;;
is the Kronecker delta.

are the components of the outward

3 Finite element models

The finite element method (FEM) is a mathematical
technique for obtaining approximate numerical
solution of the physical phenomena subject to initial
and boundary conditions. The accuracy of humerical
solutions depends on the selected formulation. Two
different finite element models of the Navier-Stokes
equations are considered in this work, the mixed
model and the penalty finite element model [20].
Further a numerical scheme with a stabilization
technique to avoid numerical oscillations of the
solution is presented, the streamline upwind/Petrov
Galerkin method.

3.1 Mixed finite element model

The mixed model is a natural formulation in which
the weak forms of Eq. (3) are used to construct the
finite element method. The resulting finite element
model is termed the velocity-pressure model or
mixed model. Developing a Galerkin formulation
the weak forms of Eq. (3) results in the following
finite element equations:

Mu+Cu+Ku-Qp=F

6
QTu=0 (6)
where the superpose dot represents a time derivative
and M, C, K and Q are the mass, convection,
viscous and gradient matrices, respectively.
Considering N the element interpolation functions
for the velocity, the vector F is given as:
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()

F=J. prde+J. Ntdl
e Ty

where t is the traction forces vector on the boundary
I'y . The resulting equation system is:

C+K —Q u F
Ma+| =

Q 0 |(p) (O

The above partitioned system, Eq. (8), with a
null submatrix could in principle be solved in
several ways. However, a numerical problem results
from the incompressibility condition and it can be
asked under which conditions it can be safely

solved. In simple terms, we want to obtain, in the
linear space U of all admissible solutions, the

velocity field u belonging to a subspace, I"cu
associated to the space of incompressible
deformations. This subspace is given as:

(®)

|“:{uheu“:Quh=0} 9)

The solution 1" should then lie on the null space of
Q that must be zero.

The numerical problem described above is
eliminated by proper choice of finite element spaces
for the velocity and pressure fields; in other words
the evaluation of the integrals for the stiffness
matrix where velocity and pressure interpolations
appear must satisfy the  Babuska-Brezzi
compatibility condition the so called LBB condition
[21-23] that states: velocity and pressure spaces can
not be chosen arbitrarily and a link between them is
necessary.

Considering a 3D analysis hexahedral meshes
often provide the best quality solution as errors due
to numerical diffusion are reduced whenever a good
alignment between mesh edges and flow exists [24];
in this work a spatial discretization with
isoparametric brick elements of low order with
trilinear approximation for the velocity components
and element constant pressure is adopted:

8
u(x,t)=Y Ny(x)u;(1) and p(t)=Lp.(1) (10)
i=1

where L are pressure interpolation functions and u;
and p. are the unknown element velocity node and
the pressure element center values, respectively.
Zienkiewicz [25] shows that mixed methods are
able to satisfy the incompressibility constraint with
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a small number of iterations. These methods allow
obtaining smoother velocity and stress fields. They
are an inexpensive improvement of the finite
element method performance and further faster
convergence is achieved. When 3D simulations are
considered and consequently computation time
would become limitative the consideration of these
methods is compulsory.

The deviatoric stress in Eq. (2) can be expressed
as a linear combination of the nodal deviatoric stress
S obtained by local or global smoothing and the
deviatoric stress field S [25]:

S*=—yS+(@1+vy)S where S=N,S (11
Substituting in Eg. (2) the weak form of Eq. (3)
becomes:

Q Q 0[S 0
Mi+|Q; C+K -Q|{u{=1F (12)
Q" o o[lp) (0
where
_ T _ T
Ql_BLNs Nsde' QZ - BL“NsBde (13)

and Q; =—BJ BN, d,

and B is the rate deformation matrix.

In this paper the numerical procedure for the
transient non-Newton inelastic Navier-Stokes
equations uses the Galerkin-finite element method
with implicit time discretization. At each time step
Picard iteration is applied to linearize the non-linear
convection and diffusion terms; the method is based
on a pressure correction [5, 6, 20]. The essential
steps of the algorithm at a time or iteration are:

1. Calculation of an auxiliary velocity field

u™2M™l from  the equations of motion using
known pressure values from the previous time n step
or previous iteration step m ;

2. Calculation of the pressure correction using
lumped mass matrix:

Tagl v onilmil 1 AT nat/2,me
M mH_ 2 QTy™/2 14
Q My Qq A Q (14)
where My is the lumped matrix;
3. Pressure updating: p"ttmtt = pnttm oy gnelmd

4. Calculation of the divergence free velocity field:
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un+1,m+1 :un+1/2,m+1 + At Maqun+l,m+1 (15)
5. Calculation of the apparent viscosity.
This method, developed for obtaining a

divergence-free velocity field, has been based on
Chorin’s method [26] and validated by other authors
[5, 6]. It will be considered to reproduce flow in a
human carotid bifurcation under pulsatile
conditions.

3.2 Penalty finite element model

The incompressibility constraint given by €; =0 is
difficult to implement due to the zero divergence
condition for the wvelocity field. However the
incompressibility problem may be stated as a
constrained minimization of a functional. The
penalty function method allows us to reformulate a
problem with constraints as one without constraints
[21-23]. Using the penalty function method
proposed by Courant [27], the problem is
transformed into the minimization of the
unconstrained augmented functional:

n(u) = n(u) + [ (& (u)) AV (16)
\%

Considering the pseudo-constitutive relation for the
incompressibility constraint the second set of Eq. (3)
is replaced by:

V.au=-p/i an
where A is the penalty parameter. If A is too small
compressibility and pressure errors will occur and
an excessively large value may result in numerical
ill conditioning; generally A is assigned to A= fu
being S a constant of order 10’ for double precision

calculations. The second set of Eq. (3) is eliminated
and the Navier-Stokes equations become:

Ml’l+(C+K+K}‘)u=F (18)
where K is the so-called penalty matrix:
K* =2QMPQ' and MPp=21Q"

QM"Q P=AQu (19)

Under such conditions the pressure is eliminated as
a field variable since it can be recovered by the
approximation given in the above equation,
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p=2(MP)1Q%u with a known velocity field. The

penalty finite element method is often applied to
numerical discretization since it gives a reduction of
the size system of equations.

If the standard Galerkin formulation is applied it
is necessary to use compatible spaces for the
velocity and the pressure in order to satisfy the LBB
stability condition. This often excludes the use of
equal order interpolation functions for both fields. In
order to avoid oscillatory results the numerical
problem is eliminated by proper evaluation of the
integrals for the stiffness matrix where penalty
terms are calculated using a numerical integration
rule of an order less than that required to integrate
them exactly, the well known reduced integration.

3.3 Streamline Galerkin
method

In a Galerkin formulation there is no doubt that the
most difficult problem arises because of the
nonlinear convective term in Eg. (3). In blood flow
high Reynolds numbers, dynamical instabilities and
turbulence appear and loss of unicity of solution is
caused by the apparently innocent convective term.
It can be removed by mesh and time step refinement
which clearly undermine the practical utility of the
method. On the other hand a numerical scheme with
a stabilization technique can be used in order to
avoid oscillations in the numerical solution.

In two or three dimensions the convection is only
active in the direction of the resultant element
velocity U and the corrective diffusion introduced
by upwinding should be anisotropic with a
coefficient different from zero only in the direction
of the velocity resultant. One appropriate technique
to solve these problems is the Streamline
upwind/Petrov Galerkin method, SUPG-method
[28-32]. The goal of this technique is the
elimination of the instability problems of the
Galerkin formulation by introducing an artificial
dissipation. The method uses modified weighting
functions, W,, defined as a function of U and h,
element velocity and characteristic  length,
respectively, and the grid Peclet number Pe.
Considering steady blood flow [32] weighting
functions are defined as:

upwind/Petrov

ahUj oN,
2 ||u]| ox;
j=12,3; a=1,...Nnode

W, =N, +aW, =N, + (20)

Here o is determined for each element as follows:
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- It

o = 0oy = COth Pe—%, 2k

where k is the diffusion coefficient. Using the

weighting functions defined above the SUPG
method is computed from the weighted residual

form:
ah i ON,

N. +—
L[ =2 ] o

[ &
ani

For a transient analysis Petrov-Galerkin weighting
functions are given as [32]:

(21)

J (L(u)-F)dQ=0
(22)

=123

W =N, +AUi Na

23
=Ny (29

excluding the time derivative terms to which
standard Galerkin weighting functions are applied.
As the LBB stability condition is satisfied by the
different order interpolation for the velocity and
pressure, the second equation of the above system
does not need stabilization. The SUPG-method
produces a substantial increase in accuracy as
stabilizing artificial diffusivity is added only in the
direction of the streamlines and crosswind diffusion
effects are avoided [32].

The resulting system of nonlinear equations is
characterized by a non-symmetric matrix, and a
special solver is adopted in order to reduce the
bandwidth and the storage of the sparse system
matrix; in addition the Skyline method is used to
some improvement of the Gauss elimination.

4 Numerical Results

Numerical solutions for velocity and stress fields are
validated against published experimental data
obtained by Doppler ultrasound measurements. The
first example is the simulation of a three-
dimensional eccentric stenotic model presented by
Lisong Ai [12]. Computer simulation is carried out
under steady flow conditions using the penalty
method. The second one is the study of blood flow
in a human carotid bifurcation [11]. The mixed
method described in section 3.1 is applied to
calculate the pulsatile flow simulation. In both cases
numerical results for the flow velocity field are
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presented and compared with numerical and

ultrasound data.

4.1 An eccentric arterial stenotic model
Validation of the developed penalty method is made
considering a 3D eccentric stenotic model [12]. The
Navier-stokes equations were solved for laminar,
incompressible and Newtonian flow. The numerical
simulation was performed considering the fluid as a
homogeneous Newtonian fluid with a dynamic
viscosity equal to 0.00345 kg/(m s).

Fig. 1. Geometry and finite element mesh of the
stenotic model.

The geometric characteristics of the stenosis 3D
model are presented in Fig. 1. In the finite element
simulation the tube was set to 216 mm length with
an entrance and an exit circular cross section of 6
mm diameter. The stenosis with a 21 mm length
mimics the eccentric one presented by Ai [12]. The
center of the stenosis was located 40 mm
downstream from the inlet in order to allow a fully
developed flow. The stenosis with a radius of 10.5
mm was placed at the middle of the tube. The
boundary conditions are a specified parabolic inlet
velocity corresponding to a flow rate equal to 150
ml/min, no slip at the tube wall and traction free at
the exit. Computer simulation is carried out under
steady flow conditions. The finite element mesh was
built using 9978 elements and 12096 nodes. The
mesh is fine enough to generate good quality
information to characterize the large fluid velocity
gradients.

Fig. 2 shows the axial velocity in the symmetric
plane, velocity profiles in some sections on the
stenosed region and wall shear stress field. The
developed code was able to detect flow reversal
corresponding to a recirculation region downstream
from the stenosis. Along the throat, the highest
velocity magnitude region and the highest

ISSN: 1109-9518

150

Luisa Sousa, Catarina Castro, Carlos Antonio, Rui Chaves

magnitude of shear stresses are found. The
numerical findings on flow separation zone
downstream from the stenosis agree well in location
with previously published results [12].
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Fig. 2. Velocity field and wall shear stress of the
stenosis.

Comparison between computed and published
axial velocity profiles at three different locations is
presented in Figs. 3, 4 and 5. It can be seen that
upstream and downstream from the stenosis, the
presented numerical results fit the experimental data
and the numerical Fluent code results obtained by
Lisong Ai [12]. Upstream from the stenosis our
simulated results overlap much better the Doppler
measured values than the Fluent results. At the
throat our simulated results coincide with the Fluent
data. According to Ai [12] discrepancy between
numerical and experimental data is due to the flow
disturbance introduced by ultrasound measurement.

2 200 T
S ]
£ 160 1 P
é\ ] ) L=~ 77T -\:'\'- o
S ]
< 120 T
> ]
= 1 -l
X 80 T S
< 1 /7 Finite Element Method | ) "-v._.
40 1/ -------- Fluent results [12] '
1/ / * o Ultrasound data [12]
o ¥——4+——+———t————t—t—
0 1 2 3 4 5 6

Radial position (mm)

Fig. 3. Velocity profile upstream the stenosis.
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Fig. 4. Velocity profile at the throat of the stenosis.
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Fig. 5. Velocity profile downstream the stenosis.

Downstream the stenosis our developed code
predicts a magnitude for the velocities in agreement
with the ultrasound data, although the reversal
location is closer to the vessel wall. Observed
differences are within the uncertainty location of the
selected section.

4.2 Carotid artery bifurcation

Carotid bifurcation is prone to atherosclerotic
lesions but the precise hemodynamic determinants
of atherosclerotic disease are not yet completely
understood. In this example a study of blood flow in
a human carotid bifurcation is considered using the
mixed method for the pulsatile flow simulation. The
model for the carotid bifurcation will consider rigid
walls and traction free outflow. Results will be
compared to clinical data and calculations presented
by Maurits et al. [11].

The geometry of the carotid bifurcation under
study is shown in Fig. 6 and follows as much as
possible the 3D surface markers to quantify
common carotid artery (CCA), external carotid
artery (ECA), internal carotid artery (ICA) and
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superior thyroid artery (STA) and the connections
between segments [11]. Numerical simulation is
performed considering pulsatile blood flow with
time dependent parabolic inlet velocity and
maximum value given by ultrasound measurements
at the distal common carotid artery section (DCCA),
placed 2 cm before bifurcation. Fig. 7 describes the
flow wave form for one cardiac cycle of period
equal to one second.

Fig. 6. Geometry and finite element mesh of the
carotid bifurcation.

1000

v (mm/s)

800

600

400

200

Fig. 7. Flow pulse waveform at DCCA [11].

At the rigid artery wall the no slip condition is
applied (u = 0). The conditions describing vanishing
normal and tangential force of Eqg. (5) cannot be
applied simultaneously at ICA and ECA outflow
boundaries [5, 6]. The flow simulation is carried out
in two steps. In the first calculation step, 65% of the
common carotid artery flow is assumed at the
internal carotid outlet, according to experimental
observation [11], and the condition of zero surface
traction force is applied at the external carotid
outflow boundary. During the second calculation
step, which is the actual calculation step, the
condition of zero surface traction force is applied at
the internal carotid outflow boundary, while at the
external carotid outflow boundary the results for the
velocity profiles from the first step are used. In both
simulations traction free condition is assumed at the
thyroid artery outlet.
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Calculated velocity fields for two positions are
presented and compared with previously published
data. The first, the proximal external carotid artery
(PECA) corresponds to the most proximal point at
the external carotid artery without flow disturbance
from bifurcation, and the second one, the proximal
internal carotid artery (PICA) is situated 3 cm after
the bulbus at the internal carotid artery.

In Fig. 8 the flow wave calculated during one
cardiac cycle at PECA section is shown. Superposed
on the FEM results similar published wave forms
are displayed using a finite-volume discretization
with rigid walls for Model A and elastic walls with
traction-free outflow for Model C and with positive
peripheral resistance for Model D [11]. FEM results
are within the interval of variation considering those
different models. For all models the PECA flow
wave reflects the inlet flow impulse representative
of the mechanical heart action as given by the flow
pulse waveform of DCCA at Fig. 7.

For the FEM model the maximum and minimum
values for the velocity are equal to 618 and 142
mm/s respectively, while maximum velocity value
measured by ultrasound [11] is equal to 620 mm/s
and the minimum 80 mm/s. It is interesting to notice
that the ultrasound measured systolic velocity at
PECA [11] is similar to our FEM calculations and
the ultrasound measured diastolic velocity is lower.
The developed FEM model simulates rather well the
systolic velocities at PECA but overestimates the
diastolic ones. In fact, our diastolic velocity at
PECA is very close to the time-averaged mean in
vivo measurement velocity value of 140 mm/s [11].

Luisa Sousa, Catarina Castro, Carlos Antonio, Rui Chaves

Maurits model D and since model D calculates
different systolic and diastolic vessel diameters the
profiles were fitted accordingly. Like in literature
data, profiles at PECA and PICA are non symmetric
with maximum velocity skewed towards the flow
divider wall. As referenced in the literature it can be
due to the carotid branch curvature.

FEM
-------- Model D [11]

v (mm/s)

.6 8
Radial position (mm)

Fig. 9. Comparison of calculated velocity profiles
with FEM model and model D [11] at PICA for
t=0.04 s and t=0.33 s.

g 800 T FEM
£ 1------ Model D [11] -
< 600 } t=0.17s
400 + o
w0 L 7 t=0.39 "\
0 -/' T T T T T T T T T T T T T T T T T T 1
0 2 4 6 8

Radial position (mm)

Fig. 10. Comparison of calculated velocity profiles
with FEM model and model D [11] at PICA for
t=0.17 s and t=0.39 s.

g 1000 1 Finite Element Method
=3 N
\; 800 { M Model A [11]
! mememes Model C [11]
600 4 1 —-—-= Model D [11]
400
200
O T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

time (s)

Fig. 8. Flow wave form at PECA: calculated values
with FEM and Maurits models A, C and D [11].

Calculated velocity profiles at PICA and PECA
representative of different cardiac cycles instants are
shown in Figs. 9 to 12. At all cases results are
comparable with those obtained numerically by
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Fig. 11. Comparison of calculated velocity profiles
with FEM model and model D [11] at PECA for
t=0.04 s and t=0.33 s.
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FEM
-------- Model D [11]
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Fig. 12. Comparison of calculated velocity profiles
with FEM model and model D [11] at PECA for
t=0.17 sand t=0.39 s.

At the beginning of the cardiac cycle (t=0.04 s)
just before the maximum systolic velocity is reached
both PICA and PECA velocity profiles are similar
but at PECA section it can be observed that FEM
calculations give a sharper and more parabolic
profile. During systolic flow deceleration (t=0.17 s)
the FEM velocity profiles suggest higher maximum
velocities for both PICA and PECA sections. Close
to the minimum diastolic velocity, t=0.33 s and
t=0.39 s, both FEM and model D profiles are quite
the same.

The observed differences of compared profiles
can be explained by the systolic dilatation and
diastolic contraction of the arteries.

Fig. 13. Velocity field in the symmetric plane of the
carotid bifurcation, t=0.40 s.

For the cardiac cycle instant t= 0.40 s velocity
field in the symmetric plane of the carotid
bifurcation is shown in Fig. 13. It can be observed a
strongly skewed axial velocity in the carotid sinus
with high velocity gradients at the internal divider
wall. The developed code was also able to detect
stagnation corresponding to a recirculation region
near the outer sinus wall (the wall opposite the
divider wall) and also at ECA near the outer wall. In
diseased vessels presenting plague accumulation on
the arterial wall, higher velocity gradients would be
expected.
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5 Conclusion

A computational finite element model for simulating
blood flow in arteries is presented. Blood flow is
described by the incompressible Navier-Stokes
equations and the simulation is carried out under
steady and pulsatile conditions. The accuracy and
efficiency of the blood simulation is validated
comparing with experimental and numerical data. In
the first example, simulation of blood flow in a
stenosed artery, the developed model was able to
identify stagnation and flow reversal downstream
from the stenosis in agreement with literature data.
For the carotid bifurcation study calculations of the
flow field are in good agreement with those reported
previously in the literature.

The presented research is helpful for preventing
cerebral vascular accidents once the developed code
is able to identify stagnation and reversal flow
regions in vessels with complex geometry like in
stnosed arteries or carotid bifurcation.

Future work should also take in account the
influence of compliant walls and consider
experimental data collected in clinical practice.
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