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Abstract: - Plaque formation leading to stenosis and occlusion of arterial blood vessels causes altered flow 
conditions, such as separation and flow-reversal zones and plays an important role in the development of 
arterial diseases. Computational simulations of blood flow can help to understand the hemodynamics in blood 
vessels and to predict the outcomes of surgeries. The paper presents a three dimensional numerical method of 
steady and pulsatile blood flow simulation in arteries by the finite element method. In this study the 
biochemical and mechanical interactions between blood and vascular tissue are neglected and no-slip boundary 
conditions are considered at the artery wall. Velocity field is calculated by a mixed method using a smoothed 
deviatoric stress field in order to obtain an improvement of the finite element method performance. Stabilized 
finite element formulations to properly treat incompressible and high Reynolds number flows are presented. 
Velocity and wall shear stress fields are visualized for a better understanding of flow characteristics such as 
distributions of the flow pattern, stagnation flow and recirculation zones. Simulated results are compared and 
validated with literature data obtained from ultrasound measurements. 
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1 Introduction 
The accumulation of plaques on an artery wall is a 
progressive disease induced by local irregular flow 
field. Although clinical symptoms of this disease 
become evident when the stenosis percentage is 
around 70%, modifications of the flow 
characteristics such as separation and flow-reversal 
zones, occur at milder degrees of stenosis. It is well 
established that once a mild stenosis is formed in the 
artery, biomechanical parameters resulting from the 
altered blood flow and stress distribution in the 
arterial wall contribute to further progression of the 
disease [1-3]. Upstream from a stenosis high shear 
stress exists while downstream regions are exposed 
to low shear stress and flow separation. Fluid shear 
stresses, flow reversal and stagnation zones induce 
vascular oxidation stress, pro-inflammatory states 
and arterial internal thickening.  

Hemodynamic finite element simulation studies 
have been frequently used to gain a better 
understanding of functional, diagnostic and 
therapeutic aspects of the blood flow [4-13]. 

The mechanics of blood flow in arteries plays an 
important role in the health of individuals and its 
study represents a central issue of the vascular 
research. A detailed understanding of local 
hemodynamic environment, influence of wall 
modifications on flow patterns and long-term 

adaptations of the vascular wall provides an 
effective way of obtaining detailed flow patterns 
associated with diseases that can have useful clinical 
applications, especially in the design of devices that 
mimic or alter blood flow as in reconstruction and 
revascularization operations [14-16]. 

Flow visualization techniques and non-invasive 
medical imaging data acquisition such as computed 
tomography, angiography or magnetic resonance 
imaging, make feasible to construct three 
dimensional models of blood vessels. Colour 
Doppler ultrasound provides real-time cross-
sectional images of endovascular structure and 
measuring techniques have improved to provide 
accurate information on the flow fields. Validated 
computational fluid dynamics (CFD) models using 
data obtained by these currently available 
measurement techniques [11, 12, 17-19] can be very 
valuable in the early detection of vessels at risk and 
prediction of future disease progression. 

The arterial wall is a composite of three layers, 
each containing different amounts of elastin, 
collagen, vascular smooth muscle cells and 
extracellular matrix. Endothelial cells form a 
monolayer that constitutes the primary interface 
between the bloodstream and all extravascular 
tissue. The endothelial cell layer acts mostly as a 
wall sensing and responding to shear stress and 
hemodynamic forces plays an important role in 
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stimulating vascular remodelling and probable 
development of lesions. Experimental data show 
that arteries in regions of denuded endothelium lose 
the capacity to adapt their diameter in response to 
modifications of blood flow. In diseased vessels 
which are often the subject of interest, the arteries 
are less compliant, wall motion is reduced and in 
most approximations the assumption of rigid vessel 
flow is reasonable.  

Blood is a suspension of different particles in an 
aqueous polymer solution, the plasma. About 45% 
volume consists of formed elements, mostly red 
blood cells, and about 55% of plasma. Due to its 
complex nature blood is a non-Newtonian fluid. In 
large and medium size vessels, blood is usually 
modelled as a Newtonian liquid. However in smaller 
vessels blood is a complex rheological mixture 
showing several non-Newtonian properties, as 
shear-thinning or viscoelasticity [5,10]. The 
temperature and the presence of pathological 
conditions may also contribute to non-Newtonian 
behaviour. 

For the steady flow case Himeno [10] showed 
that the non-Newtonian effect is small except for the 
peak shear stress and that for the pulsatile case the 
Newtonian effect in the artery is small and 
negligible. Perktold and co-workers [5] examined 
non-Newtonian viscosity models in carotid artery 
bifurcation and although the Newtonian assumption 
yields no change in the essential flow characteristics 
they concluded that predicted shear stress magnitude 
resulted in differences on the order of 10% as 
compared with Newtonian models.  

The objective of this paper is to report the 
development of two finite element approaches of a 
three dimensional numerical simulation system for 
the clinical study of arterial blood flow under steady 
and pulsatile conditions. Considering blood flow an 
incompressible non-Newtonian flow, the fluid flow 
is governed by the incompressible Navier-Stokes 
equations. There are two potential sources of 
numerical instability in the Galerkin finite element 
solution of these equations. The first is due to the 
numerical treatment of the saddle-point problem 
arising from the variational formulation of the 
incompressible flow equations. The second 
difficulty is related to the solution of a convection-
dominated transport problem by the standard 
Galerkin method which leads to spurious node-to-
node oscillations; this problem requires the use of 
stabilized finite element formulations to properly 
treat high Reynolds number flows. Some of the 
approaches for calculating 3D numerical solutions 
are presented in this study aiming numerical 
stability and computer time reduction. 

The developed code is validated using 
experimental and numerical data obtained from the 
literature.  
 
 
2 Problem Formulation 
A number of important phenomena in fluid 
mechanics are described by the Navier-Stokes 
equations. They are a statement of the dynamical 
effect of the externally applied forces and the 
internal forces due to pressure and viscosity of the 
fluid. A peculiar feature of blood flow is the 
pulsatility induced by the periodic contractive and 
relaxing motion of the heart. The time dependent 
flow of a fluid is governed by the mass, momentum 
and energy conservation equations; the blood is a 
viscous incompressible fluid, and under isothermal 
conditions the Navier-Stokes equations, for blood 
flow are given as: 
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where u and σ  are  the velocity and the stress 
fields, ρ the blood density and f the volume force 
per unit mass of fluid. The components of the stress 
tensor are defined by the Stokes’ law: 
 
 2 ( )p p= − + = − +σ I ε u I Sµ  (2) 
 
where p is the pressure, I the unit tensor, µ  the 
dynamical viscosity, ( )ε u  the strain rate tensor and 
S the deviatoric stress. Considering a three 
dimensional formulation, momentum and mass 
conservation equations from Eq. (1) become: 
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This equation system, Eq. (3) can be solved for 

the velocity and the pressure given appropriate 
boundary and initial conditions. In this study the 
biochemical and mechanical interactions between 
blood and vascular tissue are neglected. The 
innermost lining of the arterial wall in contact with 
the blood is a layer of firmly attached endothelial 
cells and it appears to be reasonable to assume no 
slip at the interface with the rigid vessel wall; at the 
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flow entrance Dirichelet boundary conditions for all 
points are considered prescribing the time dependent 
value uD for the velocity on the portion DΓ  of the 
boundary: 

 
 ( ) ( ), , ,= ∈Γu x u x xD Dt t  (4) 

 
The condition describing surface traction force  h at 
an outflow boundary NΓ  can be described 
mathematically by the condition: 

 

 ij , 1,2,3
⎛ ⎞⎛ ⎞∂∂⎜ ⎟− δ + + = =⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

ji
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uu
p n h i j

x x
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where jn  are the components of the outward 

pointing unit vector at the outflow boundary and ijδ  
is the Kronecker delta. 
 
 
3 Finite element models 
The finite element method (FEM) is a mathematical 
technique for obtaining approximate numerical 
solution of the physical phenomena subject to initial 
and boundary conditions. The accuracy of numerical 
solutions depends on the selected formulation. Two 
different finite element models of the Navier-Stokes 
equations are considered in this work, the mixed 
model and the penalty finite element model [20]. 
Further a numerical scheme with a stabilization 
technique to avoid numerical oscillations of the 
solution is presented, the streamline upwind/Petrov 
Galerkin method. 
 
 
3.1 Mixed finite element model 
The mixed model is a natural formulation in which 
the weak forms of Eq. (3) are used to construct the 
finite element method. The resulting finite element 
model is termed the velocity-pressure model or 
mixed model. Developing a Galerkin formulation 
the weak forms of Eq. (3) results in the following 
finite element equations: 
 

 T

=

=

Mu + C(u)u + Ku - Qp F

Q u 0

&
 (6) 

 
where the superpose dot represents a time derivative 
and M, C, K and Q are the mass, convection, 
viscous and gradient matrices, respectively. 
Considering N the element interpolation functions 
for the velocity, the vector F is given as: 

 
Γ

= + Γ∫ ∫F Nf Nt
Ne

de dρ  (7) 

 
where t is the traction forces vector on the boundary 

NΓ . The resulting equation system is: 
 

 T

−⎡ ⎤ ⎧ ⎫ ⎧ ⎫
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The above partitioned system, Eq. (8), with a 

null submatrix could in principle be solved in 
several ways. However, a numerical problem results 
from the incompressibility condition and it can be 
asked under which conditions it can be safely 
solved. In simple terms, we want to obtain, in the 
linear space U of all admissible solutions, the 
velocity field u belonging to a subspace, hI U⊂  
associated to the space of incompressible 
deformations. This subspace is given as: 

 
 { }:= ∈ =u Qu 0h h h hI U  (9) 
 
The solution hI  should then lie on the null space of 
Q that must be zero.  

The numerical problem described above is 
eliminated by proper choice of finite element spaces 
for the velocity and pressure fields; in other words 
the evaluation of the integrals for the stiffness 
matrix where velocity and pressure interpolations 
appear must satisfy the Babuska-Brezzi 
compatibility condition the so called LBB condition 
[21-23] that states: velocity and pressure spaces can 
not be chosen arbitrarily and a link between them is 
necessary. 

Considering a 3D analysis hexahedral meshes 
often provide the best quality solution as errors due 
to numerical diffusion are reduced whenever a good 
alignment between mesh edges and flow exists [24]; 
in this work a spatial discretization with 
isoparametric brick elements of low order with 
trilinear approximation for the velocity components 
and element constant pressure is adopted: 

 

 and∑u x x
8

i i c
i=1

( ,t)= N ( )u (t) p(t)= Lp (t)  (10) 

 
where L are pressure interpolation functions and  ui 
and pc are the unknown element velocity node and 
the pressure element center values, respectively.  

Zienkiewicz [25] shows that mixed methods are 
able to satisfy the incompressibility constraint with 
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a small number of iterations. These methods allow 
obtaining smoother velocity and stress fields. They 
are an inexpensive improvement of the finite 
element method performance and further faster 
convergence is achieved. When 3D simulations are 
considered and consequently computation time 
would become limitative the consideration of these 
methods is compulsory.  

The deviatoric stress in Eq. (2) can be expressed 
as a linear combination of the nodal deviatoric stress 
Ŝ obtained by local or global smoothing and the 
deviatoric stress field S [25]: 

 
 ˆ ˆ(1 ) where sN= −γ + + γ =*S S S S S  (11) 
 

Substituting in Eq. (2) the weak form of Eq. (3) 
becomes: 
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and B is the rate deformation matrix.  

In this paper the numerical procedure for the 
transient non-Newton inelastic Navier-Stokes 
equations uses the Galerkin-finite element method 
with implicit time discretization. At each time step 
Picard iteration is applied to linearize the non-linear 
convection and diffusion terms; the method is based 
on a pressure correction [5, 6, 20]. The essential 
steps of the algorithm at a time or iteration are: 

 
1. Calculation of an auxiliary velocity field 

1/ 2, 1+ +un m from the equations of motion using 
known pressure values from the previous time n step 
or previous iteration step m ; 
2. Calculation of the pressure correction using 
lumped mass matrix: 
 

 -1 1, 1 1/ 2, 11n m n m
d q

t
+ + + +=

∆
T TQ M Q Q u  (14) 

 
where dM  is the lumped matrix; 

3. Pressure updating: 1, 1 1, 1, 1+ + + + += +n m n m n mp p q ; 
4. Calculation of the divergence free velocity field: 

 1, 1 1/ 2, 1 -1 1, 1n m n m n m
dt q+ + + + + += + ∆u u M Q  (15) 

 
5. Calculation of the apparent viscosity. 
 

This method, developed for obtaining a 
divergence-free velocity field, has been based on 
Chorin’s method [26] and validated by other authors 
[5, 6]. It will be considered to reproduce flow in a 
human carotid bifurcation under pulsatile 
conditions. 
 
 
3.2 Penalty finite element model  
The incompressibility constraint given by 0ε =ii  is 
difficult to implement due to the zero divergence 
condition for the velocity field. However the 
incompressibility problem may be stated as a 
constrained minimization of a functional. The 
penalty function method allows us to reformulate a 
problem with constraints as one without constraints 
[21-23]. Using the penalty function method 
proposed by Courant [27], the problem is 
transformed into the minimization of the 
unconstrained augmented functional: 
 

 ( )( )2
( ) ( ) dπ = π + λ∫u u uii

V

Vε  (16) 

 
Considering the pseudo-constitutive relation for the 
incompressibility constraint the second set of Eq. (3) 
is replaced by: 
 /p∇ = − λ.u  (17) 
 
where λ is the penalty parameter. If λ is too small 
compressibility and pressure errors will occur and 
an excessively large value may result in numerical 
ill conditioning; generally λ is assigned to λ = βµ  
being β  a constant of order 107 for double precision 
calculations. The second set of Eq. (3) is eliminated 
and the Navier-Stokes equations become: 
 
 ( )λMu + C + K + K u = F&  (18) 

 
where λK is the so-called penalty matrix: 
 

 
λ = λ = λ

= ∫

t tK QM Q M p Q up p

p
ij i je

and

        with       M L L de
 (19) 

 
Under such conditions the pressure is eliminated as 
a field variable since it can be recovered by the 
approximation given in the above equation, 
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1( )p −= λ tp M Q u  with a known velocity field. The 
penalty finite element method is often applied to 
numerical discretization since it gives a reduction of 
the size system of equations.  

If the standard Galerkin formulation is applied it 
is necessary to use compatible spaces for the 
velocity and the pressure in order to satisfy the LBB 
stability condition. This often excludes the use of 
equal order interpolation functions for both fields. In 
order to avoid oscillatory results the numerical 
problem is eliminated by proper evaluation of the 
integrals for the stiffness matrix where penalty 
terms are calculated using a numerical integration 
rule of an order less than that required to integrate 
them exactly, the well known reduced integration. 
 
 
3.3 Streamline upwind/Petrov Galerkin 
method  
In a Galerkin formulation there is no doubt that the 
most difficult problem arises because of the 
nonlinear convective term in Eq. (3). In blood flow 
high Reynolds numbers, dynamical instabilities and 
turbulence appear and loss of unicity of solution is 
caused by the apparently innocent convective term. 
It can be removed by mesh and time step refinement 
which clearly undermine the practical utility of the 
method. On the other hand a numerical scheme with 
a stabilization technique can be used in order to 
avoid oscillations in the numerical solution.  

In two or three dimensions the convection is only 
active in the direction of the resultant element 
velocity U and the corrective diffusion introduced 
by upwinding should be anisotropic with a 
coefficient different from zero only in the direction 
of the velocity resultant. One appropriate technique 
to solve these problems is the Streamline 
upwind/Petrov Galerkin method, SUPG-method 
[28-32]. The goal of this technique is the 
elimination of the instability problems of the 
Galerkin formulation by introducing an artificial 
dissipation. The method uses modified weighting 
functions, Wa, defined as a function of U and h, 
element velocity and characteristic length, 
respectively, and the grid Peclet number Pe. 
Considering steady blood flow [32] weighting 
functions are defined as: 
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Here α  is determined for each element as follows: 
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where k is the diffusion coefficient. Using the 
weighting functions defined above the SUPG 
method is computed from the weighted residual 
form: 
 

 
( )( ) 0

2

0, 1,2,3

Ω

Ω

⎛ ⎞∂α
+ − Ω =⎜ ⎟⎜ ⎟∂⎝ ⎠

∂
= =

∂

∫
∫

u F
U

i a
a

i

i

i

U NhN d
x

u i
x

L
 (22) 

 
For a transient analysis Petrov-Galerkin weighting 
functions are given as [32]:  
 

 
2

i a
i a

i

tU NW N
x

∆ ∂
= +

∂
 (23) 

 
excluding the time derivative terms to which 
standard Galerkin weighting functions are applied. 
As the LBB stability condition is satisfied by the 
different order interpolation for the velocity and 
pressure, the second equation of the above system 
does not need stabilization. The SUPG-method 
produces a substantial increase in accuracy as 
stabilizing artificial diffusivity is added only in the 
direction of the streamlines and crosswind diffusion 
effects are avoided [32]. 

The resulting system of nonlinear equations is 
characterized by a non-symmetric matrix, and a 
special solver is adopted in order to reduce the 
bandwidth and the storage of the sparse system 
matrix; in addition the Skyline method is used to 
some improvement of the Gauss elimination. 
 
 
4 Numerical Results 
Numerical solutions for velocity and stress fields are 
validated against published experimental data 
obtained by Doppler ultrasound measurements. The 
first example is the simulation of a three-
dimensional eccentric stenotic model presented by 
Lisong Ai [12]. Computer simulation is carried out 
under steady flow conditions using the penalty 
method.  The second one is the study of blood flow 
in a human carotid bifurcation [11]. The mixed 
method described in section 3.1 is applied to 
calculate the pulsatile flow simulation. In both cases 
numerical results for the flow velocity field are 
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presented and compared with numerical and 
ultrasound data. 
 
 
4.1 An eccentric arterial stenotic model 
Validation of the developed penalty method is made 
considering a 3D eccentric stenotic model [12]. The 
Navier-stokes equations were solved for laminar, 
incompressible and Newtonian flow. The numerical 
simulation was performed considering the fluid as a 
homogeneous Newtonian fluid with a dynamic 
viscosity equal to 0.00345 kg/(m s).  
 

 
 
Fig. 1. Geometry and finite element mesh of the 
stenotic model. 
 

The geometric characteristics of the stenosis 3D 
model are presented in Fig. 1. In the finite element 
simulation the tube was set to 216 mm length with 
an entrance and an exit circular cross section of 6 
mm diameter. The stenosis with a 21 mm length 
mimics the eccentric one presented by Ai [12]. The 
center of the stenosis was located 40 mm 
downstream from the inlet in order to allow a fully 
developed flow. The stenosis with a radius of 10.5 
mm was placed at the middle of the tube. The 
boundary conditions are a specified parabolic inlet 
velocity corresponding to a flow rate equal to 150 
ml/min, no slip at the tube wall and traction free at 
the exit. Computer simulation is carried out under 
steady flow conditions. The finite element mesh was 
built using 9978 elements and 12096 nodes. The 
mesh is fine enough to generate good quality 
information to characterize the large fluid velocity 
gradients. 

Fig. 2 shows the axial velocity in the symmetric 
plane, velocity profiles in some sections on the 
stenosed region and wall shear stress field. The 
developed code was able to detect flow reversal 
corresponding to a recirculation region downstream 
from the stenosis. Along the throat, the highest 
velocity magnitude region and the highest 

magnitude of shear stresses are found. The 
numerical findings on flow separation zone 
downstream from the stenosis agree well in location 
with previously published results [12]. 

 
 

 
 
 

 
 

Fig. 2. Velocity field and wall shear stress of the 
stenosis. 
 

Comparison between computed and published 
axial velocity profiles at three different locations is 
presented in Figs. 3, 4 and 5. It can be seen that 
upstream and downstream from the stenosis, the 
presented numerical results fit the experimental data 
and the numerical Fluent code results obtained by 
Lisong Ai [12]. Upstream from the stenosis our 
simulated results overlap much better the Doppler 
measured values than the Fluent results. At the 
throat our simulated results coincide with the Fluent 
data. According to Ai [12] discrepancy between 
numerical and experimental data is due to the flow 
disturbance introduced by ultrasound measurement. 

 

 
 
Fig. 3. Velocity profile upstream the stenosis. 
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Calculated velocity fields for two positions are 
presented and compared with previously published 
data. The first, the proximal external carotid artery 
(PECA) corresponds to the most proximal point at 
the external carotid artery without flow disturbance 
from bifurcation, and the second one, the proximal 
internal carotid artery (PICA) is situated 3 cm after 
the bulbus at the internal carotid artery.  

In Fig. 8 the flow wave calculated during one 
cardiac cycle at PECA section is shown. Superposed 
on the FEM results similar published wave forms 
are displayed using a finite-volume discretization 
with rigid walls for Model A and elastic walls with 
traction-free outflow for Model C and with positive 
peripheral resistance for Model D [11].  FEM results 
are within the interval of variation considering those 
different models. For all models the PECA flow 
wave reflects the inlet flow impulse representative 
of the mechanical heart action as given by the flow 
pulse waveform of DCCA at Fig. 7. 

For the FEM model the maximum and minimum 
values for the velocity are equal to 618 and 142 
mm/s respectively, while maximum velocity value 
measured by ultrasound [11] is equal to 620 mm/s 
and the minimum 80 mm/s. It is interesting to notice 
that the ultrasound measured systolic velocity at 
PECA [11] is similar to our FEM calculations and 
the ultrasound measured diastolic velocity is lower. 
The developed FEM model simulates rather well the 
systolic velocities at PECA but overestimates the 
diastolic ones. In fact, our diastolic velocity at 
PECA is very close to the time-averaged mean in 
vivo measurement velocity value of 140 mm/s [11]. 

 

 
 
Fig. 8. Flow wave form at PECA: calculated values 
with FEM and Maurits models A, C and D [11]. 
 

Calculated velocity profiles at PICA and PECA 
representative of different cardiac cycles instants are 
shown in Figs. 9 to 12. At all cases results are 
comparable with those obtained numerically by 

Maurits model D and since model D calculates 
different systolic and diastolic vessel diameters the 
profiles were fitted accordingly. Like in literature 
data, profiles at PECA and PICA are non symmetric 
with maximum velocity skewed towards the flow 
divider wall. As referenced in the literature it can be 
due to the carotid branch curvature.  

 

 
 
Fig. 9. Comparison of calculated velocity profiles 
with FEM model and model D [11] at PICA for 
t=0.04 s and t=0.33 s. 
 

 
 
Fig. 10. Comparison of calculated velocity profiles 
with FEM model and model D [11] at PICA for 
t=0.17 s and t=0.39 s. 
 

 
 
Fig. 11. Comparison of calculated velocity profiles 
with FEM model and model D [11] at PECA for 
t=0.04 s and t=0.33 s. 
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