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Abstract: - This article initiates the ecological modeling process in population biology and is centered on the 

well-known Lotka-Volterra multispecies system. In these models populations interact, fight or cooperate, in 

real life conditions: such as with constant time-delays in a noisy environment. The illustrative systems are the 

epidemic models and the predator-prey model with possibly overcrowding. The Euler-Maruyama 

approximation method is used to solve nonlinear stochastic delay differential equations. The probability density 

function of the solutions is estimated via the Fokker-Planck equation. Appendices with examples and 

references are proposed to the users. The computations have been carried out with help of two  mathematical 

software:  MATLAB® 7.12 R2011a and Wolfram MATHEMATICA ® 8. 
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1 Introduction 
This introductive paper is dedicated to population 

growth dynamics in a noisy constrained 

environment [39, 40]. The time-delay systems [15, 

42, 76] in population dynamics seek to explain the 

variation in size and composition of biological 

populations, such as humans, animals, plants and 

microorganisms or cells.
1
 The computations use 

MATLAB ® 7.12 R2011a with specialized 

toolboxes [6, 56, 57] and Wolfram 

MATHEMATICA® 5.1 to 8 [43, 44, 73]. 

Consider two interacting populations that may be of 

the same species or of different species. Populations 

of the same species may differ by status as in the 

epidemic models consisting of susceptible and 

infected sub-populations. Populations of different 

interacting species may be predators and prey [3]. 

Following the modeling procedure by [3],  a general 

model of two interacting populations is first 

presented. Thereafter, the deterministic and the 

                                                 
1
 A history on population dynamics is presented by [8, 

34]. This review introduces to the different models in 

discrete and continuous time. The interactions among 

species are considered by [58] in application to the 

management of multispecies fisheries. Time lags in 

biological systems have been already analyzed by [26, 

47, 52]. DDEs with applications in population dynamics 

are used. 

stochastic forms of two major biology applications 

are deduced for a single species epidemic model and 

for the two species predator-prey model. 

1.1 Population biology modeling 

Consider two populations which sizes  are denoted 

by the states 1( )x t and 2 ( )x t at time t . The 

interactions between the two populations are shown 

in Fig.1. 

 

Figure 1: Diagram of the interactions between two 

populations at time t. 

The parameters { }, , 1,2i ib d i  ∈  denote the per 

capita birth and death rates, respectively. The ratio 

at which the population may be transformed are 

denoted by { }, , 1,2ija i j ∈ . Suppose that all these 
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six parameters depend  on the states 
1 2( ), ( )x t x t  

and on time t . We have for coefficients 

{ }(.), (.), (.), , 1,2i i i i ij ijb b d d a a i j=  =  =  ∈ , 

where ( )1 2(.) , ,t x x≡ . 

Now, consider the events that may occur 

independently within a small time interval t∆ , 

while neglecting the possibility of multiple events of 

order ( )2
t∆ . The possible changes in the two 

populations concern births, deaths and 

transformations for an individual. These changes are 

produced in Table 1, together with their 

corresponding probability. 

Table 1: Possible changes in the population model 

with corresponding probabilities in .t∆  

Change Probability Event 

( )(1) 1,0
T

∆ =x  1 1 1p b x t= ∆  birth in 1x  

( )(2) 0,1
T

∆ =x
 

2 2 2p b x t= ∆
 

birth in 2x  

( )(3) 1,0
T

∆ = −x
 

3 1 1p d x t= ∆
 

death in 1x  

( )(4) 0, 1
T

∆ = −x
 

4 2 2p d x t= ∆
 

death in 2x  

( )(5) 1,1
T

∆ = −x
 

5 12 1p a x t= ∆
 1x  into 2x  

( )(6) 1, 1
T

∆ = −x
 

6 21 2p a x t= ∆
 2x  into 1x  

( )(7) 0,0
T

∆ =x
 

6

7 1
1 ii

p p
=

= − ∑  
no change

 

As in [3: p.146], the vector ( )(1) 1,0
T

∆ =x  

represents a birth in population 1x with probability 

1 1 1p b x t= ∆ , proportional to the state 1x  with 

coefficient 1b in t∆ . The vector ( )(5) 1,1
T

∆ = −x  

represents the change of one individual from 

population 1x  into 2x  during t∆ , with a probability 

that is proportional to 1x . 

Using Table 1, the expected change and covariance 

matrix are determined for ( )1 2,
T

x x∆ ∆ ∆x = . We 

obtain 

[ ]
7

( )

1

1 1 1 1 12 1 21 2

2 2 2 2 12 1 21 2

i

i

i

E p

b x d x a x a x
t

b x d x a x a x

=

∆ = ∆

− − + 
= ∆ − + − 

∑x x

                

and 

7
( ) ( )

1

1 1 1 1

2 2 2 2

,

,T i i T

i

i

E . p .

b x d x
t

b x d x

δ δ
δ δ

=

 ∆ ∆ = ∆ ∆ 

+ + − 
= ∆ − + + 

∑x x x x

      

 

where 
12 1 21 2
a x a xδ = + . The expectation vector 

( ) [ ]1 2, , /t x x E t= ∆ ∆xµµµµ  express the drift 

coefficient of a stochastic process. The diffusion 

coefficient of this process is the square root of the 

covariance matrix ( )1 2, , . /Tt x x E t = ∆ ∆ ∆ V x x . 

We have [2]
2
 

1/2 1 a w b

b c wd

+ 
= =  + 

B V , 

where 
2w ac b= − and 2d a c w= + +  with 

1 1 1 1 12 1 21 2 12 1 21 2,a b x d x a x a x b a x a x= + + +   = − −  

and 2 2 2 2 12 1 21 2c b x d x a x a x= + + + . We deduce 

(see [3]) that the dynamics of the two interacting 

populations is an Itô stochastic differential equation 

(SDE) of the form 

( ) ( )1 2 1 2, , , , ( ),d t t x x dt t x x d t= +x( ) B Wµµµµ  

with ( ) 00 =x x , where ( )1 2
( ) ( ), ( )

T
t W t W t=W is a 

two-dimensional Wiener process. 

                                                 
2
 In the canonical form 

T=V P DP  with 
T =P P I  and 

0, 1, ,iid i n>   = … , we readily have 

1/2 1/2T .=V P D P  For an n n×  matrix, 
1/2V must 

generally be calculated numerically. 
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1.2 Epidemic models 

Two simple examples of epidemic models are 

considered: the SIS (Susceptible-Infected-

Susceptible) model and the SIR (Susceptible-

Infected-Recovered) model. 

1.2.1 SIS epidemic model 

SIS epidemic models for a single species [3: p.147-

150, 7, 65] consists of susceptible and infected 

subpopulations. The susceptible individuals become 

infected, recover and susceptible again. This model 

is derived from the previous model of interacting 

species. The deterministic form of the SIS model is 

the system of ODEs (ordinary differential equations) 

1 2
2 1

2 1
2 2

( ) ( )
( ) ( )

( ) ( )
( ) ( ),

dx t x t
x t x t

dt N

dx t x t
x t x t

dt N

γ β

γ β

 = −

 = − +


 

where the total population N is constant 

1 2 1 2(0) (0) ( ) ( )x x x t x t N+ = + = . In this model, 

1x  denotes the susceptible population size, and 2x  

the infected population size. The parameters are β  

the contact rate for transmitting the infection and γ  

the probability that an infected individual is 

removed from the infection process
3
. We suppose 

that the birth rates 1 2,b b  and the death rates 1 2,d d  

are zero. The SIS model may be represented by the 

interacting scheme in Fig.1, with 2
12

x
a

N

β
≡  and 

21a γ≡ . The stochastic version of the SIS model 

may take the SDE Itô form 

( ) ( )1 2 1 2( ) , , , , ( ),d t t x x dt t x x d t= +x B Wµµµµ  

where ( ) ( )1 2 1 2, , ,
T T

x x W W=  =x W . From the 

general model, we deduce 

                                                 
3
 The ratio 1 /x Nβ  is the proportion of contacts by one 

infected individual and ( )1 2/x N xβ  the number of 

contacts by the infected population. The ratio 

1/ γ denotes the average length of the infection period. 

( )12 1 21 2 12 1 21 2, ,
T

a x a x a x a x= − + −µµµµ  

12 1 21 2 12 1 21 2

12 1 21 2 12 1 21 2

a x a x a x a x

a x a x a x a x

+ − − 
=  − − + 

V , 

and 

1/2 12 1 21 2
1 1

1 12

a x a x − +
= =  − 

B V . 

Omitting the time argument, the SDE in matrix 

form is 

1 2
2

1

2 1 2
2

11 2
2

2

1 1
/ 2 .

1 1

x x
x

dx N
dt

dx x x
x

N

dWx x
x

dWN

β γ

β γ

β γ

 − +  
= +  

   − 
 

−           +     −      

The numerical values by [3:pp.148-149] are 

0.04β = , 0.01γ =  with initial conditions 

( )1 0 950x =  and ( )2 0 50x =  . The time period 

is[ ]0,100 . The MATLAB code
4
 by [3: pp.129-130] 

allows 10,000 sample paths. Fig.2 displays the 

expected population sizes and one sample path for 

each subpopulation. 

                                                 
4
 The MATLAB code solves the stochastic system by 

using a Euler’s method. 
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Figure 2: Sample path and expected population size 

for susceptible and infected individuals in a 

stochastic SIS model with a total population of 

1,000. 

1.2.2 SIR epidemic model 

In the SIR epidemic model [4: pp.271-276, 5: 

pp.427-429], the population is divided into three 

categories of individuals: 1x  the susceptible 

individuals, 2x  the infected individuals and 3x  the 

recovered and immune individuals. The parameters 

of the model are denoted by β  the contact rate, γ  

the probability of recovery. There is no birth. The 

deterministic model is a system of ODEs 

1 2
1

2 1
2 2

3
2

( ) ( )
( )

( ) ( )
( ) ( )

( )
( ),

dx t x t
x t

dt N

dx t x t
x t x t

dt N

dx t
x t

dt

β

β
γ

γ

 = −



= −



=

 

where  1 2 3( ) ( ) ( )N x t x t x t= + + .  

In the stochastic model, ( )1 2,
T

x x=X is composed 

of continuous random variables. The changes that 

append and their corresponding probabilities are 

shown in Table 2. 

Table 2: Changes and corresponding probabilities in 

the SIR model. 

Change Probability Event 

( )(1) 1,1
T

X
 

∆ = −  1 2
1

x x
p t

N
β= ∆  2x  

infected 

( )(2) 0, 1
T

X
 

∆ = −
 

2 2p x tγ= ∆
 

2x  

recovered
 

The expectation vector µµµµ  and the variance-

covariance matrix V are 

[ ]
1 2

1 2
2

x x

N
E X t

x x
x

N

β

β γ

 − 
= ∆ = ∆ 

 − 
 

µµµµ  

and 

1 2

1

1 1

1 1

x x
N

N
x

β
γ
β

− 
 =  − + 
 

V . 

For this problem, the root squared matrix 
1/2=B V  

can be found by using the Allen’s formula 
5
[2]. We 

have 

11 2

1 11 1

1 1
/

1 12 2

.

N

xx x N

N NN N

x xx x

γ

ββ

γ γγ γ
β ββ β

+ −

=

− + ++ +

 
 
 
 
 
 
 

B

Omitting the time argument, the SDE of the 

stochastic SIR model is  

                                                 

5
 Let 

11 12

21 22

V V

V V
=

 
 
 

V , the Allen’s formula yields 

11 121/ 2

21 22

1 V V
V

V Vd

δ

δ

+
=

+

 
 
 

, where 

tr( ) 2d δ= +V and det( )δ = V . 
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1 2

1

2 1 2

2

1
11 2

2

1 1
1 1

1 1

/

1 12 2

.

x x

dx N
dt

dx x x
x

N

N

x dWx x N

dWN NN N

x xx x

β

β γ

γ

ββ

γ γγ γ

β ββ β

−

=

−

+ −

  +

− + ++ +

 
  
  

   
 

 
 

     
 
 

 In Fig.3, the stochastic sample path for each 

subpopulation is compared to the deterministic 

evolution (dashed lines).

 

 

Figure 3: Sample path and deterministic evolution in 

a stochastic SIR model.

 

1.3 Competition models 

In the competition models, multiple species interact 

in a closed area (habitat) without migrations [66: pp. 

416-458]. Two situations for two species are 

presented: the standard predator-prey model (PP 

model) for few populations and a PP model with 

overcrowding, when prey and predators are 

competing with themselves for limited foods. 

1.3.1 Standard predator-prey model 

The two species PP model is also derived from the 

general model for interacting species. The 

deterministic model takes the form  

( ) ( )

( ) ( )

1
1 1 2 1 1 1 2 1

2
2 1 2 2 2 1 2 2

( )
, ( ) , ( )

( )
, ( ) , ( ),

dx t
b x x x t d x x x t

dt

dx t
b x x x t d x x x t

dt

 = −

 = −


 

where 1x and 2x  are the population size of the prey 

and  predator, respectively. The standard PP model 

is obtained for 1 1(.)b b= , 1 1 2(.)d c x= , 2 2 1(.)b c x=  

and 2 2(.)d d= . In the stochastic version of the 

model, since we have 12 21 0a a= = , the mean 

vector is 

( )
( )

1 1 2 1

2 1 2 2

b c x x

c x d x

− 
=  

− 
µµµµ  

and the diffusion matrix is 

( )

( )
1 1 2 11/2

2 1 2 2

0

0

b c x x

c x d x

 +
 = =
 + 

B V  

Omitting the time argument, the standard stochastic 

PP model takes the form 

( )
( )

( )

( )

1 1 2 11

2 1 2 22

1 1 2 1 1

2
2 1 2 2

0
.

0

b c x xdx
dt

c x d xdx

b c x x dW

dWc x d x

−  
=    −   

 +          +    + 

 

In the numerical application, the parameter values 

(from [66: pp. 433-436]) are  1 2 2b d= = , 

1 0.01c =  and  2 0.02c = . Fig.4 shows the 

deterministic and the stochastic version of the 

standard PP model. The system has a cyclical 

pattern around the nonzero equilibrium 

point ( )100,200E . The trajectory is perturbed 

when a white noise is introduced. 
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Figure 4: Trajectory of the deterministic and 

stochastic standard PP model around the equilibrium 

point ( )100,200E . 

1.3.2 Predator-prey model with  overcrowding 

In the PP model with overcrowding, we suppose 

that the numerous prey and predators come into 

competition with themselves for a limited food. The 

overcrowding factors 1xβ−  and 2xδ−
 

are 

introduced into the equations for prey and predators, 

respectively. We have the deterministic system 

( )

( )

1
1 1 1 2 1

2
2 2 2 1 2

( )
( ) ( ) ( )

( )
( ) ( ) ( ) .

dx t
x t b c x t x t

dt

dx t
x t d c x t x t

dt

β

δ




 +


= − −

= − −
 

Taking the parameter values from [66: pp. 441-443], 

we have 1 2 2b d= = , 1 0.01c =  , 2 0.02c =  and  

0.0133β = .  The stochastic version of the model 

introduces a multiplicative noise and takes the form 

(omitting the time argument) 

( )
( )

1 1 1 2 1 1

2 2 2 1 2 2

1 1

2 2

0
,

0

dx b c x x x
dt

dx d c x x x

x dW

x dW

β
δ

σ
σ

 − 
    + −   

  
  
  

−
=

−

                     +

 

where σ  scales the amplitude of the noise (with 

0.1σ = ). 

Fig.5 illustrates an asymptotically convergence 

towards the equilibrium point ( )112.5,50E . In the 

random case, the perturbed trajectory also converges 

to the nonzero equilibrium point. 

 

Figure 5: Trajectory of the deterministic and 

stochastic PP model with prey-overcrowding around 

the equilibrium point ( )112.5,50E . 

1.3.3 General population dynamics 

Suppose a closed system (no migration) with two 

species. The possible interactions may correspond to 

one of the following four situations: 1) a 

competition between and/or within the two 

populations, 2) a conflict between them, one being a 

prey and the other a predator, 3) a mutual benefit of 

both populations or 4) completely independent 

species. Such situations are depending on the sign of 

the parameters as indicated in Table 3. The two-

species system is  

 

( )

( )

1

2

1 1 11 1 12 2

2 2 21 1 22 2

( )
( ) ( ) ( )

( )
( ) ( ) ( ) .

dx t
x t a b x t b x t

dt

dx t
x t a b x t b x t

dt


= + +


 = + +


(1) 

Fig.6 illustrates
6
 the deterministic Lotka-Volterra 

(L-V) system [50,70] for which one population 1x is  

                                                 
6
 The Mathematica primitive Manipulate[…] creates an 

interactive object (as in Fig.6 and 7] containing controls 

(sliders) for different parameters of the system. These 

interactive applications let explore different ranges of 

values for the coefficients, the time-delays and the initial 

conditions. The consequences on the results of such 

modifications are observed immediately. 
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the prey (e.g. rabbits, plants) and the other 2x  the 

predator (e.g. foxes, herbivores). As shown, the 

trajectories turn around the nonzero steady state 

counterclockwise. Using the 2-species system (1), 

without internal competition 11 22 0b b= = . We find 

that the solution trajectory in the phase plane is  

( )1 2 21 1 2 1

12 2 1 2 1

( ), ( ) ( ) ln ( )

( ) ln ( ) ,

H x t x t b x t a x t

b x t a x t k

≡ + −

                               − =

 
 

 

where 1k is the constant of integration (See [22:  pp. 

428-454] and [67:  p.607]. 

 

Figure  6: Lotka-Volterra  system without internal 

competition. 

 

Table 3. Population dynamics. 

 

The generalization to n interacting species is the 

n− dimensional Lotka-Volterra system 

1

( )
( ) ( ) , 1, ,i

n

i i ij j
j

dx t
x t a b x t i n

dt =

 
= + =∑ 

 
…    

where the ai ’s are the intrinsic growth rates, and the 

ijb ’s the interaction rates, whose signs reflect the 

type of population dynamics. In matrix form, we 

also have 

 ( )( ) ,
(t)

diag (t) (t)
d

dt
= +x a Bx

x
(2) 

where , ,n n n×∈ ∈x a BR R     . The existence of an 

equilibrium solution x  requires + =a Bx 0 . [23] 

shows that x  is globally stable in 
n
+R if there is 

( )1
diag , , nc c=C … with 0, 1, ,ic i n> = …   such 

that  

 
T+CB B C (3) 

is negative definite.  
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2 Delay Lotka-Volterra System
7
 

2.1 Multispecies delay systems 
To model the population dynamics of 

n interacting species in a common habitat, an 

n − dimensional system of DDEs may be 

introduced. A delayed effect of one species
8
 on 

another is introduced by means of lagged interaction 

terms 
9
, such as 

 ( )( )(t)
diag ( ) ,(t)

d
t

dt
τ= + −x

x a B x  (4) 

where ,,
n n n×∈ ∈x a BR R  . The  autonomous 

competitive or cooperative L-V system  may have 

several time-delays, as in  [51] 

( )

1 1
( ) ( )( ) ,

1, ,

n nt
i i ij j ij j ij

j j

dxi t
dt

x t b a x b x t

i n

τ
= =

= − − −∑ ∑

= …

 
 
 

                        

 

 

where  1, ,i n= … . All the coefficients are real 

constants
10

. The permanence of all the populations  

supposes that the linear system 

1 1
0

n n

ij j ij j
j j

b a x b x
i = =

− − =∑ ∑  

has a positive solution. 

Let a simplified L-V system of the form [25] 

                                                 
7
 Bocharov et al. [14] analyse the qualitative and 

quantitative effects of time-delays in population 

dynamics, epidemiology, physiology, immunology, 

neural networks and cell kinetics. 
8
 The delay is generally justified by resources that have 

been already accumulated. 

9
 The predator-prey system with aftereffect has been 

introduced by Volterra (1931)[70]. The growth rate of a 

species is also influenced by the past history of the 

population. Thus, the loss of prey may affect the growth 

rate of predators in future [46]. 

10
 The bi ’s are birth rates ( 0bi > ) or death rates 

( 0bi < ). The L-V system is competitive with time delays, 

if , 0, , 1, ,a b i j nij ij > = …  . 

 On the contrary, the L-V system is cooperative with time 

delays, if , , 0, , 1, , ,0 0a a b i j n i jii ij ij < = ≠> < …  .  

 

 .( )
1

( )i
n

i i ij j jj
j

x t b a x t
dx

dt
τ

=

 
= − −∑ 

 
(5) 

Theorem 1. (Gopalsamy, 1991) [25] Suppose that 

the L-V system (5) satisfies the  conditions 

(i)  the coefficients , ( , 1, , )b a i j n
i ij

= …   are 

real constants such that 0, 1, ,iia i n> = …  and the 

system (5) has a positive steady-state equilibrium 

x  such that 
1

, 1, ,
n

ij j i
j

a x b i n
=

= =∑ …   

(ii) 1q eτ > ,where 

 
1

1,

min
n

i ii ji
i n

j j i

q x a a
≤ ≤

= ≠

   
      

= − ∑  and { }
1
min ii
i n

τ τ
≤ ≤

=ɶ  . 

Then every nonconstant solution of (5) on ),τ− ∞ is 

oscillatory about the steady-state. 

Proof. See  [25:  pp.442-447].⁪ 

2.2 Instability effects of delays 
Let the two species L-V system be the numerical 

system 

( )

( )

1

2

1 2 2

2 1 1

( )

( )

( ) 1 ( )

( ) 2 ( ) ,

dx t

dt

dx t

dt

x t x t

x t x t

τ

τ







= − + −

= − −
 

where 1( )x t and 2 ( )x t denote the biomass of the 

predator (or parasite) and of the prey (or host), 

respectively. Without delays ( 1 2 0τ τ= = ), there is 

a stable periodic solution which expression is 

.( ) 2 ln ( ) ( ) ln ( ) ( )
1 1 2 2 1

H t x t x t x t x t k≡ + + − =  

The presence of time-delays in biological systems 

is a potential source of non-stationary problems 

(periodic oscillations and instabilities): the loss of 

stability intervenes at a certain threshold. Fig.7 

depicts the dynamic instabilities due to the two lags 

1
0.45τ =  and 

2
0.25τ = . However, time-delays can 

also enhance stability, and short time-delays can 

stabilize unstable dynamical systems  [10]. 
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Figure 7:  Effect of time-delays on the periodic orbit 

of the L-V system. 

2.3 Delay Lotka-Volterra food chain 
Let the LV system of food chain with time- 

delayed interactions, for three species 

 ( )( )(t)
diag ( ) ( ) ( ) ,

d
t t t

dt
τ= + + −x

x b A x B x   (6) 

where 
3 ,∈x R 
1 11 12

2 22 21 23

3 33 32

0 0 0 0

, 0 0 , 0 .

0 0 0 0

b a a

b a a a

b a a

− −     
     = − = − = −     
     − −     

b A B  

The states 1 2,x x  and 3x  are respectively the 

population densities for a prey, an intermediate 

predator and a top predator. Gard [23:  p.174] 

shows
11

 that a stationary equilibrium 

( )1 2 3
, ,

T
x x xx = exists in the positive cone 3

+R , if 

 11 11 22 12 21
1 2 3

21 21 32

0
a a a a a

b b b
a a a

+
− − >   

The equilibrium is globally asymptotically stable as 

long as the condition  (3) is satisfied
12

. 

 

                                                 
11

 The notations have been adapted to this study. 

12
 Indeed, we have 

1 11

2 22

3 33

0 0

( ) ( ) 2 0 0

0 0

T

c a

c a

c a

+ + + = −
 
 
 
 

C A B A B C . 

 

3 Stochastic Delay Lotka-Volterra 

System 

3.1 Stochastic Lotka-Volterra system 

   Let the nondelay multispecies L-V system be (2), 

and suppose that all the parameters ijb ’s are 

stochastically perturbed  [54] with  

( ) /ij ij ijdW t dtb b σ→ + , where ( ) /dW t dt  is a white 

noise. The SDEs corresponding to that system is
13

 

 ( ) ( ){ }(t) diag (t) (t) (t) (t) ,d dt d= + +x x a Bx x Wσσσσ (7) 

where ,n n n×∈ ∈a BR R  and where the noise 

intensity matrix ( )ij
n n

σ
×

=σσσσ supposes  that (H1): 

0iiσ > if 1 i n≤ ≤ , while 0ijσ ≥ if i j≠ . The 

nonnegative solution 
14

 may explode in a finite time, 

since the coefficients do not satisfy the linear 

growth sufficient condition, though they are locally 

Lipschitz continuous: the Lipschitz condition 

ensures the existence and uniqueness of the solution, 

whereas the linear growth condition ensures the 

boundedness of the solution. Mao et al. (2002)[54] 

prove that the environmental Brownian noise 

suppresses a deterministic explosion. 

Theorem 2.  (Mao, Marion, & Renshaw 2002) 

[54] Under assumption  H1, for any coefficients 

,a B and any initial value 0
n
+∈x R , there is a unique 

global solution ( )tx to (7) on 0t ≥ . Moreover, the 

solution will remain in the cone n
+R  with probablity 

one. 

Proof.  See [54: pp. 99-102]. 

   3.2 Stochastic delay Lotka-Volterra 

system  

   The following delay LV system generalizes the 

deterministic n -dimensional  system  (4). We have , 

as in (6)[9, 11, 16, 55] 

                                                 
13

 All the coefficients may be stochastically perturbed 

with 
1
( ) /d t dt→ +b b Wββββ 

 
and 

2
( ) /d t dt→ +A A Wσσσσ , 

where 
1
( )tW and 

2
( )tW  are independent Brownian 

motions , as in [54]. 

14
 The size ix of the ith species should be nonnegative. 
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( )( )( )
diag ( ) ( ) ( ) , nd t

t t t
dt

τ= + + − ∈x
x b Ax Bx x R

(8) 

   Suppose a noisy environment, where  the intrinsic 

growth rates ib ’s are replaced by 

( ) ( ) /i ii j j dW t dtb x xσ+ − , where 
jx is an 

equilibrium state component, iiσ ’s  positive 

constants, ( )W t a Brownian motion on a completely 

probability space { }( ), , ,
0t t

Ω ≥ PF F . The Lotka-

Volterra SDDE, corresponding to (8)  is 

 
( ) ( ) ( )( ){

( ) }
( ) ( )

( )

(t) diag ( ) t t dt

t d

d t τ− + − −

              + −

= A x x B x x

x x W

x x

                              σσσσ

 

              
(9) 

Theorem 3  (Mao, Yuan, & Zou, 2005)[55] Under 

assumption (H1), for any coefficients A , B and any 

initial data { } ( )( ) : ,0 ,0 ; nt t Cτ τ∈ − ∈ −       +x R , 

there is a unique global solution ( )tx to (9) on 

t τ≥ − . Moreover , the solution will remain in the 

cone n
+R  with probability one.

15
 

Proof.  See [55: pp. 303-305]. 

3.3 Stochastic delay Lotka-Volterra food 

chain
16
 

The stochastic version of (6), around the equilibrium 

state x  is 

                                                 
15

 The uniqueness of a positive solution under some 

conditions and the fact that the solution will not explode 

in a finite time with probability one has been also proved 

by [77] for a generalized stochastic delay L-V system of 

the form 

( ) ( ) ( )( ){
( ) } ,

( ) diag ( ) ( ) ( )

( ) ( )

d t t t t dt

t d t

τ= + −

                                             +

x x f x g x

h x W
 

where , : n nf g ֏R R , : n n m×h ֏R R  are continuous 

functions and ( )1( ) ( ), , ( )
T

mt W t W t=W … an 

m − dimensional Brownian motion. 

16
 This stochastic L-V system with constant time-delay 

has been extended to a variable time-delay in [75]. 

 
( ) ( ) ( )( ){

( ) } 3

( ) diag ( ) ( ) ( )

( ) ( ) ,

d t t t t dt

t d t

τ

τ

= − + − −

                  + − − ∈

x x A x x B x x

x x W x R              σσσσ

 (10) 

where ( )11 22 33diag , ,σ σ σ=σσσσ . Mao et al [Mao05] 

conclude that the equilibrium x  is globally 

asymptotically stable with probability one , if two 

conditions are satisfied. Letting 
2 2 2

11 22 33ĉ a a a
− − −= + + , 

we have the two conditions 

 ( ) ( ){ }2 2 2 2
12 32 21 23

ˆ 1c a a a a+ ∨ + ≤ (11) 

and  

 
( ) ( )( ){ }2 2 2 2 2

12 32 21 23 ,

1

ˆ1ii
ii

i

i n

a
c a a a a

x
σ

≤ ≤

≤ − + ∨ +

                  

 (12) 

The condition (11) guarantees [55] that the steady 

state equilibrium x  of the deterministic system  (6) 

is globally asymptotically stable. The condition (12) 

gives [55]  the upper bound for the noise, so that the 

equilibrium of the SDDE (10) is still globally 

asymptotically stable with probability one. 

 

4 Conclusion 
Two questions deserve to be addressed for 

conclude: the main features, goals and limitations of 

this study and the further developments and 

applications in this domain. This introductive 

research has been concentrated on real life modeling 

of populations, by using both diffusion and 

competition standard models with time-delays in a 

noisy environment: simple epidemic models and 

predator-prey models with possibly overcrowding.  

The two mathematical software MATLAB ®/ 

MathWorks and  Wolfram/MATHEMATICA ® have 

been used to compute and graph examples. The 

modeling process consists in three main steps, as it 

is shown with simple examples: firstly, the 

definition of events and their respective probability, 

secondly the determination of the mean vector and 

of the covariance matrix, and thirdly the elaboration 

and resolution of   an Itô matrix SDE. This 

presentation is restricted to a maximum of two 

species. Constant time-delays and white noise are 

considered. The stochastic models are supposed to 

incorporate only small time-delays. The resolution 

of such equations may require approximation 

techniques and use the Euler-Maruyama approach. 

Forward Kolmogorov equations (Fokker-Planck 

equations) are used to find the probability density 
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function of solutions.  Appendices allow to specify 

some technical aspects of the modeling process: the 

basic environmental noise modeling, the Ornstein-

Uhlenbeck process, the delay stochastic process and 

the logistic case modeling with constant (small) 

delays. 

Further developments and applications  may extend 

this introductive presentation[3, 53]. The models 

can be generalized to multiple species. Other 

specifications may be chosen as an alternative to the 

Verhulst approach, such as with Gompertz or 

Richards [64]. Other domains of the population 

biology may be treated. Larger and variable time-

delays may be considered. The resolution may use 

another approximation techniques like the Milstein 

method [18, 71]. Periodic oscillations may be 

applied to the parameters. Turing instability is 

analysed by [32] in a discrete competitive L-V 

model. SDDEs are used in the modeling of the 

genetic regulation due to biochemical reactions [69]. 

Volterra-Fredholm integral equations are used by 

[61]. Backward Kolmogorov equations may be used 

to estimate the mean persistence-time of the system, 

i.e. the expected time it takes to have a zero size of 

either population [3]. Other aspects of the domain 

may introduce more realism: different habitat for 

prey and shared resources, distributed delays, ratio-

dependent models [20, 36] and age-structure. Other 

domains are infection in marine bacteria populations 

[12, 13, 17, 28, 49] , cotton fiber breakage [68] 

 

 

Appendix A.  Environmental Noise 

Modeling
17
 

Consider one species population dynamics in a 

varying environment [3:pp.153-156]. The simple 

deterministic model is 

( )
( ) ( ) ( ) ( )

dx t
b t x t d t x t

dt
= − , 

where ( )x t  denotes the time-continuous population 

size, and ( ), ( )b t d t the time-continuous per capita 

birth and death rates, respectively. The environment 

is supposed to produce random effects on the birth 

                                                 
17

 SDELab [24] is a package for solving SDEs within 

MATLAB including Milstein’s method. Picchini [62] 

also developed a SDE toolbox for the simulation and 

estimation of SDEs with MATLAB. Higham [33] 

introduces to the numerical simulation of SDEs in 

MATLAB with codes. MATLAB codes for SDDEs are in 

[59]. 

and death rates. The changes in t∆ for 

, ,x b d∆  ∆  ∆ are presented in Table 4 with their 

corresponding probabilities. 

Table 4: Possible changes in a noisy environment 

with corresponding probabilities in t∆ . 

 

Change Probability 

(1) 1x∆ = −  1p d x t=  ∆  

(2) 1x∆ =  2p b x t=  ∆  

(3) 0x∆ =  ( )3 1 21p p p= − +  

(1)

bb α∆ = −  ( )4 ( )b bp q b b tβ= − − ∆
 

(2)

bb α∆ =
 ( )5 ( )b bp q b b tβ= + − ∆

 

(3) 0b∆ =
 ( )6 4 51p p p= − +

 

(1)

dd α∆ = −
 ( )7 ( )d dp q d d tβ= − − ∆

 

(2)

dd α∆ =
 ( )8 ( )d dp q d d tβ= + − ∆

 

(3) 0d∆ =
 ( )9 7 81p p p= − +

 
 

In the expressions of the probabilities 4 5,p p , the 

terms ( )b b bβ± − correspond to the drift, while 

bq t∆ is with the diffusion process. The probability 

of moving closer to the average b is greater than the 

probability of moving away from it [3]. The system 

of Itô SDEs is deduced from the mean vector-valued 

µµµµ  and from the square root of the matrix-valued 

covariance . We have 

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Andre A. Keller

ISSN: 1109-9518 123 Issue 4, Volume 8, October 2011



( )
( )

1

2

3

2

2

0 0

0 2 0 .

0 0 2

b b

d d

b b

d d

b x d xdx

db b b dt

dd d d

b x d x dW

q dW

dWq

α β

α β

α

α

 −     
   = − +    

   − 

 −                        

 

 

 

The numerical values in the application are (as in 

[3]) 1T = , 2 2 1b b d dα β α β= = , 

2 2 0.5b b d dq qα α= = , 1b = , 1.4d = , 

0 30x = , (0) 1b b= =  and (0) 1.4d d= = . Fig.8 

plots the effect of the environmental noise on the 

states ( ), ( ), ( )x t b t d t  . The absence of 

environmental noise supposes 2 2 0b b d dα β α β= =  

and 2 2 0b b d dq qα α= = . 

 

 

Figure 6: Effect of the environmental noise on the 

population size, on birth and death rates. 
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Appendix B. Ornstein-Uhlenbeck 

Process 
The Ornstein-Uhlenbeck process [60: p.75] is the 

unique solution tX of the following Langevin 

equation [63] 

 0, given.t t tdX aX dW Xσ= − +    

The explicit solution is
18

  

( )
0

0

t a s tat

t sX X e e dWσ −−= + ∫
 

 
 

The mean and variance are 

[ ] [ ]
2

2

0

1
, .

2

at
at

t t

e
E X X e Var X

a
σ

−
− −

=  =   

Proof.  

[ ] 0 0
0

,
t

at at as at

t sE X X e e E e dW X eσ− − − = + =  ∫
 

 
 

since ( )2

0

t
asE e ds  < +∞  ∫

 

 
 and 

0

t
as

se dW∫
 

 
 is a 

zero martingale at time 0t =  QED. 

[ ] [ ]( )

( )

2

2
2 2 2 2 2

0 0

2

2

,

,

1
. QED

2

t t t

t t
at as at as

s s

at

Var X E X E X

E e e dW e E e dW

e

a

σ σ

σ

− −

−

= −

              = =

−
              =

  

   
   ∫ ∫

□

  

  

    

Let the SDE 

 ( ) ( ), ,t t t tdX f t X dt g t X dW= +  (13) 

The probability density function (pdf) of (13)

satisfies  the forward Kolmogorov equation 

( )( ) ( )( )
2

2

2

1
, ,

2

p
p f t x p g t x

t x x

∂ ∂ ∂
= − × + ×

∂ ∂ ∂
, 

                                                 
18

 To find the explicit solution, we may take the 

integrating factor 
ate , multiply both sides of the SDE, 

compare with ( )at

td e X , and integrate (see also [48, 

79]).  

where ( ),p p t x≡  is the pdf.  For the Langevin 

SDE 

             0, 0t t tdX X dt dW Xσ= − +  = , 

Fig.9 graphs a numerical example for 10σ = , of 

the pdf over time, of the probability distribution at 

the final time and the second moment  of  ( )X t  

over time.
19

  

 

Figure 9: Probability density function over time 

satisfying the forward Kolmogorov equation with 

10σ = : (a) pdf over time, (b) pdf  at the final time 

and (c) second moment of  ( )X t  over time.  

Remark: the mean-reverting Ornstein-Uhlenbeck 

process is the solution tX  of the following SDE 

( ) ,t t tdX X X dt dWσ= − +  

where X is a constant and for 0X  
given. The 

solution is 

( )0
0

t
t s t

t sX X X X e e dWσ− −= + − + ∫
 

 
 

The mean and the variance are 

[ ] ( )0

t

tE X X X X e−= + −
 

                                                 
19

 The original MATLAB codes for the forward and 

backward Kolmogorov equations are available on line at 

http://www_math.bgsu.edu/~zirbel/sde. 
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and 

[ ] ( )
2

21 .
2

t

tVar X e
σ −= −

 

Fig.10 plots a path for both process, with the 

following data 10, 0.5, 0.1T a σ=  =  =  and 

0 1, 0.5X X= = . 

 

Figure 10: Orstein-Uhlenbeck process (a) and mean-

reverting version (b) with mean and 95% confidence 

bands. 

 

Appendix C.  Delay Stochastic Process 

 

C.1 Itô formula [3, 21, 45,60] 

Definition 1.  (Wiener process). A continuous-time 

stochastic process ( ), 0z t t ≥ is a  Wiener process 

(or Brownian motion), if it satisfies the three  

properties 

(i) initial value (0) 0z = , 

(ii) stationary independent increments 

( ) ( )1k kz t z t −−
 
for 1, ,k n= …  

(iii) Normal distribution with 

( ) ( ) ( )z t z s t s µ  − = −E  and  

( )2 2( ) ( ) ( )z t z s t s σ 
  

− = −E , where µ denotes the 

drift and σ the diffusion rate
20

. 

Theorem 4.  (Itô’s formula) (Oksendal, 2003[60]) 

Let ( )x t be an Itô process given by 

t tdX u dt b dB= +  . Let (.)g  a twice continuously 

differentiable function . Then ( ),t tY g t X= is again 

an Itô process, and 

( ) ( )

( )( )
2

2

2

, ,

1
, ,

2

t t t t

t t

g g
dY t X dt t X dX

t x

g
t X dX

x

∂ ∂
= +

∂ ∂
∂

                    +
∂

 

where ( ) ( )( )2

t t tdX dX dX= is calculated according 

to the multiplication rules  

. . . 0, .t t t tdt dt dt dB dB dt dB dB dt= = = = . 

Proof. See  Oksendal (2003)[60: p.46]. 

C.2 Stochastic Delay Differential Equation 

[41, 60, 72]. 

Let a stochastic nondelay differential equation 

(SDE) be 

 ( ) ( ), , ,t

t t t

dX
b t X t X W

dt
σ= + (14) 

where (.)b  and (.)σ  are given functions and tW is 

the white noise process
21

.  According to (14), tX is 

the solution of the integral equation 

                                                 
20

 The probability function is given by  

( )
2

1
1

22 .( ) 2

z

tf z t e

µ
σπσ

 
  
 

−− −

=  

21
 We can replace k kW t∆ by ,

k
t t

kk
B B B= −△ where the 

process { }
0t t

B
≥

is the Brownian motion [60:  p.22].  
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 ( ) ( )0
0 0

, , ,
t t

t s s sX X b s X ds s X dWσ= + +∫ ∫
  

  
  (15) 

for an appropriate Itô or an Stratonovich 

interpretation 
22

of the second integral in (15). 

C.3  Solution to  basic stochastic processes 

Example 1.  (Geometric Brownian Motion 

(GBM). For a  GBM  taking the form  

 ,
( )

( )
( )

dx t
a dt b dW t

x t
= +  (16) 

 the solution in term of ( )W t is
23

 

 

2

( )
2

( ) (0) , 0

b
a t bW t

x t x e t

 
 
 
 

− +

= ≥    ‚ (17) 

Proof. By integrating both sides of (16), we get 

( )
( )

( )

dx t
at bW t

x t
= +∫ . To evaluate the integral on the 

LHS, the Itô formula is used for the function 

( , ) ln , 0f t x x x= > . We have 

( )21
( , ) ' ' "

2
t x xxdg t x g dt g dx g dx= + + . After some 

calculations, we deduce 
2( ) 1

ln ( )
( ) 2

dx t
d x t b dt

x t
= − , 

then evaluate the integral as 

2

0

( ) ( ) 1
ln

( ) (0) 2

t dx t x t
b t

x t x
= +∫  and get (17).QED⁪ 

Example 2.  (Stochastic delay logistic equation). 

For a logistic SDDE taking the form 

                                                 
22 The Itô and the Stratonovich stochastic integrals 

generally differ [3]. For example, the Itô integral 

( )
0

2
1 2 2

2 2
( ) ( ) ( ) (0)

t t
W s dW s W t W− −=∫
 

 

, 

         differs from  the Stratonovich integral for this example 

( )
0

1 2 2

2
( ) ( ) ( ) (0) .

t

W s dW s W t Wο −=∫
 

 

   

Proof. See [3:  pp. 80-81]. 

23
 Numerical applications may use the Mathematica 5.1  

packages Statistics`ContinuousDistributions`,   

StochasticEquations`EulerSimulate` and Itovns3 [43, 44]. 

The primitive of EulerSimulate is 

EulerSimulate[drift,diffusion,{x,x0},{duration, nsteps}] . 

The primitive returns a list of simulated values for the 

corresponding Itô process. 

( ) ,
( )

( ) ( ) 1 ( ) ( )
x t

dx t ax t dt g x t dW t
K

 
  
 

= − +  

the solution in term of ( )W t is 

2

2

( )
2

( )
2

0

(0)
( ) , 0

(0)
1

b
a t bW t

b
a s bW st

x e
x t t

x
a e ds

K

 
 
 
 

 
 
 
 

− +

− +
= ≥

+ ∫
 

 

  ‚   

Proof. See Gard (1988)[23], p. 166. 

C.4  Small delay stochastic process 

   Now, consider the  following SDDE [29, 30] 

( ) ( ) ,( ) ( ), ( ) ( ) ( )dx t f x t x t dt g x t dW tτ σ= − + (18) 

where (.)f  and (.)g  are known functions, τ is the 

time-delay, σ scales the noise amplitude and 

( )W t is a Wiener process for which ( ) 0W t< > =  

and 
2( )W t t< > = . If (18) is interpreted using 

Stratonovich calculus, the equivalent Itô formulation 

is 

( ) ( ) ( )

( )
0

0 0 0

( )

2

0

( ) , ( )
2

( ) ( ).

x x t

d
dx t f x x t g x g x dt

dx

g x t dW t

σ
τ

σ

=

= − +

+

 
 
 

                                                                        
 

(19) 

Example 3.  A stochastic delay logistic equation 

satisfies the following SDE 

 ( )( ) ( ) ( ) ( ) ( ).dx t x t a bx t dt x t dW tτ σ= − − +  (20) 

According to the Stratonovich interpretation of (20), 

we have the equivalent Itô SDDE 

2

( ) ( ) ( ) ( ) ( ).
2

dx t x t a bx t dt x t dW t
σ

τ σ
 

= + − − + 
 

  ‚  

Proof. From (18), we use  the following 

equivalences ( ) ( )( ), ( ) ( ) ( )f x t x t x t a bx tτ τ− ≡ − −   

and ( )( ) ( )g x t x t≡ . 

A ( )2O τ Taylor expansion on 

( )( ), ( )f x t x t τ− around 0τ =  yields 
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( ) ( )

( )
( )

( ), ( ) ( ), ( )

( ), ( ),

x x t

f x t x t dt f x t x t dt

f x t x dx t
x

τ

τ
τ

τ

τ
=

−

 ∂
                        −  ∂ 

≃

 

where xτ  
is a dummy variable. According to 

(18), we get the following (Stratonovich) 

approximation 

( ) ( )( ) ( ) ( ) ( ),a adx t f x t dt g x t dW tσ= + � (21)  

where 

( ) ( ) ( )
0

0 0 0 0, 1 ,a

x x

f x f x x f x x
x

τ

τ
τ

τ
=

 ∂
≡ − ∂ 

(22) 

and  

( ) ( ) ( )
0

0 0 01 ,a

x x

g x g x f x x
x

τ

τ
τ

τ
=

 ∂
≡ − ∂ 

,(23) 

where 0 ,x xτ are dummies. 

Example 4. The Stratonovich SDE approximation 

of the SDDE (20) is 

( ) ( ){ }
( )

( ) ( ) ( ) 1 ( )

( ) 1 ( ) ( )

dx t x t a bx t bx t dt

x t bx t dW t

τ

σ τ

= − +

                        + + �   ‚
 

Proof. In fact, we have the approximations 

( ) ( ) ( )0 0 0 01af x x a bx bxτ= − +  

and  

( ) ( )0 0 01ag x x bxτ= +  

Then, we apply (21) to (23). 

The equivalent Itô SDE approximation is 

deduced from (19), and we get 

( )

( )} ( )

2
2( ) ( ) 1

2

1 ( ) ( ) 1 ( ) ( )

dx t x t a b

bx t dt x t bx t dW t

σ
τσ

τ σ τ

  
= + − −  

  

× + + +  

(24) 

Appendix D.  Stochastic Delay Logistic 

Equation 

D.1 Logistic growth 
A single species population growth ( ) /dn t dt not 

only with the population size ( )n t . As it grows, its 

members come into competition for food and other 

limited resources. Additional deaths are due to the 

( 1) / 2n n − interactions.  We then have 

( )
.

( ) ( ) ( ) 1
( )

1 2

dn t

dt

n t n t
k n t k

−
= −     

In a constant environment ( , )r K , we may also write  

as in [35: p. 33] 

( )
,

( )
( ) 1

dx t

dt

x t
r x t

K

 
= − 

 
   

 where r is the Malthusian growth rate and K the 

carrying capacity of the environment 
24

 . The global 

solution is  

( )
0( ) , 0

1
0

r tK x e
x t t

r tK x e
= ≥

+ −

  
    

Proof. The solution can be obtained by separating 

the variables. Integrate the inverse
dt

dx
yields ( )t x  

and invert.  � 

D.2  Delay logistic equation 
The population growth may be controlled by a  

feedback loop with reaction lag, as in the following 

Hutchinson logistic form  [27, 31, 37] 

( ) ( )
( ) 1 , , 0

dx t

dt

x t
r x t r K

K

τ− 
= − > 

 
     

  where τ denotes the required time-lag to reproduce 

a limited resource. Rescaling the variable with 

( ) 1
t

x t K y
τ

= +
  
  

  
, 

 we have the Wright’s equation [43, 73] 

( )( )
1 ( ) ( ), ( ) 0,

dy t

dt
y t y t y t tα τ τ= − + − > ≥     

where  rα τ=  . Qualitative studies show that the 

presence of time-delays is a potential source of non-

                                                 
24

 In a changing environment, the parameters r  and K  

become time-dependent (periodic) functions. The 

solution is also a periodic solution (see [78]). 
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stationarities such as with periodic oscillations and 

instabilities  (Table 5) [10] 

Table 5:  Pattern of the solution 

 

αααα  

 
Solution pattern 

 

 

( )1
0, e

−
 

 

Monotonic convergence to K  

1
,

2
e

π− 
 
 

 
Oscillatory convergence to K  

 

,
2

π
∞

 
 
 

 
Oscillations in a stable limit 

cycle    

 

Changing the variable, we may write the equivalent 

form 

 ( )( )
( )

dx t
dt

f x tα τ= − −  (25) 

Proof. The equivalent form (25) is obtained by 

letting ( )ln 1 ( ) ( )y t x t+ ≡ for ( ) 1y t > − , and 

.( ) 1xf x e= −  
By reparameterizing the equation and by scaling the 

time [19], we also get 

( ) .( 1)
( )

f x t
dx t

dt
ατ= − −  

 

D.3 Stochastic logistic growth 

Some assumptions can be retained on the 

probabilities of birth and death rate changes [5]. 

Table 6 shows the possible changes and their 

corresponding probabilities
25

. 

 

Table 6: Changes in the logistic growth  model with 

corresponding probabilities. 

                                                 
25

 One another set of assumptions is mentioned by [5]: 

( )1
1 / (2 )p rX X K t= − ∆  and ( )2

2
: 2p rX K t= ∆ . 

These assumptions yield the following  SDE: 

( )( ) ( ) 1 ( ) / ( ) ( ).dX t rX t X t K dt rX t dW t= − +  

Change Probability 

(1) 1X∆ =  ( )1p rX t= ∆  

(2) 1X∆ = −  ( )2

2 /p rX K t= ∆  

The following SDE corresponds to the mean change 

and to the variance per time interval. We get 

( )
( ) ( ) 1

( )
( ) 1 ( ),

X t
dX t rX t dt

K

X t
rX t dW t

K

= −

+ +

 
 
 

 
 
 

                   

 

where )0,X ∈ ∞ . To approximate the solution 

numerically, a discretization of the time interval 

0 ,t T    is such as 0 1 n nt t t t T< < < < < =⋯ ⋯ . 

According to the Euler-Maruyama method, we have 

the following iterative scheme 

1 1

1 ,

n
n n n

n
n n n

n

n

X
X X rX h

K

X
X rX h W

K

+

 
= + − 

 

 
              + + +  ∆ 

 
               

 

ɶ
ɶ ɶ ɶ

ɶ
ɶ ɶ

 

where )0,nX ∈ ∞ɶ  and ( )n nX X t=ɶ
 

is the 

discretization of tX at times 

1

0
,

n

n kk
t

−

=
= ∆∑ 1

1

n

n

t

n n n
t

h t t ds
+

+= − = ∫
 

 

 the discrete 

time interval, and 

( ) ( ) 1

1

n

n

t

n n n s
t

W W t W t dW
+

+∆ = − = ∫
 

 
 

( )0, nN h∼ the Wiener with normal distribution and 

( )0 0W t = . Fig.11 plots three sample paths for this 

stochastic process, with the deterministic evolution 

with the following numerical values: 250T = , 

0.02r =  and 10K = . 
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Figure 11: Three sample paths for the stochastic 

logistic model and deterministic evolution. 

The forward Kolmogorov differential equation 

(Fokker-Planck equation) for the logistic SDE yields 

the probability distribution of the solution. The 

parabolic partial differential equation (PDE) for this 

process is
26

 

( ) ( )
2

2

2

1
( ) ( ) ,

2

p
f x p g x p

t x x

∂ ∂ ∂
= − × + ×

∂ ∂ ∂
 

where ( ),p p t x≡  is  the pdf,  and two functions 

are defined by ( ) : 1
x

f x rx
K

 = − 
 

 and 

( ) : 1
x

g x rx
K

 = + 
 

. 

The logistic SDE is useful to model fisheries 

management problems [38]. The SDE may also be 

developed from the deterministic model in three 

different ways. Let the deterministic logistic be the 

ODE 

( ) ( )( )
1 .

X tdX t
rX t

dt K

 
= − 

 
 

                                                 
26

 For a Brownian motion, the pdf  is the solution of the 

following PDE: ( )
2

2
, ,

2
( , )

K
p xp t x

t x
=  ∈ −∞ ∞

∂ ∂
∂ ∂

. 

The pdf has a normal distribution, with zero mean and 

variance Kt . We have 

( ) ( ) ( ) ( )2

0
1

/ 2
, 2

x x Kt
p t x Kt eπ

− − −= . 

In the first way for modeling, a stochastic term is 

just added to provide the SDE 

( )
( ) ( ) 1 ( ) ( )

X t
dX t rX t dt X t dW t

K
σ = − + 

 
. 

The second way is to replace the parameter r by 

( )r W tσ+ , then obtaining the SDE 

( )
( ) ( ) 1

( )
( ) 1 ( ).

X t
dX t rX t dt

K

X t
X t dW t

K
σ

 = − 
 

 + − 
 

                   

 

The third way consists in replacing the parameter 

1

K
by 

1
( )W t

K
σ+ , thus obtaining the SDE 

2( )
( ) ( ) 1 ( ) ( )

X t
dX t rX t dt rX t dW t

K
σ = − + 

 
. 

Fig.12 illustrates one random path  corresponding to 

each of these ways of modeling. 

 

Figure 12: One random path for each modeling 

option with case 1 (add a term), case 2 (modify the 

intrinsic growth rate) and case (modify the carrying 

capacity of the environment). 

D.4 Stochastic delay logistic equation 
Given the single-species population dynamics 

 
( )( )

( ) , , 01
dx t

x t a b
dt

x t
r

K

τ 
> 

 
 

−
= −   (26) 

where r is the Malthusian growth rate, 
r

K
scales the 
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environmental constraints and time-delay τ is the 

reaction time of the population to environment. The 

fixed points of (26) are 1 0x =  and 2x K= . 

Linearizing around 
2
x  leads to the equivalent 

Langevin equation  [30] 

 

( )
( ), 0

dx t
rx t a

dt
τ= − − >  

Suppose that a multiplicative noise is added to (26), 

We have the SDE 

 ( )
1 .( )( ) ( ) ( )x t

K
x tdx t r dt x t dW tτ σ 

 
 

−−= +  (27) 

If (27) is interpreted using a Stratonovich calculus, 

the equivalent Itô SDDE is 
2

.

(
( ) 1 ( )

2
( )

( ) ( )

x t
rx t x t

K
dx t dt

x t dW t

τ σ

σ

   
  
   

−
− +=

                                       +  

 

From the comparison between (20) and (26), we  

deduce the equivalences a=r and b=r/K. Replacing 

a and b in the approximated Itô SDE (24), yields 

( )
2

2

( ) ( ) 1 ( )

1 ( )
2

( ) 1 ( ) ( ).

r
dx t x t x t

K

r
r x t dt

K

r
x t x t dW t

K

τ

σ
τσ

τ
σ

  = −  
 

 
                × + − −  

 

                         + − 
 

 

Fig.13 illustrates the effect of the small delays for 

 different values of the delay 

{ }0.1,0.3,0.5,0.7 .τ ∈
 

 

Figure 13: Effect of different small delays in SDDEs 

for { }0.1,0.3,0.5,0.7 .τ ∈
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