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Abstract: - Conventional Canny edge detector can detect edges in image with additive noise effectively but not 
ultrasound image that are corrupted by multiplicative speckle noise which alleviates image resolution resulting 
in inaccurate characterization of object features. In this paper, we proposed to incorporate the modified SRAD 
into the Canny edge detector to replace the Gaussian blurring in the conventional Canny edge detector in order 
to suppress the multiplicative noise effectively while preserving the edge of the object in ultrasound image. The 
result shows that the proposed method can provide better result than conventional method in a much wider 
range of parameter values. The proposed method through experimental result indicates that it is capable of 
producing promising edge detection result in ultrasound image. 
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1 Introduction 
Edge detection is defined as a process to identify 

the sharp discontinuities in an image. The 
discontinuities are often known as abrupt changes in 
pixel intensity or the pixels that characterize the 
boundaries of objects in an image. The edge 
detected contributes in many applications such as 
image segmentation[1-2], enhancement,[3], [34-38] 
compression and etc. The edge detection in digital 
image processing is always implemented by 
convolving the image with a 2D filter operator. The 
2D filter is designed to be of high sensitivity 
towards large gradients in the image and return null 
values on pixels in homogenous region of image. 
Edge detection is a significant issue in image 
processing and pattern recognition. It is due to its 
ability to give the outline of an object, to supply 
information of the boundary between an object and 
background, to indicate overlapping objects, to 
calculate the basic properties of the object like area 
and shape[4-5] and to classify and identify essential 
information in image.  The desired effect of any 
edge detection operation is giving no response to 

non-edge pixels and giving only one response to a 
single edge.  

Different types of edges need to be detected 
using different design of the detector. Among the 
factors[6] that affect the design is the edge 
orientation, type of noise and the structure of the 
edge. The edge orientation [7-8] is important in 
determining a most sensitive characteristic direction 
like horizontal and vertical direction. Noises and 
edge both contain high-frequency content and thus 
difficult to detect edge in noisy image [9-10], 
attempts to diminish noises lead to blurred and 
distorted edges. Operator that detects edge in noisy 
environment is normally large in size in order to 
average the data to reduce the effect of noisy pixels. 
This results in inaccurate detection of desired edges. 
Not necessary that edges in image comprises of step 
change in pixel intensity, some boundaries[11] 
change intensity gradually, Therefore, an edge 
detection operator need to be designed to be 
designed to detect such edges[12]. Wavelet-
based[13] technique is able to distinguish different 
type of edges. 
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Multitude algorithms of edge detection have 
been proposed. Among the common edge detection 
methods are Sobel method[14], Roberts[15], 
Prewitt[16]and Laplacian method[17], Rosenfeld 
and Thurston[18] and Marr- Hildreth[19]. These 
methods detect edges by utilizing masks to perform 
the convolution on the digital image according to 
the sudden change of gray level pixel intensity. 
Canny[20] make a modification on Sobel method. 
Canny searches the edge direction by inspecting the 
vertical and horizontal edge pixel intensity and 
implement non-maximum suppression to sharpen 
the edge. Among the earliest method, canny is the 
edge detector that can provide good edge detection 
performance in terms of single response to edge and 
good localization.  

The conventional canny edge detector 
implements Gaussian blurring[8, 21-23] as the first 
step to reduce the effect of the noise during edge 
detection. This blurring effect at the same time leads 
to loss of important feature in the image especially 
the edge of the object. This issue has been observed 
by Perona and Malik[24] and they proposed a 
method, namely nonlinear anisotropic diffusion. 
This method is capable of blurring of noises and 
preserving of edges simultaneously. The smoothing 
effect is non-linear at different region in the image; 
Homogeneous region will have higher smoothing 
effect whereas region near edge will have lower 
smoothing effect. In other words, the algorithm 
encourages intra-region smoothing and alleviates 
inter-region smoothing. Besides protecting the edges 
of the object, the algorithm can even enhance the 
edge of the object by manipulating the diffusion 
direction; the diffusion parallel with edge will be 
higher compare to the diffusion across the edge.  

The method has solved the problem of blurring 
of edge during smoothing process in image. 
However, it is not without limitation. Anisotropic 
diffusion[25-28] is only suitable in filtering of 
additive noise but not multicative noise. Ultrasound 
image adherently contains multicative noise and 
thus need an enhanced version of anisotropic 
diffusion to cope with the noise. Hence, Acton et al. 
[29] proposed speckle reducing anisotropic 
diffusion (SRAD) that capable of filtering the 
multicative noise. The strength of SRAD[30] is that 
it combines the statistical information of speckle 
noise into the anisotropic diffusion framework to 
smooth homogenous speckle regions while 
preserving image features. 

The remainder of this paper is organized as 
follows: In section methodology, a series of 
proposed edge detection step combined with SRAD 
is discussed. In section result, experiments using the 
proposed algorithm on ultrasound phantom image 
will be set up and an elucidation about the result 
will be included. Next, there is a quantitative 
analysis on previous method.Finally, conclusions 
and future directions for edge detection in 
ultrasound are discussed. 
 
 

2 Methodology 
The methods that we proposed are the 

incorporation of SRAD in eight directions in Canny 
edge detector. The equation[31] in the continuous 
domain version based on a nonlinear partial 
differential model as following: 
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Where (x,y) are image coordinates, t is diffusion 

time, );,( tyxI is the image intensity function, and 
]1,0[)( qc is the diffusion coefficient. This PDE is 

typically discretezed by computing finite differences 
in for four directions at each image pixel. 
Modification has been done on the standard SRAD 
algorithm in this paper to increase the 
neighborhoods during discrete SRAD computations  

The SRAD diffusion coefficient incorporates 
local speckle statistics and is defined as following: 
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Where )](var[ tz  represent variance and )(tz

represents mean in a homogeneous region of fully 
developed speckle, z(t).  

The pixels that contain ICOV that similar to 
speckle scale function are considered as 
homogenous region. Therefore the SRAD diffusion 
coefficient at the homogenous will equals to unity 
and thus will be smoothed. Similarly, the pixels near 
the edges will have higher value of ICOV and thus 
lead to a diffusion coefficient close to zero. 

The image is anisotropic diffused with the 
following algorithm using 2D discrete 
implementation: 
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For the relative distance, ∆x=∆y=1, ∆d=√2. 
 

The anisotropic diffusion filtering entails 
iterative update on each pixel in the image by the 
flow intensity contributed by its eight neighboring 
pixels: 
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The purpose to smooth the image in canny 

detector is to reduce noise within an image. The 
filter used in Canny detector is a Gaussian low-pass 
filter. In this paper, we have replaced the Gaussian 
filtering with SRAD. After smoothing the image 
while preserving the feature edges, the next step is 
to compute the gradients. The magnitude of 
gradients is equals to strength of the edge while 
direction indicates the direction of the pixel that 
contains the highest grayscale change of intensity. 
The gradient is computed by convolution of the 
sobel kernel on each of the image pixel in x-
direction and y-direction as following. 
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After obtaining the magnitude and direction of 

gradient, the next step is to sharpen the edge. To 
achieve this purpose, a series of steps need to be 
taken. Firstly, the gradient direction is rounded to 
nearest 45 degree. Next, make a comparison 
between the current pixel edge strength with the 
pixels in the positive and negative direction, only 
the pixel with maximum edge strength will be 
preserved, otherwise, it will be suppressed. The 
process mentioned is non-maximum suppression.  

After the sharpening step, next to do is the 
reduction in edge numbers. Not all edges found in 
previous step are strong edges or true edges due to 
noises. Therefore, thresholding step is needed to 
distinguish strong edges from weak edges. First of 
all, two thresholds will be set, upper threshold and 
lower threshold. Pixels that contain gradients that 
higher than upper threshold will be preserved, 
whereas pixels that contain gradients lower then 
lower threshold will be suppressed. For pixels 
contain gradient between upper threshold and lower 
threshold, they will be called as weak edges and 
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only some of them will be chosen to stay in the last 
step. The process to select potential edges by setting 
two thresholds is called double thresholding. 

The last step in the edge detection of canny edge 
detection involve suppressing all edges that are not 
connected to strong or true edges. The weak edges 
found in previous step can only be preserved to the 

final edge image if they are connected to the true 
edges. The reason for this step is to remove the 
weak edges that are caused by noises or other small 
variations. This process of selecting true edges from 
weak edges is named as hysteresis. The steps started 
from SRAD until hysteresis is summarized in the 
following flow chart. 
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Fig.1 Flow chart of the methodology for the proposed edge detection 
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3 Results 
In this section, the ultrasound phantom in figure 

2.0 will undergo conventional canny edge detection 
and the proposed method edge detection at different 
thresholds and different standard deviation 
separately and the result is shown in figure 3.0 and 
figure 4.0.  

 

Fig. 2 Original ultrasound phantoms Image 

 
 
 

 

(a)Threshold=0.04,0.1   (b) Threshold=0.08,0.2 

 

(c)Threshold=0.12,0.3   (d) Threshold=0.16,0.4 

 

(e) Threshold=0.20,0.5   (f) Threshold=0.24,0.6 
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 (g) Threshold=0.28,0.7   (h)Threshold=0.32,0.8 

Fig. 3 Comparison between conventional canny edge detector and SRAD-Canny edge detector on noisy image 
of ultrasound with standard deviation of 1.0. The first and third columns are the image result by conventional 
canny detector. The second and fourth columns are the SRAD-Canny edge detector result image.  

 
 

 

(a) Threshold=0.04,0.1   (b) Threshold=0.08,0.2 

 

(c) Threshold=0.12,0.3   (d) Threshold=0.16,0.4 

 

(e) Threshold=0.2,0.5   (f) Threshold=0.24,0.6 
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(g) Threshold=0.28,0.7   (h) Threshold=0.32,0.8 

Fig. 4 Comparison between conventional canny edge detector and SRAD-Canny edge detector on noisy image 
of ultrasound with standard deviation of 3.0. The first and third columns are the image result by conventional 
canny detector. The second and fourth columns are the SRAD-Canny edge detector result image 

 
 

4 Discussion 
From figure 1, it can be observed that at 

threshold value of 0.1, the image generated from 
conventionally canny using Gaussian blurring result 
in a noisy result whereas the image generated using 
SRAD-Canny Edge detector shows less noisy result 
with the elliptical shape object observable. At 
threshold value of 0.2, 0.3 and 0.4, the conventional 
canny detector result remains a noisy image 
although the middle of the elliptical shape begin to 
appear whereas the SRAD-canny edge result in a 
clear and clean edge of the elliptic shape. At 
threshold 0.5, 0.6, 0.7, 0.8, the conventional canny 
detector result in less noisy edge around elliptic 
shape, however the strong edge of the elliptic shape 
is reduced as well, and the shape is not observable 
whereas the SRAD-canny is obviously presenting a 
complete shape of ellipse and free of noisy edges. 

From figure 2, the edge detection is carried out in 
higher value of standard deviation of Gaussian 
blurring, at threshold of 0.1, 0.2, 0.3, the result 
image of conventional canny edge detector contains 
more noisy edges than SRAD-canny edge detector. 
At threshold of 0.4, 0.5, 0.6, 0.7, the elliptic shape is 
obtained for conventional canny edge, however, the 
shape is not complete, it can be found that small 
hole appears inside the shape. At higher value of 
threshold, the shape disappears and left a fraction of 
the edge. Through subjective evaluation, result 
shows that the conventional method is only capable 
of producing promising result if the parameter is 
correctly set. The proposed method, in contrast, can 
produce promising result in a very wider range of 
parameter values.  

 
 
 

4.1 Quantitative analysis on the result 
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Denotation: Where maxG is the maximum gray level 

of the image. where ),(* jiI represents pixel 
intensity in ith row and jth column processed image 

and ),( jiI represents pixel intensity in ith row and 
jth column in the original image. M and N depicts 
maximum number of row and maximum number of 
column of the image matrix. 
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Denotation: where 
2 denotes the variance of the 

original image,
2

*II   denotes the variance of the 
smoothed image. The performance of the smoothing 
algorithm increases with the SNR value. 
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Where ),(* jiI represents pixel intensity in ith row 

and jth column processed image and ),( jiI

represents pixel intensity in ith row and jth column 
in the original image. M and N depicts maximum 
number of row and maximum number of column of 
the image matrix.The value of RMSE indicates the 
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total difference of pixel intensity in processed image 
and original image. Therefore, with larger value of 
RMSE, it indicates poorer information preservation. 
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Where rN denotes actual edge map points, dN

denotes the ideal edge map points. d is the 
Euclidean distance difference calculated as actual 
edge point normal to a line of ideal edge points. The 
e denotes weighting factor. The FOM is equals to 

unity if the actual edge is perfectly merged with the 
detected edge. The weighting factor can be adjusted 
to penalize edges that are localized but deviated 
from the ideal position. 

The result shown in table 1 indicates that the 
proposed method can produce image that has 
highest value of PSNR, SNR and RMSE. This 
implies that the proposed method produce less 
pixilated image. Besides, the FOM value indicates 
that the proposed method can detect edge with 
higher accuracy. All the highest value in the table 
has been bold for the comparison sake.

 
 
Table 1 Performance comparisons for ultrasound phantom image using quantitative analysis 

 Quantitative Evaluations 
PSNR SNR RMSE FOM 

Gaussian 13.3253 8.4564 29.4356 0.1356 
KUAN[32] 14.3245 8.8976 27.3546 0.2465 
AWMF[33] 14.2132 9.4564 26.4337 0.4566 
SRAD[29] 16.4654 10.5676 15.4674 0.6342 
PMAD[24] 14.6768 9.5468 19.3445 0.5434 
PROPOSED 17.4546 12.3556 13.7344 0.6779 
 
 

5 Conclusion 
This paper presented an improved Canny edge 
detector by incorporating it with Speckle reducing 
anisotropic diffusion method in eight directions 
which can adapt to ultrasonic local speckle statistic. 
Experimental results on ultrasound phantom shows 
that the proposed method can preserve edges and 
small structures while removing speckle noise 
effectively at a wide range of threshold and standard 
deviation. Thus, it has the potential to enhance the 
diagnostic ultrasound imaging and to improve 
automated segmentation and edge detection 
technique. Future efforts should be focus on the 
thresholding step in Canny edge detection in order 
to make it become more adaptive to the noisy 
image. 
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