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Abstract: - This paper presented population  modelling method in treating microbial cells growth in time and cells age.A rigorous 

description  of the features of the of microorganism in biochemical process was derived. It is assumed that two properties need to 

observed to desribe the state of a cell the mass  and cell age. Cells in vivo have various ages, masses  and so on, which need  to be 

taken into account. This paper illustrates a complex situation for various birth  and death processes. The Hanseula polymorpha 

DL-1 growing up was investigated. The obtained results illustrates the microbial population dynamic changes. This work is the 

first report in literature which giving population time age function.  
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I.   INTRODUCTION 

   

      A mathematical treatment  is indispensable if the dynamics of 

microbial system are to be analyzed and predicted quantitatively. 

The method is  essentially the same  as that used in such fields as 

classical and quantum mechanics and  molecular biology. In a 

quantification of macrobiology, however  one has no access to 

such established principles as Newton’s equations of motion or 

Schrodinger wave equation. If only diffusion is considered, it 

may be noted that although molecular diffusion obeys Fick’s law.  

      It must be realized that quantum mechanics, as well 

established as it is now, was as vague as mist in its early stages. 

In that mist, Planck’s quantum hypothesis and Rutherford –

Nagaoka’s atomic model bases on a solar system analogy were 

born. Bohr formulated the model and was able to explain the 

spectral lines of hydrogen by introducing the quantum 

hypothesis. Thus, the method of constructing a model based on 

analogy, formulating it, and solving it by introducing a 

hypothesis or hypotheses. The mere fact that mathematical model  

agrees well with a small amount of data does not suffice, insofar 

as the agreement could be coincidental. Moreover, models should 

not be confused with fundamental equations or laws. Only, those 

hypothesis that have withstood large amounts of critical scrutiny 

can be elevated to the status reserved for laws.  

      It is nevertheless true that time and space are inseparable, 

sister coordinates, and only when populations of organisms are 

considered in both time and space. The time rate of change  of 

the number  of the number of individuals  N in a  population  may 

be expressed  as the derivative  with respect  to t, dN/dt. The 

equations of biosystem  are then  established  by equating  this 

derivative to another  relation expressing  the effect  of species  

interaction  on population.  Such a simple  analysis is not possible 

when spatial variations  are considered. What is directly related  

to species  interaction  is the net population  flux  through  an 

arbitrary  infinitesimal  piece  of space, rather  than  the spatial 

rate of change  of the population  itself, and thus a proper  

expression  is unattainable without knowledge  of the mechanism  

of movement  of the organisms. 

      A  rigorous  microbial  description of  the features of  

the  growth  of microorganisms in   biochemical processes  

falls   naturally  into   the  framework   of general 

population balance methods. The cells (microorganisms)  

have various  ages,  masses,  and  so on, which  need  to  be  

taken into account [1]-[4]. A  classical  description of  

microbial study  has  been  given  in literature before. 

Modelling microbial   growth    kinetics  has  beengiven 

with complex models which including general  population  

balances  and    probabilistic  projection in previously 

papers [5].  

      This  paper  is  intended  to illustrate  a  complex  

population   where  growth as well  as birth  and  death   

processes   are   accounted  for. Distribution function has 

considered as a function of cells age and cells mass. This 

work is the first report in the literature showing the 

population model which including cells age, cells mass and 

time. 

 

 

II.BIOLOGICAL POPULATION 

 

      With the work [6] the basics of the theory  of random  

dispersion  of biological  populations  took shape.  

Skellam’s method  involved applying  the analytical  

expression among and between species. Is treates 

constitutes one of the classic  works on biological 

dispersion. 

       However, the process of biological  diffusion  cannot  

be said  to be purely random, rather as can be seen in the 

activities  of most entities, a special portion of space is 

preffered  for use, and there is an element of choice  in 

location [7].  The motion of entity populations does not 

simply consist  of spreading. Entities often concentrate  

together  to form groups. In such cases, an effect that  

opposes diffusion occurs  due  to behavioral  patterns  and 

interaction between  individuals. One of the  important 

features that distinguishes the movemnts of biological 

entities  from the random motion  of inorganic material  is 

the delicate balance  between spreading  and 

concentrating . Entities dispersion can not be analyzed 

without an understanding of these processes. Although, 

the random work  forms  the point  of depature  and can 

not simply rest peacefully with it. In addition, species 

propagation  and intra – and inter- species relations work 

in the direction of the formation of spatially concentrated  

patterns  of organisms. When, of the other hand, two 

much crowding occurs, population pressure  causes the 

commencement  of organism  dispersion.Here again the 

endless interplay between order and disorder occurs. 

      Airborne bacteria, fungi, pollen, etc., have been of 

continuing interest to botanists wind transport and 
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atmospheric diffusion have been considered as processes 

that contribute  to the determination of spore diffudion.    

   There are two viewpoints from which to investigate  the 

motion of populations, the Lagrangian viewpoint involves    

 identifying, marking, each individual  And following the 

subsequent  motion. in Eulerian  viewpoint  the flow  of 

population individuals  past a fixed point is observed. These two  

viewpoints  represent  concepts originating  in fluid  mechanics, 

but observation of the Lagrangian flow  of fluid particles is 

decidedly more difficult than that of Eulerian flow and can  in 

fact  be impossible  in some cases. The basic nature  of 

Langragian observation is, however, much more suited  to the 

study  of biological  organisms. This fact allows  for a glimmer of 

optimism to fall on the otherwise nearly intractable  study of 

individual motion, the development  of elementary  techniques  

together  with the computer has opened  up a new  horizon of 

research.   

 

                III. STOCHASTIC METHOD 

 

      Mathematical models  can also be delineated into those of 

either a deterministic or  stochastic nature.  Rougly speaking, 

educational models often employ deterministic  methods, while 

practical models tend  to be stochastic  in approach. Strictly 

speaking, nearly  all biological processes  are stochastic. 

However,  a greater portion  of the individuals involved  in a 

process  may be said  to follow  a single deterministic  path on 

the average.   

     As an example, consider  a population   subject  to 

exponential growth . According to  deterministic theory, the rate  

of population increase, dN/dt, is proportional to the number of 

individuals  at that time, N(t).  If µ denotes the coefficient of 

growth , pure birth rate, the following   holds 

 

N
dt

dN
µ=                                                                          (1) 

 

Solving this equation under the initial condition, N=N0 at t=0, it 

is obtained: 
t

eNN
µ

0=                                                                         (2) 

      The change in population is uniquely given by eq.(1), and if 

µ is held constant for each run it will get the same result 

deterministically.  
      However, the process of population growth is ussually 

stochastic, and at given instant  the growth  does not necessarly 

take place at a rate  µN, as shown  in experiments. Thus, on must 

consider the probability p(N,t)  that at a given time population 

will be N[8],[9]. 
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where µ∆t represents the  probability that in a small  time 

interval  ∆t one individual will give birth to another individual.In 

this sense, µ should be considered as an average rate of growth. 

According to the population at a given time varies from 

experiment to experiment even though N0 and µ remain constant. 

      Since the probability density  function is given by eq.(3) 

can calculate the expected value, probability average of 

population, Navg, 
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and this coincides  with the deterministic values. In other words, 

the deterministic methodexpresses the average state of the actual 

stochastic process. this statement  is true in the case  of 

exponential growth, but is not necessarily true in general. 

      One then may inquire as to what extent this average  state 

represents  reality. i.e. actual  experimental results . To answer 

this question, need to calculate  the standard  deviation  of  N 

about  its average value: 
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Taking the ratio of the standard deviation σ  with the average 

value, 
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 That is, the relative error of the deterministic method varies 

inversely with  N0
1/2  

after  a sufficient amount of time has 

passed. The larger the initial population, the better  is  agreement 

between experimental values  and value obtained  from the 

deterministic method. this result 

applies  not only  to simple exponential  growth  but also to the 

general case.  

     However, cases exist where a critical difference  arises 

between  the two methods. Consider  simple birth and death 

processes occuring  simultaneously, with the birt  rate µ 

excceding to the death rate λ. According  to the deterministic  

theory,  

 
t

eNN
)( λµ −

= 0
,                                                        (7) 

 

so that the population  must always increase. According to the 

stochastic theory , on the other hand, the possibility that the 

population becomes extinct  also exists. the probability of 

extinction after sufficient  time has elapsed is given  by  (λ/µ)
N

0 .   

Since   µ > λ , when N0 is sufficiently large, this probability is 

extremly small, but isit is not zero. The existence  of the 

possibility of extinction  can in no way be obtained  from the 

deterministic theory. Here the basic difference between the two 

methods appears, and in certain  cases the deterministic method 

must be discarded. Clearly the stochastic  method  is 

considerably less tractable. 

      Diffusion is also  a stochastic process  and thus  the above  

discussion  must be generalized  to consider  the probability 

density function  p(x,t)  of finding  the population density  at 

time t and space x. 

      In the present consideration of the deterministic 

population method, tacitly  it is  assumed that population 

growth is a continuous  process and generations overlap. For 
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many species such as  certain insects, population growth 

takes place  at discrete intervals   of time, and generations 

are completely nonoverlapping, the appropriate 

mathematical description  for this growth process  is in 

terms  of nonlinear difference equations. Such nonlinear  

difference equations, even if simple  and deterministic 

with respect  to their characteristic  parameters, can 

exibits  a remarkable  spectrum  of dynamic behavior 

including apparent random fluctuations. Thus arbitrarily 

close initial population sizes  can lead  entirely different 

patterns of population growth  as time progresses. In fact 

the dynamical fluctuations of the system  are in many  

respects in distinguishable from the sample realizations of 

a random process.   

      In the life time of most individuals there occurs a time when 

the site of inhabitation is abandoned in favor of migration. Thus, 

in an environment  changing  through space  and time , the most 

probable  strategy for a new individual  to adapt  to survive  and 

reproduce  may not necessarily  consist  of remaining  to 

complete  with its parents or congeners, but may rather consist of 

migrating elsewhere to find an empty niche to inhabit. As a 

results the spread of population dispersal take place. Such 

population movement includes  nomadism, whereby  individuals 

wander with no particular direction in search of sustenance, in a 

manner  that resembles  the random walk , and migration which 

may be either periodic  as individuals move  from one habitatto 

another in a repetitive cycle, or  nonperiodic implying  a certain 

degree of permanence  to the move.  

      The migration and dispersal of individuals, while containing  

subjective elements  that may  not be  totally controlled  by 

idividuals, by and large constitute  a ceaseless, active effort on 

the part  of the animal  to put itself in advantageous 

circumstances. However, the movemnt two individuals placed in 

the same environment is not identical.  It is necessary to consider  

individual motion  as a random variable. Nevtherless, the random 

motion of individuals in general cannot be considered  to be that 

of a “simpler diffuser “  such as the random walker. 

       A degree of success   has been achieved in the analysis of 

dispersal of  populations by starting with a direct  analogy  to the 

random  walk  or physical  diffusion, with an additional  

consideration  of intra  and interspecific  population interaction. 

However, a more realistic  model  of biological diffusion  must 

be built properly  combining  the following concepts:  correlated 

random walks,   diffusion incorporating   spce –time variation of 

parameters and nonuniformities, tratment  of individual  

interaction  after  the fashion  of the many  body problem and 

statistical treatment using computer simulation. The formulation 

of such models  alone necessitates  a better grasp  of the natural  

occurance  of movements of animal individuals  and populations. 

      Let consider the random walk the equation goverenig the 

statistics of  population. Let define the probability  that  a 

individuals rlesed  from the origin  at t=0 reaches  point  x by  

time t  to be  p(x,t). At one time interval  earlier ,i.e. at time  t-τ, 

the individual was at either  of points  x-δ or x+ δ .  If  call ά the 

probability that  a individual will move to the right  in time unit  

τ, and β the probability that the individuals will move to the left   

and  ά + β=1, 
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Let consider the case  that ά = β=1/2. A random walk in which 

the probabilities  of movement  to the right  and left  are equal  is 

called  a simple, or isotropic random walk.  

     To obtain  a diffusion equation  it is assumed that  δ and τ are 

small compared to respectively, x and t and that each  term on 

the right hand side of the equation can be expanded  in a Taylor 

series in x and t,  
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All of the right hand  derivatives are evaluated  at (x,t). If  eq.(9)  

is substituted  into  eq.(10) and the relations ά + β=1 and ά - β=ε 

is obtained, 
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where the parameters δ, τ and ε  are ssumed to be constant. 

       Now let consider the limit  as these  parameters  go to zero. 

It shall not do  this indisriminately, rather it shall suppose that as   

τ  becomes small,  δ and ε decrease  so as to be of the same order 

of magnitude  of  τ
1/2  

. In other  words, in this first  and second 

terms on the right hand  side of  eq.(11), 
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Since the other  right hand  terms converge to zero, the following 

equation is obtained, 
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This is the equation of diffusion for the random  walk  that 

results  from  the limiting  process. If p  is multiplied  by the 

total  number  of the released entities, the entity  concentration c 

is obtained, so that 
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IV. MICROBIAL POPULATION MODEL  

 

Let consider entity distribution in space, 
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and for arbitrary selected spatial  region:  
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     Such as there are 3+n independent variables plus time which can 

be developed as 3+n dimension space. For arbitrary small space  for 

considered entity is obtained  [10],[11]. 
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where v geometrical velocity, ψc is entity distribution concentration, 

D is diffusivity, and t is time.  

    Assuming effective diffusivity coefficient  can be written: 

 

 

)()(
2

2

2

2

2

2

1 zyx
Dv

z
v

y
v

x
v

t

ccc

ci

n

i

c
z

c
y

c
x

c

∂

∂
+

∂

∂
+

∂

∂
=

∂

∂

+
∂

∂
+

∂

∂
+

∂

∂
+

∂

∂

∑
ψψψ

ψ
ξ

ψψψψ

     (18) 

 

 

     It  is assumed  that  two properties is needed  to described  the 

state of a cell  the  mass  m and cell age. In well mixed and 

constant fermentation volume  the macroscopic  population  

balance  can be  derived and biodiffusion and bioconvection can 

be neglected. 
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  for   mi =ξ , tage  it is obtained, 
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where   D means death, B is birth,  m  means mass of cells, ψ is 

a distribution function   and  t = v/Q   means   holding   time.   

      The  function   ψ(m,t,,tage )dm   is representative  of  number  

of   cells  per  volume  at time t with   mass between m  and  

m+dm and can be further  broken down  into:  

 

    dmttmftNttm ageage ),,()(),,( =ψ   (21)     

where )(tN  total number of cells per volume at  time t , and   

),,( agettmf  fraction of  cells  at  time  t  with mass between 

m and dmm + .  

      The various birth and death processes  were  considered.  

Birth  occurs  by division of  larger  cells  and  can  be  

formulated   as  follows.  Let,  dtcm ),(γ  defines fraction  of 

cells of mass m at time t  that  divide in time  t   to time 

dtt + , where c  is concentration  substrate ( nutrient in the 

vessel environment), and )',( mmp dm   is  fraction of  

daughter cells of mass m   to dmm +  obtained  from   a  cell 

of  mass 'm   at  fission. Thus,  the  rate at which daughter  cell 

of  mass  m  to  m+dm  are  obtained  per mass of  cells at age  

m’ (one generation) is 
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where the  factor  2  results from the assumption that only  

binary  fission  takes place. The total number of cells of mass 

m  obtained from fission is then  found by multiplying  Eq.(22) 

by the number of cells  of  age 'm , ψ (m’,t)dm’  and  then 

integrating  for  all  values   m’ > m.     
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which daughter cells of mass m to m+dm are obtained per mass  of  

cells at age 'm  is multiplied by factor 2 results  from  the  

assumption   that   only binary fission takes  place. The various 

death processes was determined. The  rate of  fission  of  cells  of 

mass m  to smaller cells is    

 

                            ),,(),,( ageage ttmttm ψγ                  (24) 

                                                               

      A certain number of  cells die  without  fission  (true  

biological  death)  and  if  we define dtttmT age ),,(  as 

fraction of cells of mass m  at time t   that die in time t   to time 

dtt +  then biological death is  
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      Also,  the  rate  of  increase  of  cells  of  mass  m   is  a  

function of  m  an substrate concentration in the environment 

),(1 cmv .  Thus,  substituting  eqs.(23), (24)  and  (25) into  

Eq.(19) obtains: 
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If separate macroscopic population balance is made on the total 

number of cells present )(tN  it would have the form  

N
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where  
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The birth term includes all fissions and has the form 
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Also, the death term only includes all  actual  biological deaths 

since cells fission  are  still  somewhere in the total system: 
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Substituting  eq.(29)  and  eq.(30) into eq.(19) gives  
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Equation (31) is also can obtain by integrating  equation (26) 

over  all m  which can be demonstrated  as follows. two 

relationships that are of use in this integration are:     
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Since no cells  have mass less than zero, thus 
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Also, 
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since any daughter cell at division will have a mass between 

zero and the mass of its parent cell.  

 

 V. MICROORGANISMS GROWTH KINETICS 

 

      In  treating  microbial growth  kinetics as  a practical matter 

process analysis can extend to the determination of the 

moments.The zero-th moment N,  “segregated unstructured”  

models, has given in Eq.(13). The first moments are termed 

“distributed” 
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where m  is cell mass.  mC  can be found  from Eq.( 8 )  

using the definition Eq.(2). 

     dmmcmmT
t

C
dmmcmv

dt

dC mm )(),()(),(
00

1 ψψ ∫∫
∞∞

−−=  (32)                                            

 

where ),( cmT  is true biological death function. 

The relation  
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where )',( mmp is defined in Eq.(4), representing the fact  

that  for  binary  fission the mean  daughter cell  size must 

be one half of the original, was  used  to  derive  Eq.(15). 

The growth function was obtained from the postulate that 

for single cells the rate of cell mass increase is  proportional 

to the surface area and the rate of decrease to the cell as: 

  mSratenet cµφ −=_                                      (34)                                                             

where S is cell surface area/unit volume, φ  is cell surface 

flux, 

 

φ   = )(
CK

C

+

µ
 ,  

 

is commonly  used  Michaelis-Menton form  and Kc ,,µµ  

are   constants. The  surface area for rod –shaped cells   

(neglected ends) is  ρRmS /2=   where  R is  radius  of 

cell and ρ  is  density of cell. 

Thus, 

m
CK

C

Rp

2
cmv

01
)(),( µ

µ
−

+
=             (35) 

 

VI. EXPERIMENTAL DATA    

 

      Experimental   data for  fermentation broth have been 

taken  from  Cooney   and    Swartz. The     Hansenula 

Polymorpha DL-1 was growing up limited with ethanol 

[12]. 
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VII.  COMPUTATIONAL PROCEDURE   

      

      Partial differential equations solution was performed  

by  software package PDES [13]. Microbial growth was 

simulated for different contour conditions. Some  of these 

results are shown in Figure1 -Figure5.     
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 Fig.1  Population distribution function  vs.  cell mass and time for D=0.5g/dm
3
 and B=0.3 g/dm
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Fig.2 Population distribution function  vs.  cell age and cell mass for D=0.5g/dm
3
 and B=0.3 g/dm
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Fig.3 Population distribution function  vs.  cell mass and time for D=0.7g/dm
3
 and B=0.2 g/dm
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Fig.4    Population distribution function  vs.  cell age and cell mass for D=0.7g/dm
3
 and B=0.2 g/dm
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Fig.5    Population distribution function  vs.  cell mass and time for D=0.4g/dm
3
 and B=0.2 g/dm
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Fig.6  Population distribution function  vs.  cell age and cell mass for D=0.4/dm
3
 and B=0.2 g/dm
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 Function ),,(
age
ttmψ was calculated by software 

package PDES for numerical solutions  of partial differential 

equations. 

 

 

VIII. RESULTS AND DISCUSSION  

 

     Various states  of  microbial media  are analysed. Microbial 

distribution functions vs time  for  lower cells mass 

concentration was shown fast growing. Also, distribution 

function ),,(
age
ttmψ for middle cells  mass concentrations 

was analysed. Distribution functions vs. time for higher cells 

mass concentrations has shown slow growing. Distribution 

function vs. age time of cells prediction was analyse.  

 

 

      IX. CONCLUSION 

 

      In this paper the microbial population dynamic model 

which described the state of a cell mass  and cell age  was 

derived. The stochastic partial differential equations were used. 

       Stochastic and deterministic theories of the biological 

system  were introduced.  

     This study was illustrated a  complex microbial situation 

modelling where growth as birth and  death processes were 

accounted for. The cells which have various ages of masses 

and cells age were taken into account. The microbial 

population transition state was  simulated  for growing up the 

Hanseula polymorpha DL-1. 

 

Symbols 

 

B-birth 

c-substrate concentration 

Cm- mass concentration  

D-death 

f(m,t,tage) - fraction of cell between mass m and m+dm at 

 time t 

K-constant  

m-mass of cells 

N-total number of cells 

p(m,m’)-fraction of daughter cells from a  

cell of mass m’ at fission 

S-surface area /unit volume 

t-time 

t’-holding time 

T(m,c)- true biological death function  

v-rate 

 

Greek Symbols 

 

Ф- cells surface flux 

 ξ-property 

µc, µ, -specific graw rate 

ψ(m,t,tage)- distribution function 

ρ-density of cells 

γ- fraction function 
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