Chronodisruption Alter Expression of Tumorigenesis Associated Transcripts in Mouse Brain

RACHEL BEN-SHLOMO¹ and C.P. KYRIACOU² ¹Department of Biology, Faculty of Natural Sciences University of Haifa - Oranim Tivon 36006 ISRAEL ²Department of Genetics University of Leicester Leicester LE1 7RH UK

ekly@research.haifa.ac.il http://research.haifa.ac.il/~biology/ben_shlomo/rachel.html cpk@le.ac.uk http://www.le.ac.uk/ge/pages/staff/staff_pages/kyriacou.html

Abstract: - Disturbances in "natural" daily light regulation, as frequently happen in modern life, may lead to the disruption of the circadian clock organization. Such chronodisruption had been associated with disturbances in cell cycle homeostasis and with malignancy. The International Agency for Research in Cancer (IARC) classified "shift work that involves circadian disruption" as possibly carcinogenic. Recently, I showed by microarray analysis that light pulse during the dark phase promptly affects transcription level of genes that directly control cell cycle progression in mouse brain. Here I specifically assess the microarray results with respect to transcripts that are associated with tumorigenesis. The analysis indicated that light promptly affects transcription level of a substantial number of genes that are associated with cell proliferation and tumorigenesis, as well as transcripts that control cell cycle progression. A considerable assembly of affected transcripts promotes cell proliferation. It includes tumor suppressors, oncogenes and genes that are involved in tumor growth and metastasis. The results suggest an association between light signal during the dark phase, obstruction of the cell cycle homeostasis and tumorigenesis.

Key-Words: - Chronodisruption, Circadian rhythm, Light entrainment, Cell cycle homeostasis, Tumorigenesis, microarray

1 Introduction

Modern life often encounters disturbances in "natural" light/dark organization, for example, by prolonging the normal light phase with light-at-night in urban settings, or by numerous occupations that include working at night or in shifts. These lightdark cycle disturbances can generate problems for circadian clock organization. Circadian rhythms are fundamental adaptations of living cells to the daily and seasonal fluctuations in light and temperature. Circadian oscillations persist in constant conditions. but they are also phase-adjusted (entrained) by environmental stimuli, with light being a key exogenous signal. Pulses of light during the dark phase reset the circadian pacemaker and elicit phase shifts (reviewed in [1]). In humans, the ability to correct the phase and to re-synchronize the circadian clock also enables the adjustment to changes in the environmental light/dark conditions that are imposed by traveling across time zones (jet-lag).

When illumination is repeatedly applied at unusual times it can disturb the seasonal and the circadian clock organization of physiology, endocrinology metabolism and behavior, and can lead to chronodisruption [2]. Chronodisruption had been associated with disturbance of cell cycle homeostasis and with malignancy [3-6]. The International Agency for Research in Cancer (IARC) classified "shift work that involves circadian disruption" as possibly carcinogenic [7]. However, there are no definitive studies that imply that lightat-night is directly related to ill-health and cancer rates among shiftworkers [8].

Chronodisruption *might* play a causal role for cancer growth and tumor progression, so it is important to enhance our understanding of the processes that may link the regulation of circadian rhythms to cell cycle homeostasis. Considering the circadian mode of cell proliferation, an important question is whether altering circadian entrainment can also change the dynamics of cell division, with clear implications for tumor growth [9,10]. We recently showed that light, the major circadian clock entrainment signal, can operate as an environmental indicator and/or stressor which can promptly affect transcription levels of genes that directly control cell cycle progression in mouse brain [11,12]. The diversion from appropriate regulation of cell cycle may lead to malignant transformation. Here we specifically assess our results with respect to transcripts that are associated with tumorigenesis.

2 Methods

Changes in the expression of transcripts in mouse brain after administrating light pulses during the dark phase was investigated with microarray analysis [13]. Here, we re-examine the microarray results and specifically examined differential expression of transcripts associated with tumorigenesis (for microarray data analysis and validation, see [13]). Adult C57BL male mice were kept in 12:12 light:dark cycle. A 1 hr light pulse was administered at 2, 6 or 10 hr after onset of dark (i.e. ZT14, 18 or 22), while control animals remained in darkness. Whole brain total RNA was collected at 11 time points: 15 min, 1, 2, 3 and 4 hr after onset of the pulse at ZT14 or 18, and 1 hr after onset at ZT22, in experimental and time-matched control animals. At every time point RNA was collected from two experimental and two matched control mice (in all, 44 mice).

3 Results

Our results indicated that light promptly affected the transcription level of genes that are associated with tumorigenesis, as well as transcripts that control cell cycle progression and apoptosis. Of 1787 cDNAs on the arrays found suitable for analysis (consistently up- or down-regulated hybridization signal in at least 8 tests), 73 (~4% of the cDNAs that were examined) representing 51 different genes, are associated with cell proliferation and tumorigenesis (Table 1; Figure 1). Thirty of these transcripts were up-regulated and 21 downregulated.

Within these 51 genes there are oncogenes, tumor suppressors and genes that are causally associated with tumorigenesis and metastasis, as well as genes that show alter expression patterns in various malignancies (Table 1). Considering the direction of changes in gene regulation, a single light pulse given to healthy mice induced changes in transcription level of 16 genes (>30%) that promotes cell proliferation and malignancy in various cancers, while 11 transcripts may inhibit cell proliferation. The activity of four of the genes affected by light pulse (*Bid*, *Fgf15*, *Notch21* and *Sparc*) is context- and cell-type-dependent because they are involved in both oncogenic or tumor inhibitor in various cancers (Table 1; Figure 1).

Table 1:

U/D	GENE*	Directly Promotes	Associated with	Inhibits
U	Aplp2		Detected in several tumors	
U	Atf4	Overexpressed in hypoxic areas; plays a role in tumor hypoxic adaptation		
U	Atp2a2		Displays altered expression patterns in various malignancies	

Genes that are associated with tumorigenesis (U = up-regulated, D = down-regulated)

		Promotes tumorigenesis in myeloid cells. Overexpression can facilitate apoptotic death of hepatocellular carcinoma		Inhibits carcinogenesis in
D	Bid	[24]		the liver
D	Ccnd1			Overexpression is linked to tumorigenesis of different cancer types
U	Cdc211		Deregulated in human tumors. Inhibition may induce p53 protein [25]	
U	cdc42		Participates in the regulation of tumorigenesis	
U	Clu		Overexpressed in various malignancies	
D	Csng2		Expression is associated with various cancers; often secreted in response to tumor signals	
		Causally associated with various aspects of tumorigenesis including		
U	Ctsb	metastasis		
U	Dad1	Inhibit apoptosis		
U	Dagl		Deregulated in a variety of human malignancies. Related to tumor aggressiveness	
IJ	Dcn	Enhances proliferation		
U	Drgl			Down-regulated in malignancy. Putative suppressor of metastases
U	Eef2		Overexpressed in several cancers	
	<i></i>			
U	Egrl	Essential for cancer proliferation and survival		

D	Eif4ehn1		Increased expression in a number of solid tumors	
	2910021			Blockade may inhibit
D	Epor			[26]
D	Ets2			Oncogene
U	Fasn	Displays oncogenic properties; highly expressed in several human cancers		
D	Fgf15	Suppresses proliferation in cortical cultures [27]		Plays an important roles in oncogenesis
U	Hmgbl	Involved in tumor growth and metastasis		
U	Hsp60		Associated with carcinogenesis, specifically with tumor cell survival and proliferation	
U	Hsn70-2	Promotes tumor cell growth		
D	Hyal2	Tumor suppressor		
-			Deregulated in the	
D	Kifla		endometrial cancer	
D	Kras2			Oncogene
D	Lamc2		A specific marker of invasive tumors	
U	Laspl	Plays a functional role in migration and proliferation of certain cancer cells		
U	Mif	Over-expressed in tumors. May serve as an important link between chronic inflammation and cancer development		
U	Mtl			Acts as an oncosuppressor
D	Myd118	Play important roles in growth suppression and apoptosis		

U	Nedd8	Essential for the regulation of protein degradation pathways involved in tumorigenesis.		
			Reduced mRNA	
			transcript levels in highly	
U	Nmel		metastatic cells	
D	Nmvc1			Oncoprotein
				1
		Oncogene or tumor inhibitor		Oncogene or tumor
U	Notch2l	in various cancers		inhibitor in various cancers
			Overexpression may	
			confer a motile phenotype	
U	Pftk1		in malignant hepatocytes	
				Downregulation may take
U	Ppp2ca			part in carcinogenesis.
D	Rb1	Tumor suppressor		
			Differentially	
			underexpressed in	
U	S100b		cancers	
	G. 1			
D	Sipal		Metastasis susceptibility	
D	(SPAI)		gene	
	C			
T	Smarco1			Tumon aumonagon
0	(SNFS)			Tumor suppressor
		The activity is context and		The activity is context and
		all type dependent. Shows		all type dependent. Shows
		contradictory affects on		contradictory effects on
I	Sparc	tumor progression		tumor progression
	Spure			
				Activation is essential for
D	Stat5a			tumorigenesis
			Suppressed early in breast	
D	Tgfb2		carcinogenesis	
			Ŭ	
			Suppressed early in breast	
D	Tgfbr2		carcinogenesis	
			May be involved in	
U	Thra		human cancer	
			Overexpression in a	
	Ттро		significant percentage of	
D	(LAP2)		cancer tissues	

D	Tnfrsf1a		Major receptors for the tumor necrosis factor
U	tsg101	Expression may be necessary for tumor progression	
D	Zfp144	Tumor suppressor	

* Gene's full names and alternative symbols are in appendix 1

4 Discussion

A light signal during the dark phase represents a temporal cue that has an acute effect on the level of components of the circadian clock, leading to synchronization of the circadian oscillator with the external environment. The circadian oscillator may also be involved in the major cellular pathways of cell division [14-16] and may possibly be implicated in gating the entry (or exit) of cell division [17,18].

Light signals during the dark phase represent environmental stressors, that consistently activate several stress proteins (*Hsp60*, *Hsp70-2* and *Egr1*, Table 1), which are involved in the regulation of cell cycle progression and play an indispensable role in cancer proliferation and survival. These proteins act as a primary line of cellular defense and are directly involved in malignancy. Recently the tumor specific functions of the *Hsps* have been suggested as possible markers to target cancer [19].

The adult brain is characterized by a relatively low mitotic index. Nonetheless, we recently found that a single light pulse during the dark phase affects transcripts that are involved the control of cell cycle progression in the mouse brain, and may possibly lead to cell cycle arrest [11]. If the light signal during the dark phase also disrupts the homeostatic control of cell division, it may affect cell proliferation and malignancy. Our microarray results indicated that a light pulse during the dark phase swiftly affects a substantial assembly of transcripts that promote proliferation. It includes tumor suppressors, oncogenes and genes that are involved in tumor growth and metastasis (Table 1; Figure 1B). The light pulse consistently down-regulated expression of three tumor suppressors: Hyaluronidase 2 *(Hyal2)*,

Retinoblastoma (Rb1) and Zinc finger protein 144 (Zfp144). Consistent up-regulation was observed among other transcript such as: (i) macrophage migration inhibitory factor (Mif) that may serve as an important link between chronic inflammation and cancer development. (ii) activating transcription factor 4 (Atf4) that plays a role in tumor hypoxic adaptation. (iii) cathepsin B (Ctsb) whose expression has been implicated in tumor invasion and metastasis. (iv) fatty acid synthase (Fasn) that is highly expressed in several human cancers and displays oncogenic properties such as apoptosis and induction resistance to of proliferation when overexpressed [20] (v) LIM and SH3 protein 1 (Lasp1) that plays an important functional role in migration and proliferation of certain cancer cells. (vi) high mobility group protein 1 (Hmgb1), a chromatin architectural protein reported to be involved in tumor growth and metastasis and (vii) tumor susceptibility gene 101 (tsg101) whose expression may be necessary for activities associated with aspects of tumor progression [21].

Among these transcripts there are also some that may inhibit proliferation, (Table 1) and may lead to a suppression of tumor growth [10,22]. These transcripts include: (i) down-regulation of several oncogenes like *E26 avian leukemia* oncogene 2,3' domain (*Ets2*), Kirsten rat sarcoma oncogene 2 (Kras2) and Neuroblastoma mycrelated oncogene 1 (Nmyc1); (ii) up-regulation of the tumor suppressor SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1 (Smarcb1), and (iii) upregulation of Developmentally regulated GTPbinding protein 1(Drg1) a putative suppressor of metastases.

Α.

B. Promote Tumorigenesis

C. Inhibit Tumorigenesis

Figure 1:

A. Cluster analysis of changes in tumorigenesis associated transcripts resulting from a light pulse during the dark phase. Each column represent the time of light pulse (ZT 14, 18, or 22) and the time of RNA collection after the pulse. Thus, ZT14–0.15 represents administration of light pulse at ZT14, and RNA collection 15 min after the pulse. Red represents up-regulation of a transcript, and green down-regulation. Gray represents missing data. Cluster analysis of transcripts that promote tumorigenesis. C. Cluster analysis of transcripts that inhibit tumorigenesis.

Association between disruption of the circadian clock, interference in the regulation of cell cycle, and malignancy has been known for several years [3,4]. The results presented here suggest that there may be a causative association between the light signal during the dark phase, and the disruption of the cell cycle homeostasis and tumorigenesis. This clearly has implications for the issue of whether there is an increased relative risk for cancer among shiftworkers [7].

Chronodisruption of the circadian timing system may also change the pace of tumor growth via modification of the host clock, which then may accelerate abnormal proliferation [9]. In contrast, a complementary approach would be to consider circadian down-regulation of malignant growth factors in any chronotherapeutic intervention [23]. Our results provide an entrée into enhancing our understanding of the processes that may link the regulation of circadian rhythms to that of cell cycle homeostasis.

Acknowledgment: - The authors acknowledge financial support from a BBSRC grant to C.P.K.

References:

- [1] Ben-Shlomo, R., Kyriacou, C.P. Circadian rhythm entrainment in flies and mammals. Cell Biochemistry and Biophysics, 37, 2002, 141-156.
- [2] Erren, T.C., Reiter, R.J., Defining chronodisruption. J. Pineal Res. 46, 2009, 245–247.
- [3] Gauger MA, Sancar A., Cryptochrome, circadian cycle, cell cycle checkpoints, and cancer. Cancer Res. 65, 2005, 6828-6834.
- [4] Filipski E, Innominato PF, Wu M, Li XM, Iacobelli S, Xian LJ, Lévi F., Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl. Cancer Inst. 97, 2005, 507-517.
- [5] Erren TC, Pape HG, Reiter RJ, Piekarski C., Chronodisruption and cancer. Naturwissenschaften, 95, 2008, 367–382.
- [6] Reiter, R.J. Tan, D.X. Erren T.C., Fuentes-Broto L., Paredes, S.D., Light-mediated perturbations of circadian timing and cancer risk: a mechanistic analysis. Integr. Cancer Ther. 8, 2009, 354-360.
- [7] Straif K, Baan R, Grosse Y, Secretan B, El Ghissassi F, Bouvard V, Altieri A,

Benbrahim-Tallaa L, Cogliano V., Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol. 8, 2007, 1065–1066.

- [8] Kantermann, T. and Roenneberg T., Is lightat-night a health risk factor or a health risk predictor? Chronobiol. Int. 26, 2009, 1069-1074.
- [9] Levi F, Filipski E, Iurisci I, Li XM, Innominato P., Cross-talks between circadian timing system and cell division cycle determine cancer biology and therapeutics. Cold Spring Harb. Symp. Quant. Biol. 72, 2007, 465-475.
- [10] Hastings MH, Maywood ES, O'Neill JS., Cellular circadian pacemaking and the role of cytosolic rhythms. Curr. Biol. 18, 2008, R805–R815.
- [11] Ben-Shlomo, R., Kyriacou, C.P. Light pulses administered during the circadian dark phase alter expression of cell cycle associated transcripts in mouse brain. Cancer Genetics and Cytogenetics, 197, 2010, 65-70.
- [12] Ben-Shlomo, R., Kyriacou, C.P. Light pulses administered during the circadian dark phase alter expression of tumorigenesis associated transcripts in mouse brain. In: Recent Advances in Clinical Medicine (Anninos P, M Rossi, Pham TD, Falugi C, Bussing A, Koukkou M. Eds.), Proceedings of the International Conference on Oncology, University of Cambridge, UK, February 23-25, 2010. Pp. 331-336.
- [13] Ben-Shlomo R, Akhtar RA, Collins BH, Judah DJ, Davies R, Kyriacou CP., Light pulse induced heme and iron associated transcripts in mouse brain – a microarray analysis. Chronobiol Int 22, 2005, 455-471.
- [14] Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A., Coupling of human circadian and cell cycles by the timeless protein. Mol. Cell. Biol. 25, 2005, 3109–3116.
- [15] Unsal-Kacmaz K, Chastain PD, Qu P-P, Minoo P, Cordeiro-Stone M, Sancar A, Kaufmann WK., The Human Tim/Tipin complex coordinates an intra-S checkpoint response to UV that slows replication fork displacement. Mol. Cell Biol. 27, 2007, 3131–3142.
- [16] Hunt T, Sassone-Corsi P., Riding tandem: circadian clocks and the cell cycle. Cell 129, 2007, 461-464.

- [17] Merrow M, Roenneberg T., Cellular clocks: coupled circadian and cell division cycles. Curr. Biol. 14, 2004, R25–R26.
- [18] Chen-Goodspeed M, Lee CC., Tumor suppression and circadian function. J. Biol. Rhythms 22, 2007, 291-298.
- [19] Sreedhar AS., Evaluation of Heat Shock Protein Targeting in Cutting Edge Antitumor Therapeutics. In: Recent Advances in Clinical Medicine (Anninos P, M Rossi, Pham TD, Falugi C, Bussing A, Koukkou M. Eds.), Proceedings of the International Conference on Oncology, University of Cambridge, UK, February 23-25, 2010. P. 44.
- [20] Fiorentino M, Zadra G, Palescandolo E, Fedele G, Bailey D, Fiore C, Nguyen PL, Migita T, Zamponi R, Di Vizio D, Priolo C, Sharma C, Xie W, Hemler ME, Mucci L, Giovannucci E, Finn S, Loda M., Overexpression of fatty acid synthase is associated with palmitoylation of Wnt1 and cytoplasmic stabilization of beta-catenin in prostate cancer. Lab. Invest. 88, 2008, 1340-1348.
- [21] Zhu G, Gilchrist R, Borley N, Chng HW, Morgan M, Marshall JF, Camplejohn RS, Muir GH, Hart IR., Reduction of TSG101 protein has a negative impact on tumor cell growth. Int. J. Cancer, 109, 2004, 541-547.
- [22] Levi F, Schibler U., Circadian rhythms: mechanisms and therapeutic implications. Annu. Rev. Pharmacol. Toxicol. 47, 2007, 593-628.
- [23] Levi F, Altinok A, Clairambault J, Goldbeter A., Implications of circadian clocks for the

rhythmic delivery of cancer therapeutics. Phil. Trans. R. Soc. A 366, 2008, 3575-3598.

- [24] Chen GG, Shi SH, Gang S, Lai PBS., Pathogenic and Therapeutic Roles of Bid in Hepatocellular Carcinoma. In: Recent Advances in Clinical Medicine (Anninos P, M Rossi, Pham TD, Falugi C, Bussing A, Koukkou M. Eds.), Proceedings of the International Conference on Oncology, University of Cambridge, UK, February 23-25, 2010. Pp. 253-254.
- [25] Zdenek K, Jiri E, Jana K, Miroslav S., Cyclin – dependent kinases inhibitor bohemine exhibits no embryotoxic effects. In: Recent Advances in Clinical Medicine (Anninos P, M Rossi, Pham TD, Falugi C, Bussing A, Koukkou M. Eds.), Proceedings of the International Conference on Oncology, University of Cambridge, UK, February 23-25, 2010. Pp. 238-241.
- [26] Yasuda Y, Maeda Y, Koike E, Watanabe Y, Masuda S, Yamasaki H, Okumoto K, Horiuchi Y, Hoshiai H., Cancer cell lines' growth is promoted through individual responsiveness to autocrine and/or exogenous erythropoietin in vitro. In: Recent Advances in Clinical Medicine (Anninos P, M Rossi, Pham TD, Falugi C, Bussing A, Koukkou M. Eds.), Proceedings of the International Conference on Oncology, University of Cambridge, UK, February 23-25, 2010. Pp. 337-348.
- [27] Borello U, Cobos I, Long JE, McWhirter JR, Murre C, Rubenstein JL., FGF15 promotes neurogenesis and opposes FGF8 function during neocortical development. Neural Dev. 3, 2008, 17.

Appendix 1: The full name of the genes that are associated with tumorigenesis

Gene		
symbol	Full Name	
Aplp2	Amyloid beta (A4) precursor-like	
(CDEBP) *	protein 2	
Atf4 (CREB2)	Activating transcription factor 4	
Atp2a2	ATPase, Ca++ transporting,	
(SERCA2)	cardiac muscle, slow twitch 2	
Bid	BH3 interacting domain death agonist	
Ccnd1	Cyclin D1	
Cdc211 (Cdk11)	PITSLRE serine/threonine-protein kinase. CDC2L1 Cell division cycle 2-like protein kinase 1	
cdc42	Cell division control protein 42 homolog	
Clu	Clusterin	
Cspg2	Chondroitin sulfate proteoglycan 2 (Versican core protein)	
Ctsb	Cathepsin B	
Dad1	Defender against cell death 1	
Dag1	Dystroglycan 1	
Dcn	Decorin	
Drg1	Developmentally regulated GTP- binding protein 1	
Eef2	eukaryotic translation elongation factor 2	
Egr1	Early growth response 1	
Eif4ebp1	Eukaryotic translation initiation factor 4E binding protein	
Epor	Erythropoietin receptor	
Ets2	E26 avian leukemia oncogene 2, 3' domain	
Fasn	Fatty acid synthase	
Fgf15	Fibroblast growth factor 15	
Hmgb1	High mobility group protein 1	
Hsp60	Heat shock protein, 60 kDa	
Hsp70-2	Heat shock protein, 70 kDa 2	
Hyal2	Hyaluronidase 2	
Kifla	Kinesin heavy chain member 1A	
Kras2	Kirsten rat sarcoma oncogene 2, expressed	
Lamc2	Laminin, gamma 2	

Gene		
symbol	Full Nama	
Symbol		
Lasp1	LIVI and SH5 protein 1 Macrophage migration inhibitory	
Mif	factor	
Mt1	Metallothionein 1	
Myd118	Myeloid differentiation primary response gene 118 Neural precursor cell expressed, developmentally down-regulated	
Nedd8	gene 8	
Nme1	Expressed in non-metastatic cells 1, protein (NM23A)	
Nmyc1	oncogene 1	
Notch2l	Notch2-like	
Pftk1 (CDK)	PFTAIRE protein kinase 1	
Ppp2ca	Protein phosphatase 2a, catalytic subunit, aCTha isoform	
Rb1	Retinoblastoma 1	
S100b	S100 protein, beta polypeptide, neural	
Sipa1 (SPA1)	Signal-induced proliferation associated gene 1	
Smarcb1 (SNF5; INI1)	SWI/SNF related, matrix associated, actin dependent regulator of chromatin, subfamily b, member 1 Secreted acidic cysteine rich	
Sparc	glycoprotein	
Stat5a	Signal transducer and activator of transcription 5A Transforming growth factor, beta	
Tgfb2	2	
Tgfbr2	Transforming growth factor, beta receptor II	
Thra	Thyroid hormone receptor aCTha	
Ттро	Thymopoietin	
Tnfrsfla	Tumor necrosis factor receptor superfamily, member 1a	
tsg101	Tumor susceptibility gene 101	
Zfp144	Zinc finger protein 144	

* In parenthesis alternative symbols