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Abstract:Our main interest is to characterize mathematical models of tumour growth by clarifying the equivalence
and difference between them mathematically . We first discuss the solvability and the asymptotic profile of the
solution to some parabolic ODE systems described tumour angiogenesis([12]-[15], [23], [24] ) . These models are
proposed independently, one arises from reinforced random walk, proposed by Othmer and Stevens and another
from a number of researches in biology and biomedicine, proposed by Anderson and Chaplain. We show a rigorous
relationship between them and give a mathematical framework of the solvability and asymptotic profiles of the
solutions of them. Finally we study a mathematical model on generic solid tumour growth at the avascular stage,
proposed by Anderson and Chaplain. The focus of their model is on an aspect of tissue invasion. Although it is
the different phenomenon from angiogenensis, we can find a consistency in their mathematical structures. Then
we will apply the approach used in mathematical models of tumour angiogenesis to it and show the solvability and
the asymptotic profile of the solution of it. On the other hand, we show some results of computer simulations of
these models with the help of our mathematical analysis.
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1. Introduction

We begin with a brief explanation about tumour
angiogenensis in Figure 1.

1.Tumour produces TAFs(some chemicals) as a
trigger of tumour angiogenesis(Fig1-1). They dif-
fuse and reach neighboring capillaries and other blood
vessels(Fig1-2).

2. In response to TAFs(Fig1-3) EC(endothelial
cells) surface begins to develop(Fig1-4,5) pseu-
dopodia which penetrate the weakened basement
membrane(Fig1-6).

3. Capillary sprouts continue to grow in length
out of the parent vessels(Fig1-7) and form loops lead-
ing to micro circulation of blood(Fig1-8,9).

4. The resulting capillary network contin-
ues to progress and eventually invades the tumour
colony(Fig1-10).

The above sequent procedure is calledtumour
angiogenesis, which permits the tumour to grow fur-
ther.

In 1971 Folkman published a seminal paper [7]
in the New England Journal of Medicine, proposing
the hypothesis that all tumor growth is angiogenesis-
dependent. The substance that is released by tumours
and provides vascularization has been named TAF
by him. This founded the field of angiogenesis re-
search and opened a field of investigation now pursued
by scientists in many fields worldwide(cf. [8]-[10]).
Folkman’s laboratory purified the first angiogenic pro-
tein from a tumor, discovered the first angiogenesis in-
hibitors and initiated clinical trials of antiangiogenic
therapy. Such factor also has been proposed as useful
for clinical treatment.

Recently, there are many mathematical models
which can be found in the literature describing tu-
mour angiogenesis(cf. [1]-[5], [19], [21]). In [19]
Levine and Sleeman apply the diffusion equation pro-
vided by Othmer and Stevens [17] to obtain the un-
derstanding of tumour angiogenesis, which arises in
the theory of reinforced random walk(see Davis [6]).
Anderson and Chaplain [1] [2] proposed a model for
angiogenesis considered into endothelial tip-cell mi-
gration, i.e., the model considered the motion of the
cells located at the tips of the growing sprouts. The
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Figure 1. Tumour angiogenesis

model has cell migration governed by three factors:
diffusion, chemotaxis and haptotaxis.

On the other hand, mathematical approaches for
models of tumour angiogenesis have done( see [12]-
[16], [18] , [22], [23], [24]). Levine and Sleeman
[16] and Yang, Chen and Liu [22] studied the exis-
tence of the time global solution and blow up solu-
tions to a simplified case of Othmer and Stevens type
of the model. Kubo et al. [12]-[15] [23], [24] show
the time global solvability and asymptotic behavior of
the solution to the model without using such simpli-
fication. [13]-[15], [24] and Sleeman, Anderson and
Chaplain [18] deal with the solvability of Anderson
and Chaplain’s model in [1] [2].

In [17] Othmer and Stevens derived a parabolic
ODE system formulating the reinforced random walk
model(cf.Davis [6]), where unknown functionsP =
P (x, t) andW = W (x, t) stand for the density of the
particle and that of control species, respectively. That

is,

Pt = D∇ · [P∇(log
P

Φ(W )
)], (1)

Wt = F (W,P ), in Ω × (0,∞) (2)

P∇[log
P

Φ(W )
] · ν = 0, on∂Ω × (0,∞) (3)

(no-flux condition)

P (x, 0) = P0(x) ≥ 0, W (x, 0) = W0(x) ≥ 0, (4)

whereΩ is a bounded domain inRn with smooth
boundary∂Ω, D > 0 is a constant andν denotes the
outer unit normal vector. In fact, [17] provides the re-
inforced random walk on lattice points as in [6], takes
the renormalized limit and gets the above system.

Classification of asymptotic properties of the
solution

By the numerical computation Othmer and
Stevens classified the solution according to its be-
haviour ast → +∞ in [17]:

1.(aggregation) ∥P (·, t)∥L∞ < C for all t and

lim inf
t→∞

∥P (·, t)∥L∞ > ∥P (·, 0)∥L∞ .

2.(blowup)∥P (·, t)∥L∞ → ∞ in finite time.
3.(collapse)lim supt→∞ ∥P (·, t)∥L∞ < ∥P0∥L∞ .

In [16] Levine and Sleeman apply it to the un-
derstanding of tumour angiogenesis whereP is the
density of EC,W is TAFs(tumour angiogenic factors)
concentration and the sensitivity functionΦ(W ) is of
the form:

Φ(W ) = (
W + α

W + β
)a, (5)

whereα, β > 0 anda is a constant. We first deal with
(1)-(4), so called, Othmer-Stevens model(cf. [12]-
[15], [23], [24]).

(1)-(4) with (5) fora < 0 and
F (P,W ) = WP (exponential growth),

hereafter referred to as[O-SE].

(1)-(4) with (5) fora > 0 and
F (P,W ) = −WP (uptake),

is denoted by[O-SU] simply. We discuss [O-SU] in
the same manner as used in [O-SE].

We explain briefly the existence of time global so-
lution to a parabolic ODEs system modeling tumour
angiogenesis considered by Anderson and Chaplain
[1] [2], which is called Anderson-Chaplain model and
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is denotedby [A-C] hereafter. We discuss a mathe-
matical relationship between them and give a category
of the solvability and asymptotic behaviour of the so-
lution to these models. In the final section we study
a mathematical model on generic solid tumour inva-
sion at the avascular stage, proposed by Anderson and
Chaplain. Then we will apply the approach used in
above to the mathematical model and show the time
global existence and the asymptotic profile of the so-
lution of it.

2. Othmer-Stevens model

2.1. [O-SE](a < 0)

Mathematical analysis of [O-SE] was done by
Levine and Sleeman [16]. In fact, takinglog W = Ψ,
we getΨt = P because ofWt/W = P and it holds

Q1[Ψ] = Ψtt−D∆Ψt+∇·( aD(β − α)eΨ

(eΨ + α)(eΨ + β)
Ψt∇Ψ)

= 0, in Ω × (0, T ) (6)

from (1) and (2). Then our problem is reduced to the
the following:

(TM)


Q1[Ψ] = 0 in Ω × (0, T )

∂
∂ν Ψ|∂Ω = 0 on∂Ω × (0, T )

Ψt(x, 0) = P0(x), Ψ(x, 0) = log W0(x).

In [16], Levine and Sleeman replaced the coef-
ficient by a constant,

a(β − α)eΨ

(eΨ + α)(eΨ + β)
=

a(β − α)W
(W + α)(W + β)

≈ constant

under theagreement that
α ≪ W ≪ β or β ≪ W ≪ α.

Their argument is verified in [16] ifW is bounded for
any t > 0. However, there is a case whereW = eΨ

obtained in [16] is unbounded, here this simplifica-
tion is not valid. Hence in this paper we do not con-
sider the simplified case but it is easily seen that the
same argument as discussed in this section holds for
the simplified case, too.

On the other hand, the simplified case has been
studied as a special case of the original problem. If
α ≪ W ≪ β, according to the above argument it is

seen thatΦ(W ) ≈ a constant × W a. In this case
(TM) is reduced to the following:

(CH)


Ψtt − D∆Ψt + aD∇ · (Ψt∇Ψ) = 0

∂
∂ν Ψ|∂Ω = 0

Ψt(x, 0) = P0(x), Ψ(x, 0) = log W0(x).

For (CH), Levine and Sleeman [16] constructed the
solution whenn = 1, D = 1 anda = 1,−1. They
showed the existence of a collapse solution in the case
of n = 1 anda = −1 and that of blow up solution in
the case ofn = 1 anda = 1. Yang, Chen and Liu [22]
proved that both time global and blow up in finite time
solutions exist dependent on their choice of initial data
even ifn = 1 anda = 1. Further they stated that one
may obtain a collapse solution to(CH) for a =−1
and general spacial dimension in the same line.

In [12]- [15], [23], [24] we studied(TM) for a <
0 as follows. We put

Ψ(x, t) = γt + u(x, t) (7)

in (6) and derive the equation concerningu = u(x,t) :

Q1[γt + u(x, t)] = P1[u] = utt − D∆ut

−∇·
[
γAe−γt−u∇u

]
−∇·

[
Ae−γt−uut∇u

]
= 0 (8)

where

A = A(t, u) =
aD(α − β)

(1 + αe−γt−u)(1 + βe−γt−u)
. (9)

We assume the following assumption onα, β anda:

(A)−β − α > 0, a < 0,

(A)+ β − α > 0, a > 0. (10)

(TM) is reduced to

(TM)t



P1[u] = 0 in Ω × (0,∞)

∂u
∂ν = 0 on ∂Ω × (0,∞)

u(x, 0) = h0(x), ut(0, x) = h1(x) in Ω

ū1 =
∫
Ω h1dx = 0.

Here, the additional assumption̄u1 = 0 leads to∫
Ω utdx = 0 by the standard argument(see [12]). By

deriving the energy estimate of(TM)t, one can prove
the existence of the time global solution of(TM)t.
The following results were obtained in [12]-[15],
[23], [24].
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Theorem 2.1. Let the initial value(h0, h1)
be sufficiently smooth, and the condition(A)− be
satisfied.Then, ifγ > 0 is large, we have a unique
classical solutionu = u(t, x) to (TM)t and it holds
that

lim
t→+∞

sup
Ω

|ut| = 0. (11)

In the proof of the above theorem the energy esti-
mate plays an important role. The details of the proof
is shown in Kubo-Suzuki [12].

From the above theorem, we get the solution
(P,W ) to [O-SE] with(A)− by putting

P (x, t) = γ + ut(x, t),W (x, t) = eγt+u(x,t).

Then, it follows that from (11) that

lim
t→+∞

∥P (·, t) − γ∥L∞(Ω) = 0. (12)

On the other hand, we haveP (x, 0) = γ + h1(x)
and it is possible to takeh1 = h1(x) satisfying
∥P (·, 0)∥L∞ > γ. Thus, we have the following.

Corollary 2.1. If the same assumption as in
Theorem 1.1 is satisfied, there is a collapse in [O-SE].
More precisely, (12) holds and consequently, it holds
that

limt→+∞ infΩ W (·, t) = +∞.

2.2. [O-SU](a > 0)

In this subsection we deal with [O-SU] under
the condition(A)+, that is, (1) fora > 0, (2) with
F (W,P ) = −PW ,(3) and (4). Putting forγ > 0

Ψ(x, t) = −γt − u(x, t)

in (6) and setting

−Q1[−γt − u(x, t)] = P2[u],

then we have

P2[u] = utt−∇·
[
γAe−γt−u∇u

]
−∇·

[
e−γt−uAut∇u

]
−D∆ut = 0

where

A = A(t, u) =
aD(β − α)

(α + e−γt−u)(β + e−γt−u)
.

Our problem is rewritten by

(TMU)t


P2[u] = 0 in Ω × (0,∞)

∂
∂ν u = 0 on ∂Ω × (0,∞)

u(x, 0) = h0(x), ut(0, x) = h1(x).

Note thatP2[u] for (A)+ is the same type equation of
(8) for (A)−. Therefore, it implies that we can obtain
the solution of(TMU)t for sufficiently largeγ > 0
in the same way as in Theorem 2.1. Thus we obtain
the following result.

Theorem 2.2. Let the initial value(h0, h1) be
sufficiently smooth and let the condition(A)+ be
satisfied.Then, if γ > 0 is large, there exists a
time global smooth solutionu(x, t) to the problem
(TMU)t such that (11) holds forut(x, t).

Putting

P (x, t) = γ + ut(x, t),

W (x, t) = e−γt−u,

it is seen that such(P (x, t),W (x, t)) is the solution
of [O-SU] under the condition(A)+(cf.[14]).

Corollary 2.2. Under the same assumption as in
Theorem 2.2, there is a collapse in[O − SU ]. More
precisely, (12) holds and consequently, it holds that
limt→+∞ supΩ W (·, t) = 0.

Figure 2, Numerical experiments for simpli-
fied Othmer-Stevens model with a linear growth in
S1 = R/Z. In [14] N. Saito shows the plots of nu-
merical solutions toP (x, t) for a = −1,−50, and
λ = ∥|P0∥|L1(S1) = 1, 100 andW0 = 0. It is ob-
served that there are decaying traveling wavews when
the effect of chemotaxis is stronger than that of diffu-
sion.

3. Anderson-Chaplain model

3.1. Global existence in time of the solu-
tion and asyptotic properties

In [1][2], the equation describing EC migration
is presented by,(x, t) ∈ Ω × (0,∞),

∂n

∂t
= D∆n−∇ · (χ(c)n∇c)− ρ0∇ · (n∇f), (13)

wheren = n(x, t) is the EC density,D is the cell ran-
dom motility coefficient,χ(c) = χ0

1+αc is thechemo-
tactic function with respect to TAFs concentrationc =
c(x, t), χ0 andα are positive constants,f = f(x, t)
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Figure 2. SImulation of simplified Othmer-
Stevens model by N. Sito([14])

i) χ0 = 0.4, ρ0 = 0.1.

ii) χ0 = 0.5, ρ0 = 0.1.

iii) χ0 = 0.8, ρ0 = 0.1.

Figure 3. Simulation of Anderson-Chaplain
model in 3D by Y.Kida, M.Matsumoto and
M.Kondo
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is the concentration of an adhesive chemical such
as fibronectin,ρ0 is the (constant) haptotactic coef-
ficient(see [1] [2]), They assume thatc andf satisfy
the following equations respectively: inΩ × (0,∞)

∂f

∂t
= βn − γ0nf,

∂c

∂t
= −ηnc, (14)

whereβ, γ0 andη are positive constants. We consider
this model in the following form:(AC)

∂
∂tn = D∆n −∇ · (χ(c)n∇c) − ρ0∇ · (n∇f),

∂
∂tf = βn − γ0nf,

∂
∂tc = −ηnc, in Ω × (0,∞)

∂n
∂ν |∂Ω = ∂c

∂ν |∂Ω = ∂f
∂ν |∂Ω = 0 on ∂Ω × (0,∞)

n(x, 0) = n0(x), f(x, 0) = f0(x), c(x, 0) = c0(x).

Sleeman, Anderson and Chaplain [18] constructed
a solution of(AC) in casec andf depends onx only
in 1 or 2 dimension.

Applying the reduction process used in subsection
2.2, we reduce (13)-(14) to the same type of a sin-
gle equationP2 under the condition(A)+ and we can
show the existence of the time global smooth solu-
tion (n, f, c) of (AC) and thatn collapses. That is,
Anderson-Chaplain model is essentially regarded as
the same type of parabolic ODE system as [O-SU]
with (A)+ in this sense.

In fact, by (14) we have　

∂

∂t
log |f − β

γ0
| = −γ0n,

∂

∂t
log c = −ηn.

Setting

log c(x, t) = Ψ(x, t) andn(x, t) = η−1Ψt(x, t),
(15)

then we have

f(x, t) = βγ−1
0 +eη−1γ0Ψ(x,t)(f0(x)−βγ−1

0 )c0(x)
−γ0

η .

In termsof ψ = ψ(x) = c0(x)−η−1γ0(f0(x)−βγ−1
0 ),

(13) and (14) are reduced to the following.

Q2[Ψ] = Ψtt − D∆Ψt + ∇ · ( χ0e
Ψ

1 + αeΨ
Ψt∇Ψ)

+∇ · (ρ0Ψte
γ0
η

Ψ∇ψ + ∇ · (ρ0η
−1γ0Ψte

γ0
η

Ψ
ψ∇Ψ)

= 0.

If ψ(x) > 0, Q2 with (A)+ can be regarded as the
same type equation ofQ1 with (A)−. Therefore
we can prove the time global existence of the solution
of [A-C] in the same way as in Theorem 2.1. In fact,
(AC) is reduced to the problem:

(AC)t


P3[u] = 0 in Ω × (0,∞)

∂
∂ν u = 0 on ∂Ω × (0,∞)

u(x, 0) = h0(x), ut(0, x) = h1(x).

whereP3[u] = −Q2[−γt − u(x, t)]. We can obtain
the solution of(AC)t under the condition(A)+ for
sufficiently largeγ > 0 in the same way as in The-
orems 2.1 and 2.2. That is, for smooth initial data
(h0(x), h1(x)), there exists the time global smooth
solutionu(x, t) such that it satisfies

lim
t→+∞

sup
Ω

|ut| = 0.

Applying the reduction process used in subsection 2.2,
we reduce (13)-(14) to the same type of a single equa-
tion asP2 with (A)+ and we can show the existence
of the time global smooth solution(n, f, c) of (AC)
and thatn collapses.
Then we have the following result.

Theorem 3.1 Let the initial value
(n0(x), f0(x), c0(x)) be sufficiently smooth and
let ψ(x) > 0. There is a classical solution
(n(x, t), f(x, t), c(x, t)) of (AC) such that

∥n(x, t) − n̄0∥L∞(Ω) → 0, ∥c(x, t)∥L∞(Ω) → 0,

∥f(x, t) − β

γ0
∥L∞(Ω) → 0 (t → +∞)

wheren̄0 stands for the spatial average ofn0(x).

Corollary 3. Under the same assumption as in
Theorem 3.1, there is a collapse in(AC).

3.2. [O-SU] type of expression of [A-C] in
the absence of fibronectin

We show a way linking [A-C] and [O-SU] with
(A)+ directly in the following. From (14) it follows
that

log |f − βγ−1
0 | =

γ0

η
log c.

Putting

f = c
γ0
η + βγ−1

0
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and substitutingf by the right hand side above in (13),
we have

∂

∂t
n = D∆n −∇ · (χ(c)n∇c) − ρ0∇ · (n∇(c

γ0
η ))

= D∆n −∇ · (n∇{log(1 + αc)
χ0
α eρ0c

γ0
η })

= D∇ · (n∇ log
n

{(1 + αc)
χ0
α eρ0c

γ0
η }D−1

)

Therefore wecan say that the sensitivity function of
the equation (13) is of the form:

(1 + αc)
χ0
Dα eρ0D−1c

γ0
η

which is corresponding toΦ(W ) in Othmer-Stevens
model. Hence we obtain the following result.

Theorem 3.2[A-C] is reduced to the same type
of the parabolic ODE system as Othmer and Stevens
model:

nt = D∇ · (n∇ log
n

(1 + αc)
χ0
Dα eρ0D−1c

γ0
η

),

ct = −ηcn, in Ω × (0,∞)

n∇ log
n

(1 + αc)
χ0
Dα eρ0D−1c

γ0
η

·ν = 0, on ∂Ω×(0,∞)

which are just of the form of (1), (2) and (3) in [O-SU]
with (A+) respectively.

In Othmer-Stevens model the termΦ(W ) is called
sesitivity function which governs the motion of the
cells in chemotaxis. Theorem 4 implies that in
Anderson-Chaplain model the term

(1 + αc)
χ0
Dα eρ0D−1c

γ0
η

corresponds tothe sensitivity function and all the
arguments applicable to Othmer and Stevens model
for uptake case can be applied to Anderson-Chaplain
model too. Hence Theorem 4 is very useful to inves-
tigate Anderson-Chaplain model from the stand point
of Othmer-Stevens model. In fact, making use of The-
orem 4 the following result is obtained.

Figure 3, Reinforced random walk type of nu-
merical simulation of Anderson-Chaplain model.
Othmer and Stevens model arises from Reinforced
random walk by Davis [6]), and hence Theorem 4 en-
ables us to carry out a numerical computation based
on the theory of reinforeced random walk. The nu-
merical result is obtained according to Sleeman and
Wallis’s way in [20].

In Figures 3, we consider a full three dimensional
configuration in which a tumour colony, idealised as a
sphere of cells, is embedded in a cuboid domain. We
consider the tumour colony taken to be a sphere of
radius 0.1 situated at (0.5,0.5,0.5).

Figure 4, Categorical relationship of the mod-
els.Since in the above modelsP1[u], P2[u] andP3[u]
are in the same class of partial differential equation,
that is, they are degenerate hyperbolic operators with
strong dissipation, it seems that the models belong to
the same framework of the solvability. Especially, fur-
ther considering into the asymptotic profile of the so-
lution, it is seen that [A-C] and [O-SU] with(A)+
belong to the same family as the mathematical model.

Figure 5, Formal relationship between the mod-
els.We can reduce Othmer-Stevens model with expo-
nential growth to Anderson-Chaplain model through
Othmer-Stevens model with uptake and Othmer-
Stevens model type of Anderdson-Chaplain model by
formal calculations. Also by using it we can represent
the solution of one of the models by the solution of
other models.

4. Mathematical model of tumour invasion

Anderson and Chaplain [3] describe the pro-
cess that solid tumour invade the surrounding tissues
degradating extracellular matrix(cf. [4]).

∂n

∂t
= dn∇2n − γ∇ · (n∇f) (16)

∂f

∂t
= −ηmf (17)

∂m

∂t
= dm∇2m + αn − βm (18)

wheren := n(x, t) is the density of tumour cells,
m := m(x, t) MDE(Matrix degradative enzyme) con-
centration,f := f(x, t)ECM（extracelluer matrix)
density. It is assumed that the tumour cells produce
MDEs which degrade the ECM locally and that the
ECM responds by producing endogenous inhibitors.
The ECM degradation, as well as making space into
which tumour cells may move by simple diffusion, re-
sults in the production of molecules which are actively
attractive to tumour cells and which aid in tumour cell
motility. We have therefore chosen to consider tumour
cell motion to be driven only by random motility and
haptotaxis in response to adhesive or attractive gradi-
ents created by degradation of the matrix.

From (17) it follows that
∂

∂t
(log f) =

ft

t
. Then

we have by integrating over(0, t)
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Othmer-Stevens model

Exponential growth((A)−)
P (x, t) = γ + ut(x, t)

Uptake((A)+)
P (x, t) = γ + ut(x, t)

Anderson-Chaplain model
n(x, t) = η−1(γ + ut(x, t))

asymptotic profile

W (x, t) = eγt+u ∞(t → ∞)

W (x, t) = e−γt−u 0(t → ∞)

c(x, t) = e−γt−u 0(t → ∞)
f(x, t) = βγ−1

0 + e
γ0
η

(−γt−u
ψ(x)

timeglobal sol-
ution(collapse)

Figure 4. Categorical relationship of the mod-
els

Other-Stevens model(exponential grwoth)
Pt = D∇ · (P∇(log(P/Φ(W ))))
Wt = WP

W̃t = W̃P
Pt = D∇ · (P∇(log(P/Φ̃(W̃ ))))

?

6

Other-Stevens model(uptake)
Pt = D∇ · (P∇(log(P/Φ(W ))))

Wt = −WP

?

6

Φ ⇔ Φ̃
W ⇔ W̃

W̃ = W−1

?

6n = P, c = W

Φ(c) = (1 + αc)
χ0
αD eρ0D−1cγ0/η

nt = D∇ · (n log n

(1+αc)
χ0
αD eρ0D−1cγ0/η

)
ct = −ηcn

nt = D∆n −∇ · (χ(c)n∇c) − ρ0∇ · (n∇f)
ft = βn − γ0nf
ct = −ηnc

Anderson-Chaplain model
?

6

(f = cγ0/η + β
γ0

)

(Theorem 3.2)

Figure 5. Formal relationship between the
models

t = 0 t = 1

t = 1.5 t = 2

t = 2.5 t = 3

t = 5 t = 7

t = 10

Figure 6. Simulation of Othmer-Stevens
model in 1D by M.Matsumoto and M.Kondo
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f(x, t) = f0(x)e
−η

∫ t

0
mds

(19)

wheref0(x) is the initial data off(x). Then (4.1) is
rewritten by

∂

∂t
n(x, t) = dn∆n − γ∇ · n(x, t)(∇ · e

−η

∫ t

0
mds

)

(20)
where we putf0(x) ≡ 1for the simplicity. Putting

Ψ(x, t) =
∫ t

0
n(x, s)ds,Φ(x, t) =

∫ t

0
m(x, s)ds

(21)
The initial flux-zero boundary value problem of (16)-
(18) is rewritten by

∂2

∂t2
Ψ(x, t) = dn∆Ψt + ηγ∇ · Ψt((∇

∫ t

0
mds)e−ηΦ)

∂2

∂t2
Φ = dm∆Φt + αΨt − β

Ψ(x, 0) = 0, Ψt(x, 0) = n0(x)
Φ(x, 0) = 0, Φt(x, 0) = m0(x)
∂

∂ν
Ψ|∂Ω =

∂

∂ν
Φ|∂Ω = 0

wheren0(x) and m0(x) are initial data ofn(x)and
m(x) respectively. Putting

Ψ(x, t) = γ1t + v(x, t),Φ(x, t) = γ2tT + w(x, t)
(22)

(TMI)



vtt = dn∆vt + ηγγ1∇ · (e−η(γ2tT +w)∇w)
+ηγ∇(∇wvte

−η(γ2tT +w))
wtt = dm∆wt + α(γ1 + vt) − β(γ2 + wt)
v(x, 0) = v0(x), vt(x, 0) = v1(x)
w(x, 0) = w0(x), wt(x, 0) = w1(x)
∂v

∂ν
|∂Ω =

∂w

∂ν
|∂Ω = 0

Then we obtain the following estimates of the first and
second equation of (TMI) respectively by applying the
energy method used in the previous sections.

Ek[v]+
∫ t

0
||∇vt||2kdt 5 CEk[v](0)+CT

∫ t

0
||wt||2k+1dt,

(23)

||wt||2k +
∫ t

0
||∇wt||2kdt 5 CEk[w](0) + C||vt||2k.

(24)
wherekis a positive integer and a constantCT tends to
zero as a parameterT > 0increases. For sufficiently
largeTwe derive the estimate of the above problem by
combining the both sides of (23) and (24) respectively

||wt||2k + Ek[v] +
∫ t

0
||∇vt||2kdt +

∫ t

0
||∇wt||2kdt

5 CEk[w](0) + CEk[v](0). (25)

By using (25) we can show the time global existence
and asymptotic behaviour of the solution of the solu-
tion of (16)-(18). The following is the main theorem
in this paper.

Theorem 4.1. For the initial flux-zero
boundary value problem (16)-(18) satisfying
flux-zero boundary condition and initial data
(n0(x), f0(x),m0(x)), there is a classical solution
(n(x, t), f(x, t),m(x, t))assumed that initial data are
sufficiently smooth.

Figure 6, Simulation of tissue invasion models
in 1D. In the biginning we assume that tumour cells
exist only near the origin. Ast increases, Fig 6 shows
that tumour cells are propagating as a traveling wave
while MDE is degradating neighbouring ECM. The
same type of numerical experiment has been shown
by Anderson and Chaplain in [3].

5 Conclusion

It is shown that we can discuss the argument
of the solvability of models arised in tumour angio-
genesis in a same framework. Further we can ap-
ply such argument to mathematical understanding of
tumour invasion proposed by Anderson and Chap-
lain. It is concluded that we can deal with tumour
growth models, mathematical models of angiogenesis
by Othmer-Stevens and Anderson-Chaplain and tu-
mour invasion by Anderson-Chaplain, consistently by
a reduction process to the same type of nonlinear evo-
lution equtions. Also numerical experiments in this
paper are allowed to verify by our mathematical anal-
ysis.
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