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Abstract: Our main interest is to characterize mathematical models of tumour growth by clarifying the equivalence
and difference between them mathematically . We first discuss the solvability and the asymptotic profile of the
solution to some parabolic ODE systems described tumour angiogenesis([12]-[15], [23], [24] ) . These models are
proposed independently, one arises from reinforced random walk, proposed by Othmer and Stevens and anothe
from a number of researches in biology and biomedicine, proposed by Anderson and Chaplain. We show a rigorous
relationship between them and give a mathematical framework of the solvability and asymptotic profiles of the
solutions of them. Finally we study a mathematical model on generic solid tumour growth at the avascular stage,
proposed by Anderson and Chaplain. The focus of their model is on an aspect of tissue invasion. Although it is
the different phenomenon from angiogenensis, we can find a consistency in their mathematical structures. Ther
we will apply the approach used in mathematical models of tumour angiogenesis to it and show the solvability and
the asymptotic profile of the solution of it. On the other hand, we show some results of computer simulations of
these models with the help of our mathematical analysis.
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1. Introduction In 1971 Folkman published a seminal paper [7]
in the New England Journal of Medicine, proposing
o _ _ the hypothesis that all tumor growth is angiogenesis-
‘We begin with a brief explanation about tumour  gependent. The substance that is released by tumours
angiogenensis in Figure 1. and provides vascularization has been named TAF
by him. This founded the field of angiogenesis re-
1.Tumour produces TAFs(some chemicals) as a search and opened a field of investigation now pursued
trigger of tumour angiogenesis(Figl-1). They dif- py scientists in many fields worldwide(cf. [8]-[10]).
fuse and reach neighboring capillaries and other blood Folkman’s laboratory purified the first angiogenic pro-
vessels(Fig1-2). tein from a tumor, discovered the first angiogenesis in-
2. In response to TAFs(Figl-3) EC(endothelial hibitors and initiated clinical trials of antiangiogenic
cells) surface begins to develop(Figl-4,5) pseu- therapy. Such factor also has been proposed as useful
dopodia which penetrate the weakened basement for clinical treatment.

membrane(Flgl-G). _ . Recently, there are many mathematical models
3. Capillary sprouts continue to grow in length  \yhich can be found in the literature describing tu-
out ofth_e parc_entve_ssels(Flgl—7) and form loops lead- our angiogenesis(cf. [1]-[5], [19], [21]). In [19]
ing to micro circulation of blood(Fig1-8,9). Levine and Sleeman apply the diffusion equation pro-
4. The resulting capillary network contin-  vided by Othmer and Stevens [17] to obtain the un-
ues to progress and eventually invades the tumour derstanding of tumour angiogenesis, which arises in

colony(Fig1-10). the theory of reinforced random walk(see Davis [6]).
Anderson and Chaplain [1] [2] proposed a model for

The above sequent procedure is caltachour angiogenesis considered into endothelial tip-cell mi-
angiogenesiswhich permits the tumour to grow fur-  gration, i.e., the model considered the motion of the
ther. cells located at the tips of the growing sprouts. The
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Figure 1. Tumour angiogenesis

model has cell migration governed by three factors:
diffusion, chemotaxis and haptotaxis.

On the other hand, mathematical approaches for

models of tumour angiogenesis have done( see [12]-

[16], [18], [22], [23], [24]). Levine and Sleeman
[16] and Yang, Chen and Liu [22] studied the exis-
tence of the time global solution and blow up solu-
tions to a simplified case of Othmer and Stevens type
of the model. Kubo et al. [12]-[15] [23], [24] show
the time global solvability and asymptotic behavior of
the solution to the model without using such simpli-
fication. [13]-[15], [24] and Sleeman, Anderson and
Chaplain [18] deal with the solvability of Anderson
and Chaplain’s model in [1] [2].

In [17] Othmer and Stevens derived a parabolic
ODE system formulating the reinforced random walk
model(cf.Davis [6]), where unknown functiorfd =
P(z,t) andW = W (x, t) stand for the density of the
particle and that of control species, respectively. That
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is,

P, =DV - |PV(L P 1
= DV - [PV (log 5] &)
W, = F(W, P), in Qx(0,00) (2

PV[log @(:?V)] ‘v =0, onodN x (0,00) (3)

(no-flux condition)

P(z,0) = Py(z) > 0, W(z,0) = Wo(z) > 0, (4)
where () is a bounded domain ilR" with smooth
boundaryoS2, D > 0 is a constant and denotes the
outer unit normal vector. In fact, [17] provides the re-
inforced random walk on lattice points as in [6], takes
the renormalized limit and gets the above system.

Classification of asymptotic properties of the
solution

By the numerical computation Othmer and
Stevens classified the solution according to its be-
haviour asg — +oco in [17]:

1.(aggregation) ||P(-,t)|r~ < C forall t and

lim inf [|P(2) [z > [|P(,0) ]z~

2.(blowup)|| P(-,t)|| e~ — oo in finite time.
3.(collapse)imsup, ., [ P(-,t)l|z < [|Poll 1

In [16] Levine and Sleeman apply it to the un-
derstanding of tumour angiogenesis whétds the
density of ECW is TAFs(tumour angiogenic factors)
concentration and the sensitivity functi@i?’) is of
the form:

W+«

‘I’(W)Z(WJrﬁ

)%, (5)
whereq, 8 > 0 anda is a constant. We first deal with
(2)-(4), so called, Othmer-Stevens model(cf. [12]-
[15], [23], [24)).

(1)-(4) with (5) fora < 0 and
F(P,W) = W P(exponential growth),

hereafter referred to 4©-SE].

(2)-(4) with (5) fora > 0 and
F(P,W) = —W P(uptake),

is denoted byfO-SU] simply. We discuss [O-SU] in
the same manner as used in [O-SE].

We explain briefly the existence of time global so-
lution to a parabolic ODEs system modeling tumour
angiogenesis considered by Anderson and Chaplain
[1] [2], which is called Anderson-Chaplain model and
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is denotedby [A-C] hereafter. We discuss a mathe- seen thatb(W) ~ a constant x W%, In this case
matical relationship between them and give a category (TM) is reduced to the following:

of the solvability and asymptotic behaviour of the so-

lution to these models. In the final section we study Vi — DAY, +aDV - (U V) =0
a mathematical model on generic solid tumour inva- 8
sion at the avascular stage, proposed by Anderson and(CH) S 5, ¥]oa =0
Chaplain. Then we will apply the approach used in

above to the mathematical model and show the time Uy(x,0) = Po(x), W(x,0)=logWy(z).
global existence and the asymptotic profile of the so-
lution of it. For (CH), Levine and Sleeman [16] constructed the

solution whenn = 1, D = 1 anda = 1,—1. They
showed the existence of a collapse solution in the case

2. Othmer-Stevens model of n = 1 anda = —1 and that of blow up solution in
the case ofi = 1 anda = 1. Yang, Chen and Liu [22]
2.1. [O-SE](a <0) proved that both time global and blow up in finite time

solutions exist dependent on their choice of initial data
even ifn = 1 anda = 1. Further they stated that one
may obtain a collapse solution {6’ H) for a =—1
and general spacial dimension in the same line.

In [12]- [15], [23], [24] we studiedT' M) for a <

Mathematical analysis of [O-SE] was done by
Levine and Sleeman [16]. In fact, takihgg W = VU,
we getl, = P because ofV,/W = P and it holds

D(p - a)e? 0 as follows. We put
01]9] = Wy~ DAY, +V( (ei Jr(i ) (eo‘w)i 1) WS, We pu
U(z,t) =yt +u(z,t) (7)
=0, in Qx(0,7) (6) _ _ . _
in (6) and derive the equation concerning- u(x,t) :
from (1) and (2). Then our problem is reduced to the
the following: Qi[vt +u(z,t)] = Pilu] = uy — DAy
Q1[¥] =0 in €% (0,T) ~V-[yAe VU] - V- [Ae T T Vu] = 0 (8)
(TM){ 2]y =0 ondQ x (0,T) where
_ _ aD(a —f3)
Uy (z,0) = Po(x), Y(x,0)=logWy(z). A=Altu) = (1+ e 1=u)(1 + Bert—u) ©)

In [16], Levine and Sleeman replaced the coef- We assume the following assumption @ anda:

ficient by a constant, (A) B—a>0,a<0,

a( — a)e? (B — )W (A), B—a>0,a>0. (10)

€ +a)e? +3)  (W+a)W+73) (T'M) is reduced to
Pilu] =0 in Qx(0,00)
~ constant
under theagreement that Ge=0 on 9 x (0,00)
a<W<porf<W<a. (TM):

Their argument is verified in [16] iV is bounded for u(z,0) = ho(z), ut(0,2) = hi(z) in Q
anyt > 0. However, there is a case whdrié = eV
obtained in [16] is unbounded, here this simplifica- Uy = fQ hidx = 0.
tion is not valid. Hence in this paper we do not con-
sider the simplified case but it is easily seen that the Here, the additional assumptialy = 0 leads to
same argument as discussed in this section holds for [, u;dz = 0 by the standard argument(see [12]). By
the simplified case, too. deriving the energy estimate @' M ),, one can prove

On the other hand, the simplified case has been the existence of the time global solution @GF ).
studied as a special case of the original problem. If The following results were obtained in [12]-[15],
a < W <« f, according to the above argument itis [23], [24].
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Theorem 2.1.  Let the initial value(h, k1)
be sufficiently smooth, and the conditigd)_ be
satisfied.Then, ify > 0 is large, we have a unique
classical solutioru = u(t,z) to (T'M), and it holds
that

tl}inoo sgp lug| = 0. (11)

In the proof of the above theorem the energy esti-
mate plays an important role. The details of the proof
is shown in Kubo-Suzuki [12].

From the above theorem, we get the solution
(P, W) to [O-SE] with (A)_ by putting

P(x,t) =~ + ug(z, t), W(z,t) = 7@,
Then, it follows that from (11) that

Jm [[P(8) =l () = 0. (12)

On the other hand, we hav&(x,0) = v + hi(x)
and it is possible to také; = hy(z) satisfying
|P(-,0)||ze= > . Thus, we have the following.

Corollary 2.1.  If the same assumption as in
Theorem 1.1 is satisfied, there is a collapse in [O-SE].
More precisely, (12) holds and consequently, it holds
that

limy_, 4 o infq W(+, t) = +00.

2.2. [0-SU](a > 0)

In this subsection we deal with [O-SU] under
the condition(A)., that is, (1) fora > 0, (2) with
F(W,P)=—PW,3)and (4). Putting fory > 0

U(x,t) = —t —u(z,t)
in (6) and setting
—Q1[=t — u(z, )] = Pu[ul,
then we have
Pylu] = uy—V- [’yAe_”’t_"Vu] -V [e_w_“AutVu]
—DAu; =0
where

aD(f — «)
(a+e =) (B +entmu)

A=A(t,u) =

Our problem is rewritten by
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Pylul =0 in  Qx (0,00)
(TMU) R Zu=0 on 9N x (0,00)

u(z,0) = ho(z),u(0,2) = hi(z).

Note thatP,[u] for (A). is the same type equation of
(8) for (A)_. Therefore, it implies that we can obtain
the solution of(TMU), for sufficiently largey > 0

in the same way as in Theorem 2.1. Thus we obtain
the following result.

Theorem 2.2. Let the initial value(hg, h1) be
sufficiently smooth and let the conditigl), be
satisfied. Then, ify > 0 is large, there exists a
time global smooth solutiom(x,t) to the problem
(TMU); such that (11) holds fou(z, t).

Putting
P(.I,t) =7 + ut(xat))

Wz, t) =e 774,

it is seen that suchP(z,t), W (z,t)) is the solution
of [O-SU] under the conditiofiA) . (cf.[14]).

Corollary 2.2. Under the same assumption as in
Theorem 2.2, there is a collapse i@ — SU]. More
precisely, (12) holds and consequently, it holds that
hmt_>+oo supq W(, t) =0.

Figure 2, Numerical experiments for simpli-
fied Othmer-Stevens model with a linear growth in
S = R/Z. In [14] N. Saito shows the plots of nu-
merical solutions taP(zx,t) for a = —1,-50, and
A= H‘POH’Ll(Sl) = 1,100 andWO = 0. Itis ob-
served that there are decaying traveling wavews when
the effect of chemotaxis is stronger than that of diffu-
sion.

3. Anderson-Chaplain model

Global existence in time of the solu-
tion and asyptotic properties

3.1.

In [1][2], the equation describing EC migration
is presented by, t) € 2 x (0, 00),

?;; = DAn—V - (x(c)nVe) — poV - (nV f), (13)

wheren = n(x,t) is the EC densityD is the cell ran-
dom motility coefficient,x(c) = {2 is thechemo-
tactic function with respect to TAFs concentratioa:
c(z,t), xo anda are positive constantg, = f(x, t)

Issue 2, Volume 7, April 2010



WSEAS TRANSACTIONS on BIOLOGY
and BIOMEDICINE Akisato Kubo

o kN ow A
SR A

okt
xovrs
1

I) X0 = 04, PO = 0.1.

D:-EEI.'T-‘S

III) X0 = 08, PO = 0.1.

(iv) a = —50.0, A = 100.0, T = 0.03 Figure 3. Simulation of Anderson-Chaplain
model in 3D by Y.Kida, M.Matsumoto and
Figure 2. Simulation of simplified Othmer- M.Kondo

Stevens model by N. Sito([14])
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is the concentration of an adhesive chemical such
as fibronectin,p, is the (constant) haptotactic coef-
ficient(see [1] [2]), They assume thaand f satisfy
the following equations respectively: ift x (0, c0)

aof _
ot

wheref, ~y andn are positive constants. We consider
this model in the following forn(AC')

fn—onf, % = e, (14)

(

%n = DAn —V - (x(c)nVe) — poV - (nV f),
O _

Btf - ﬁn - 70”]07

%c = —nne, in Qx (0,00)

9|90 = 9<loq = %!39 =0 on 90 x (0,00)

L n(:L',O) = no(.%'), f(.%',()) = fO(w>v C(l‘,O) = co(7).

Sleeman, Anderson and Chaplain [18] constructed
a solution of(AC) in casec and f depends on: only
in 1 or 2 dimension.

Applying the reduction process used in subsection
2.2, we reduce (13)-(14) to the same type of a sin-
gle equation?, under the conditiofl4), and we can
show the existence of the time global smooth solu-
tion (n, f,c) of (AC) and thatn collapses. That is,
Anderson-Chaplain model is essentially regarded as
the same type of parabolic ODE system as [O-SU]
with (A) in this sense.

In fact, by (14) we havél

ﬁlo |f—ﬁ\—— n glo c=-—-nn

Setting

log c(x,t) = U(x,t) andn(z,t) = n~ ' Wy(x, t),
(15)
then we have

)

Fla,t) = Brg e 0@ (fo(2)—Brg Heo(x)

Intermsof v = (x) = co(2) ™" " (fo(x) — B ")
(13) and (14) are reduced to the following.

Xoeq’
1+ ae?

Q2[¥] = ¥y — DAV, +V - ( U, V)

8l Vi
+V- (Po‘heTwV?ﬁ +V- (0077_1W0‘I’t€70quv‘1’)
=0.
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If ¢(z) > 0, Q2 with (A)+ can be regarded as the
same type equation of@; with (A)_. Therefore
we can prove the time global existence of the solution
of [A-C] in the same way as in Theorem 2.1. In fact,
(AC) is reduced to the problem:

Ps[u] =0 in Qx (0,00)

(AC)i ¢ Zu=0 on 90 x (0, 00)

u(z,0) = ho(z),u(0,2) = hi(z).

where Ps[u] = —Qa[—~t — u(z,t)]. We can obtain
the solution of(AC'); under the conditior{A) for
sufficiently largey > 0 in the same way as in The-
orems 2.1 and 2.2. That is, for smooth initial data
(ho(x),h1(z)), there exists the time global smooth
solutionu(z, t) such that it satisfies

li =0.
i sgplud =0

Applying the reduction process used in subsection 2.2,
we reduce (13)-(14) to the same type of a single equa-
tion asP» with (A)+ and we can show the existence
of the time global smooth solutiof, f, ¢) of (AC)

and thatn collapses.

Then we have the following result.

Theorem 3.1 Let the initial value
(no(z), fo(x),co(x)) be sufficiently smooth and
let ¢(x) > 0. There is a classical solution
(n(z,t), f(z,t), c(x,t)) of (AC) such that

[n(x,t) = noll o) — 0, lle(z, 1) || Lo () — 0,

178 = 2y = 0 (¢ =+
wheren stands for the spatial average of ().

Corollary 3. Under the same assumption as in
Theorem 3.1, there is a collapse(AC).

3.2. [O-SU] type of expression of [A-C] in

the absence of fibronectin
We show a way linking [A-C] and [O-SU] with

(A)4 directly in the following. From (14) it follows
that

— Yo
log |f — B | = gloga

Putting

a0 —1
f=cm 4By
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and substituting by the right hand side above in (13),
we have
0

—n=DAn—-V -

o (X(e)nVe) — poV - (nV(c 7))

a0
— DAn — V- (nV{log(1 + ac)a ¢ })

n
J0
{(1+ ac)’a epoc™ } D71

Therefore wecan say that the sensitivity function of
the equation (13) is of the form:

DV - (nVlog

)

0

(1+ ac)paenl e

which is corresponding tab(1V) in Othmer-Stevens
model. Hence we obtain the following result.

Theorem 3.2[A-C] is reduced to the same type
of the parabolic ODE system as Othmer and Stevens
model:

n

nt = DV - (nV log ),

(1+ ozc)%epoD_lcT

¢t = —nen, in Q x (0,00)

n

nV log v=0, on 902x(0,00)

70
(1 + ac)%epoD—lc ]

which are just of the form of (1), (2) and (3) in [O-SU]
with (A, ) respectively.

In Othmer-Stevens model the ted{}V) is called
sesitivity function which governs the motion of the
cells in chemotaxis. Theorem 4 implies that in
Anderson-Chaplain model the term

0

(14 ac)Brem7'e
corresponds tdhe sensitivity function and all the
arguments applicable to Othmer and Stevens model
for uptake case can be applied to Anderson-Chaplain
model too. Hence Theorem 4 is very useful to inves-
tigate Anderson-Chaplain model from the stand point
of Othmer-Stevens model. In fact, making use of The-
orem 4 the following result is obtained.

Figure 3, Reinforced random walk type of nu-
merical simulation of Anderson-Chaplain model.
Othmer and Stevens model arises from Reinforced
random walk by Davis [6]), and hence Theorem 4 en-
ables us to carry out a numerical computation based
on the theory of reinforeced random walk. The nu-
merical result is obtained according to Sleeman and
Wallis’'s way in [20].
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In Figures 3, we consider a full three dimensional
configuration in which a tumour colony, idealised as a
sphere of cells, is embedded in a cuboid domain. We
consider the tumour colony taken to be a sphere of
radius 0.1 situated at (0.5,0.5,0.5).

Figure 4, Categorical relationship of the mod-
els. Since in the above model [u], P»[u] and Ps[u]
are in the same class of partial differential equation,
that is, they are degenerate hyperbolic operators with
strong dissipation, it seems that the models belong to
the same framework of the solvability. Especially, fur-
ther considering into the asymptotic profile of the so-
lution, it is seen that [A-C] and [O-SU] withiA)
belong to the same family as the mathematical model.

Figure 5, Formal relationship between the mod-
els.We can reduce Othmer-Stevens model with expo-
nential growth to Anderson-Chaplain model through
Othmer-Stevens model with uptake and Othmer-
Stevens model type of Anderdson-Chaplain model by
formal calculations. Also by using it we can represent
the solution of one of the models by the solution of
other models.

4. Mathematical model of tumour invasion

Anderson and Chaplain [3] describe the pro-
cess that solid tumour invade the surrounding tissues
degradating extracellular matrix(cf. [4]).

on

5p = WV =9V (nVf) (16)
0

6—{ = —nmf (17)
%—T = d,V?m + an — Bm (18)

wheren := n(z,t) is the density of tumour cells,
m := m(x,t) MDE(Matrix degradative enzyme) con-
centration, f := f(x,t)ECMO extracelluer matrix)
density. It is assumed that the tumour cells produce
MDEs which degrade the ECM locally and that the
ECM responds by producing endogenous inhibitors.
The ECM degradation, as well as making space into
which tumour cells may move by simple diffusion, re-
sults in the production of molecules which are actively
attractive to tumour cells and which aid in tumour cell
motility. We have therefore chosen to consider tumour
cell motion to be driven only by random motility and
haptotaxis in response to adhesive or attractive gradi-
ents created by degradation of the matrix.

From (17) it follows that%(log f) = %
we have by integrating ove(0, t)

Then
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time global seé|
ution(collapse

Othmer-Stevens model

Exponential growth((A)_)
P(l‘, t) =7+ ut(l‘7 t)
W(z,t) = e’ —oo(t — 00)

Q)

SYMPLOLIC PrOfle --sresressssssmssss s Loy

Uptake((4). )
P(:E7 t) =7+ Ut(IL‘, t)
W (z,t) = e 774 —0(t — 00)

Anderson-Chaplain model

n(x,t) =17 (7 + w(z, 1))
c(x,t) =e MY TO’O(t — 00)

Flo,t) = Byt +en T p(a)

Figure 4. Categorical relationship of the mod-
els

Other-Stevens modglexponential grwoth)
Py = DV - (PV(log(P/®(W))))

Wy =WP
W e W
s P
P, = DV - (PV(log(P/®(W))))
Wy =WP
W =w-1

Other-Stevens modef{uptake)
P, = DV - (PV (log(P/®(W))))
W, =-WP

n=~P c=W

d(c) = (1+ ac)g—%eponlcvo/n

ny = DV - (nlog o
(14+ac) aD efo
¢t = —nen (Theorem 3.2

D—1cY0/7 )

(f = co/n 4 %)

Anderson-Chaplain model
ny = DAn — V- (x(¢)nVe) — poV - (nVf)
ft = Bn —yonf

ct = —nmnc

Figure 5. Formal relationship between the
models
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MDE concentration

Tumourcell density

ECM density

t=10

Figure 6. Simulation of Othmer-Stevens
model in 1D by M.Matsumoto and M.Kondo
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- mds
f(1) = fo(x)e /o (19)

where fy(x) is the initial data off(x). Then (4.1) is
rewritten by

S

—77 md
5 n(x,t) = dpAn — vV - n(z, t)( /
(2

0)
where we putfy(x) = 1for the simplicity. Putting

t t
U(z,t) = / n(x,s)ds, ®(z,t) = / m(x, s)ds
0 0

(21)
The initial flux-zero boundary value problem of (16)-
(18) is rewritten by
82
o2
82
a—@ dn AP + ¥, — 3
U(z,0) =0, ¥y(z,0) =no(x)
(I)(:Ua 0) =0, (I)t(xv O) = mo({l/‘)

0 0
%‘I’h‘m = 5@89 =0

U(x,t) = dy ATy + 1V - y(( v/ mds)e %)

whereng(x) andmg(x) are initial data ofn(x)and
m(x) respectively. Putting

U(z,t) =t +v(z,t), P(x,t) = yatr + w(z,t)
(22)
v = dpAve + ny 11V - (e‘”(WtT*’”)Vw)
+777V(vate_”(72tT+w))
wy = dyp Awy + Oz(”n + Ut) — B(y2 + wy)
v(x,0) = vo(x), ve(z,0) = v1(z)

w(z,0) = wo(x), w(z,0) = wi(r)

5!69 =

(T™mI)

e =0
5 lo

Then we obtain the following estimates of the first and
second equation of (TMI) respectively by applying the
energy method used in the previous sections.

t t
4 / Ve Bt < CEo](0)+Cr / ur| 2,
0 0
(23)
t
el 2+ /0 [V 2dt < CExw)(0) + C|lurl 2.

(24)
wherekis a positive integer and a constanttends to
zero as a parametét > (Oincreases. For sufficiently
largeT'we derive the estimate of the above problem by
combining the both sides of (23) and (24) respectively

[lwel[ + El]

/ Vel 2t + / Vw2t
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< CEg[w](0) + CE[v](0). (25)

By using (25) we can show the time global existence
and asymptotic behaviour of the solution of the solu-
tion of (16)-(18). The following is the main theorem
in this paper.

Theorem 4.1 For the initial flux-zero
boundary value problem (16)-(18) satisfying
flux-zero boundary condition and initial data

(no(x), fo(x), me(x)), there is a classical solution
(n(z,t), f(z,t),m(x, t))assumed that initial data are
sufficiently smooth.

Figure 6, Simulation of tissue invasion models
in 1D. In the biginning we assume that tumour cells
exist only near the origin. Asincreases, Fig 6 shows
that tumour cells are propagating as a traveling wave
while MDE is degradating neighbouring ECM. The
same type of numerical experiment has been shown
by Anderson and Chaplain in [3].

5 Conclusion

It is shown that we can discuss the argument
of the solvability of models arised in tumour angio-
genesis in a same framework. Further we can ap-
ply such argument to mathematical understanding of
tumour invasion proposed by Anderson and Chap-
lain. It is concluded that we can deal with tumour
growth models, mathematical models of angiogenesis
by Othmer-Stevens and Anderson-Chaplain and tu-
mour invasion by Anderson-Chaplain, consistently by
a reduction process to the same type of nonlinear evo-
lution equtions. Also numerical experiments in this
paper are allowed to verify by our mathematical anal-
ysis.
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