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Abstract: We explore the phenomenon of stochastic resonance occurring in a fractional oscillator subjected to an
external periodic force. The influence of fluctuations of environmental parameters on the dynamics of the oscillator
is modeled as a multiplicative three-level Markovian noise. Using the Shapiro-Loginov formula, exact expressions
for the response to an external periodic field are found. It is shown that there exists a critical memory exponent (a
fractional exponent) which marks a dynamical transition in the behavior of the system. Particularly, it is demon-
strated that the spectral amplification of the output signal exhibits a resonance-like nonmonotonic dependence on
noise parameters. Influence of the memory exponent on friction-induced reentrant transitions between different
resonance regimes of the oscillator is also discussed.
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1 Introduction

Active analytical and numerical studies of various dy-
namical models with random perturbations have been
stimulated by their possible applications in different
fields, ranging from ecosystems [1, 2] to intracellu-
lar protein transport in biology [3]–[5], or to meth-
ods of particle separation in nanotechnology [5, 6].
One of the objects of special attention in this con-
text is the noise-driven harmonic oscillator [7]–[10].
Since non-linearity presents some difficulties for the-
oretical analysis of stochastic resonance phenomena,
linear models of oscillators with multiplicative noise
are of a particular interest. These models, on the
one hand, show quasi-nonlinear behavior including
stochastic resonance [10], and on the other hand, they
allow exact analytical treatment.

A popular generalization of the harmonic oscil-
lator, called the fractional oscillator, consists in the
replacement of the usual friction term in the dynam-
ical equation for a harmonic oscillator by a gener-
alized friction term with a power-law type memory
[11]–[14]. The main advantage of this equation is
that it provides a physically transparent and mathe-
matically tractable description of stochastic dynamics
in systems with slow relaxation processes and with
anomalously slow diffusion (subdiffusion). Examples
of such systems are supercooled liquids, glasses, col-

loidal suspensions, dense polymer solutions [15, 16],
viscoelastic media [17], and amorphous semiconduc-
tors [18]. Particularly, diffusion of mRNAs and ri-
bosomes in the cytoplasm of living cells is anoma-
lously slow [19], and large proteins behave similarly
[20]. Even intrinsic conformational dynamics of pro-
tein macromolecules can be subdiffusive [21, 22].

In most model systems described as a fractional
oscillator, the effect of a fluctuating environment on
dynamical equations is taken into account as an ad-
ditive white noise or fractional noise. However, it is
well recognized that there are some important sys-
tems, especially in the context of biological applica-
tions, where the influence of a fluctuating environment
should be modeled as a multiplicative colored noise,
which has a non-zero correlation time [23]–[26]. Al-
though the behavior of the fractional oscillator with an
additive noise has been investigated in detail, it seems
that analysis of the potential consequences of an inter-
play between multiplicative noise and memory effects
is still missing in literature. This is quite surprising,
because the importance of multiplicative fluctuations
and viscoelasticity for biological systems, e.g., for liv-
ing cells, has been well recognized [20, 26].

Thus motivated, we consider a fractional oscilla-
tor with a power-law memory kernel. The influence
of the fluctuating environment is modeled by a mul-
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tiplicative three-level Markovian noise (trichotomous
noise).Although both dichotomous and trichotomous
noises may be useful in modeling natural colored fluc-
tuations, the latter is more flexible, including all cases
of dichotomous noise [27, 28]. Furthermore, it is re-
markable that for trichotomous noises the flatness pa-
rameterκ can be anything from 1 to∞, unlike the
flatness for Gaussian colored noise,κ = 3, and sym-
metric dichotomous noise,κ = 1. This extra degree
of freedom can prove useful in modeling actual fluc-
tuations.

The main contribution of this paper is as follows.
We provide exact formulas for analytic treatment of
the dependence of the mean oscillator displacement
in the long-time limit,t → ∞, on system parame-
ters. On the basis of those exact expressions we will
show that stochastic resonance (SR) is manifested in
the dependence of the response of the noisy fractional
oscillator upon the noise parameters, shuch as ampli-
tude, correlation time, and flatness. To avoid misun-
derstanding, let us mention that we use the term SR
in the wide sense, meaning nonmonotonic behavior of
the output signal or some function of it, e.g., moments,
in response to noise parameters [29]. Furthermore,
we will show that at high values of noise flatness
the output signal of the oscillator exhibits a hyper-
sensitive response to noise amplitude. Moreover, we
have found a critical memory exponent below which
friction-induced reentrant transitions between differ-
ent SR regimes of the oscillator appear.

The structure of the paper is as follows. A brief
description of a trichotomous noise is presented in
Section 2. In Section 3 we introduce the basic model
investigated. Exact formulas for the mean oscillator
displacement are derived. In Section 4 we analyze the
behavior of the output response, and present the main
results of this paper. Section 5 contains some brief
concluding remarks.

2 Trichotomous noise
The trichotomous processZ(t) [27] is a random sta-
tionary Markovian process that consists of jumps be-
tween three valuesa, 0, and−a. The jumps follow in
time according to a Poisson process, while the values
occur with the stationary probabilities

ps(a) = ps(−a) = q, ps(0) = 1 − 2q, (1)

with 0 < q ≤ 1/2. The mean value ofZ(t) and the
correlation function are

〈Z(t)〉 = 0, 〈Z(t + τ)Z(t)〉 = 2qa2e−ντ . (2)

It can be seen that the switching rateν is the reciprocal
of the noise correlation timeτc, i.e, τc = 1/ν. The

flatness parameterκ of the noiseZ(t) proves to be a
very simple expression of the probabilityq

κ :=

〈
Z4(t)

〉

〈Z2(t)〉2
=

1

2q
. (3)

TheprobabilitiesWn(t) thatZ(t) is in the staten ∈
{1, 2, 3}, z1 = a, z2 = 0, z3 = −a, at the timet
evolve according to the master equation

d

dt
Wn(t) = ν

3∑

m=1

SnmWm(t), (4)

where

Snm =




q − 1 q q
1 − 2q −2q 1 − 2q

q q q − 1



. (5)

The transition probabilitiesTij = p(zi, t+τ |zj , t) be-
tween the stateszn, n = 1, 2, 3, can be represented by
means of the transition matrixTij of the trichotomous
process as follows

Tij = δij + (1 − e−ντ )Sij , (6)

whereδij is the Kronecker symbol. The trichotomous
process is a particular case of the Kangaroo process
[30]. It is remarkable that the results of the present
paper can be interpreted in terms of cross-correlation
intensity between two dichotomous noises. Namely,
the trichotomous noiseZ(t) can be represented as the
sum of two cross-correlated zero-mean symmetric di-
chotomous noisesZ1(t) andZ2(t), i.e.,

Z(t) = Z1(t) + Z2(t).

The dichotomous noisesZ1(t) andZ2(t) are charac-
terized as follows:z1, z2 ∈ {(1/2)a,−(1/2)a} with
ν1 = ν2 = ν and the correlation function

〈
Zi(t)Zj(t

′)
〉

= ρij
a2

4
e−ν|t−t′|, i, j = 1, 2, (7)

whereρii = 1 andρij = ρ ∈ (−1, 1) with i 6= j
is the cross-correlation intensity of the noisesZ1(t)
andZ2(t). In this case the probabilityq = (1 + ρ)/4,
whence it follows that the correlation coefficientρ and
the flatnessκ of the trichotomous noiseZ(t) must be
related as

κ =
2

1 + ρ
. (8)

It is obvious that the noise flatnessκ = 2 corresponds
to ρ = 0, i.e., to the case of two statistically inde-
pendent dichotomous noises. Let us note that such

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE Erkki Soika, Romi Mankin

ISSN: 1109-9518 22 Issue 1, Volume 7, January 2010



a cross-correlation between dichotomous noises may
result from either of the two following reasons: the
two noises are either partly of the same origin or are
influenced by the same factors. Notably, some cross-
correlation-induced effects have earlier been consid-
ered in the context of ratchet models [31], [32], where
it has also been suggested that cross-correlation be-
tween colored noises may provide some understand-
ing as to why structurally very similar motor proteins
with two heads, such as kinesin and dynein motor
families, move in opposite directions on the micro-
tubules despite sharing the same environment and ex-
periencing the same periodicity, like with the conven-
tional kinesin and ncd [33].

3 Model and the exact solution
As a model for an oscillatory system strongly coupled
with a noisy environment, we consider a trichotomi-
cally perturbed oscillator with a power law type mem-
ory friction kernel

Ẍ + γ
dα

dtα
X + [ω2 + Z(t)]X = A0 sin(Ωt), (9)

whereẊ ≡ dX/dt, X(t) is the oscillator displace-
ment,γ is a friction constant, and the fractional Ca-
puto derivative with the memory exponent (fractional
exponent)0 < α < 1 is defined as in [34],

dαX

dtα
:=

1

Γ(1 − α)

t∫

0

Ẋ(t′)

(t − t′)α
dt′, (10)

whereΓ(y) is the gamma function. Fluctuations of
the eigenfrequencyω are expressed as a trichotomous
processZ(t).

As in this work we will restrict ourselves to the
behavior of the first moment of the oscillator displace-
ment〈X(t)〉, all results are also applicable in models
where an additive noiseξ(t), which is statistically in-
dependent fromZ(t) and has a zero mean, is included
in the right side of Eq. (9). For example, depending on
the physical situation, the noiseξ(t) can be regarded
either as an internal noise, in which case its station-
ary correlation satisfies Kubos’s second fluctuation-
dissipation theorem [35] expressed as

〈ξ(t + τ)ξ(t)〉 =
kBTγ

Γ(1 − α)τα
(11)

(herekB is the Boltzmann constant andT is the tem-
perature of the heat bath), or as an external noise,
in which case the driving noiseξ(t) and the dissi-
pation may have different origins and no fluctuation-
dissipation relation holds.

To find the first moment ofX we use the well-
known Shapiro-Loginov procedure [36], which for a
trichotomous noiseZ(t) yields

d

dt
〈ZΦ〉 =

〈
Z

d

dt
Φ

〉
− ν 〈ZΦ〉 , (12)

whereΦ is an arbitrary functional of the processZ(t).
From Eqs. (9) and (12) we thus obtain an exact linear
system of six first-order integro-differential equations
for six variables:x1 = 〈X〉, x2 = 〈Ẋ〉, x3 = 〈ZX〉,
x4 = 〈ZẊ〉, x5 = 〈Z2X〉, x6 = 〈Z2Ẋ〉:

ẋ1 = x2,

ẋ2 = −ω2x1 − x3 − γ
dα

dtα
x1 + A0 sin(Ωt),

ẋ3 = −νx3 + x4,

ẋ4 = −νx4 − ω2x3 − x5 − γe−νt dα

dtα

(
eνtx3

)
,

ẋ5 = −νx5 + x6 + 2qa2νx1,

ẋ6 − 2qa2ẋ2 = −ν
(
x6 − 2qa2x2

)
− a2(1 − 2q)x3

−ω2
(
x5 − 2qa2x1

)
−γe−νt dα

dtα

[
eνt

(
x5 − 2qa2x1

)]
.

(13)

The solution of equations (13) can be formally repre-
sented in the form

xi(t) =
6∑

k=1

Hik(t)xk(0)

+A0

t∫

0

[
Hk2(t

′) + 2qa2Hk6(t
′)

]
sin

[
Ω

(
t − t′

)]
dt′,

(14)
where the constants of integrationxk(0) are deter-
mined by initial conditions. The relaxation functions
Hik(t) with the initial conditionsHik(0) = δik can
be obtained by means of the Laplace transformation
technique. Particularly, we find that

ĥ(s) := Ĥ12(s) + 2qa2Ĥ16(s) =
1

D(s)

×
{[

(s + ν)2 + γ(s + ν)α + ω2
]2

− (1 − 2q)a2
}

,

(15)
where
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D(s) = (1 − 2q)a2 [γ(s + ν)α − γsα + ν(2s + ν)]

+
[
(s + ν)2 + γ(s + ν)α + ω2

] {(
s2 + γsα + ω2

)

×
[
(s + ν)2 + γ(s + ν)α + ω2

]
− a2

}
, (16)

andĤik(s) is the Laplace transform ofHik(t), i.e.,

Ĥik(s) =

∞∫

0

e−stHik(t)dt. (17)

One can check the stability of solution (14), which,
according to the results of Ref. [37], means that the
solutionssj of the equationD(s) = 0 cannot have
roots with a positive real part. This requirement is
met if the inequality

a2 < a2
cr =

ω2(ω2 + ν2 + γνα)2

[ω2 + 2q(ν2 + γνα)]
(18)

holds. Henceforth in this work we shall assume that
condition (18) is fulfilled. Thus in the long-time limit,
t → ∞, the memory about the initial conditions will
vanish as

6∑

k=1

H1k(t)xk(0) =
γ ĥ(0) x1(0)

Γ(1 − α) tα
+ O

(
t−(1+α)

)

(19)
and the average oscillator displacement〈X〉as ≡
〈X〉|t→∞ is given by

〈X〉as = A0

t∫

0

h(t − t′) sin(Ωt′)dt′. (20)

From Eq. (20) it follows that the complex susceptibil-
ity χ(Ω) of the dynamical system (9) is given by

χ(Ω) = χ′(Ω) + iχ′′(Ω) = ĥ(−iΩ), (21)

whereχ′(Ω) andχ′′(Ω) are the real and the imaginary
parts of the susceptibility, respectively. Equation (20)
can be written by means of the complex susceptibility
as

〈X〉as = A sin(Ωt + φ) (22)

with the output amplitude

A = A0 · |χ| (23)

and the phase shift

φ = arctan

(
−χ′′

χ′

)
. (24)

UsingEqs. (15) and (16) we obtain forA that

A2 = A2
0

C1

C2
, (25)

where

C1 =
[
g2
1 + g2

3 − (1 − 2q)a2
]2

+ 4(1 − 2q)a2g2
3,

C2 =
[
g2
2 + g2

4

]
C1+4qa2

{(
g2
1 + g2

3

)
(g3g4 − g1g2)

+a2
[
q

(
g2
1 + g2

3

)
+ (1 − 2q) (g1g2 + g3g4)

]}

(26)
and

g1 = ω2+ν2−Ω2+γ(ν2+Ω2)
α

2 cos

[
α arctan

(
Ω

ν

)]
,

g2 = ω2 − Ω2 + γΩα cos

(
πα

2

)
,

g3 = 2Ων + γ(ν2 + Ω2)
α

2 sin

[
α arctan

(
Ω

ν

)]
,

g4 = γΩα sin

(
πα

2

)
. (27)

The analytical expressions (25)–(27) belong to the
main results of this work. They fully determine the
behavior of the average oscillator displacement in re-
sponse to system parameters in the long-time limit.

Finally, from Eqs. (15), (16), and (21) one can
conclude that the real and the imaginary parts of the
susceptibility are given by

χ′ =
1

C2

[
g2C1 − 2qa2g1

(
g2
1 + g2

3 − (1 − 2q)a2
)]

,

χ′′ =
1

C2

[
g4C1 + 2qa2g3

(
g2
1 + g2

3 + (1 − 2q)a2
)]

.

4 Stochastic resonance
Our next task is to examine the dependence of the re-
sponseA on the noise amplitudea. To obtain some
insight into the behavior of〈X〉as at various sys-
tem parameter regimes we first consider the adiabatic
noise (i.e.,ν → 0). At the long-correlation-time limit
τc → ∞, the output amplitudeA is given by

A2 =
A2

0

[(
f1 − (1 − 2q)a2

)2
+ f2

2

]

f3

[
(f1 − a2)2 + f2

2

] , (28)

where
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Fig. 1. SR for the response functionA vs the noise
amplitudea at various values of the friction coefficient
γ. Other parameter values:A0 = ω = 1, α = 0.1,
ν = 0, q = 0.4, andΩ = 1.8. (1) Solid line:γ = 1.3;
(2) dashed line:γ = 1.5; (3) dotted line:γ = 2.85;
(4) dashed-dotted line:γ = 2.3. Note that in the case
of curve (4),γ = 2.3, the phenomenon of stochastic
resonance is absent.

f1 = f2
4 − γ2Ω2α sin2

(
πα

2

)
,

f2 = 2γΩαf4 sin

(
πα

2

)
,

f3 = f2
4 + γ2Ω2α sin2

(
πα

2

)
,

f4 =

[
ω2 − Ω2 + γΩα cos

(
πα

2

)]
. (29)

In Fig. 1 we depict the behavior ofA(a) for var-
ious values of the system parameters. As is shown
in Fig. 1, curves (1) - (3) exhibit a resonance-like
maximum at some values ofa, i.e., a typical SR phe-
nomenon appears at increase ofa. The existence of
such an SR effect depends strongly on other system
parameters. From Eqs. (28) and (29) one can eas-
ily find the necessary and sufficient conditions for the
emergence of SR due to noise amplitude variations.
Namely, nonmonotonic behavior ofA(a)appears in
the stability regions,0 < a < acr (see Eq. (18)), for
the parameter regime where the following inequalities
hold:

2(1 − q)f2
3 ω4 > f1

[
f2
3 + (1 − 2q)ω8

]
> 0. (30)

In this case the responseA(a) reaches the maximum
at

a2
m =

f3

f1(1 − 2q)

[
(1 − q)f3 −

√
q2f2

3 + (1 − 2q)f2
2

]
.

(31)
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10

Α

Γ

HbL

Fig. 2. A plot of the phase diagrams for SR in theγ
– α planeat A0 = ω = 1, q = 0.4, andν = 0. In
the unshaded region resonance ofA vs the noise am-
plitude a is impossible. In the light grey region the
functionA(a) exhibits a maximum atam > ω2, i.e.,
at am the first moment of the oscillator displacement
〈X(t)〉 is unstable, see Eq. (18). In the dark grey do-
main (the stability region) a stochastic resonance for
A vs a occurs. The thin dashed line depicts the posi-
tion of the critical memory exponentαc = 1/2. Panel
(a): Ω = 0.6; panel (b):Ω = 1.8.

In Fig. 2 the conditions (30) are illustrated in the
parameter space (γ, α) with two panels. The dark
grey shaded domains in the figure correspond to those
regions of the parametersγ and α, where SR ver-
susa is possible. Note that in the light grey regions
the responseA(a) formally also exhibits a resonance-
like maximum, but in those regions the first moment
〈X(t)〉 is unstable at the resonance regime and that
renders formula (28) physically meaningless. The
boundariesγ1,2(α) of the regions where SR vsa is
possible are determined by the inequalitya2

m > 0 with
Eq. (31). From Eqs. (31) and (29) it follows that

γ1,2(α) =

(
Ω2 − ω2

)

Ωα cos(πα)

[
cos

(
πα

2

)
± sin

(
πα

2

)]
.

Two findings can be pointed out. The first is the exis-
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tence of a critical memory exponentαc = 1/2, which
marks a sharp transition in the behavior of systems
with fractional dynamics. Atαc, one of the bound-
ariesγ(α) between the resonance and no-resonance
regions tends to infinity.

The second finding is that depending on the driv-
ing frequencyΩ, two different cases can be discerned.
(i) For Ω2 < ω2, resonance vsa appears in the sta-
bility region for all values ofγ whenα < αc, but if
α > αc, there is an upper borderγ(α) above which
the resonance is absent (Fig. 2(a)). (ii) In the case of
Ω2 > ω2, if α < αc, the interesting peculiarity of the
diagram is that there are two disconnected regions (the
shaded areas in Fig. 2(b)) where the resonance can
appear. Thus, in this case a variation of the values of
the friction parameterγ induces reentrant transitions
between different dynamical regimes of the oscillator.
Namely, an increase ofγ can induce transitions from a
regime where SR vsa is possible to the regime where
SR is absent, but SR appears again through a reentrant
transition at higher values ofγ.

Next we consider the general case,ν 6= 0 (see
Eqs. (25)–(27)). In this case the regions in the pa-
rameter space(γ −α) where SR versus the noise am-
plitudea is possible are determined by the inequality
a2

m > 0, wherea2
m is the real solutions of the equation

x2(1 − 2q)
{
(1 − 2q)

(
g2
1 + g2

3

)
(g3g4 − g1g2)

+2
(
g2
1 − g2

3

) [
q

(
g2
1 + g2

3

)
+ (1 − 2q) (g1g2 + g3g4)

]}

−2x
(
g2
1 + g2

3

)2 [
q

(
g2
1 + g2

3

)
+ (1 − 2q) (g1g2 + g3g4)

]

+
(
g2
1 + g2

3

)3
(g1g2 − g3g4) = 0. (32)

One readily sees from Eq. (32) that a positive solution
exists if and only if the following inequality holds:

g1g2 > g3g4. (33)

Thus the boundariesγ1,2(α) of the resonance regions
are given byg1g2 = g3g4. From Eqs. (27) it follows
that

γ1,2 =
1

2d

(
−b ±

√
b2 − 4cd

)
, (34)

where

c =
(
ω2 − Ω2

) (
ω2 + ν2 − Ω2

)
,

b = Ωα
(
ω2 + ν2 − Ω2

)
cos

(
πα

2

)
−2νΩα+1 sin

(
πα

2

)

+
(
ω2 − Ω2

) (
ν + Ω2

)α

2 cos

[
α arctan

(
Ω

ν

)]
,
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Fiq. 3. The phase diagrams for SR vsa in theγ − α
planeat A0 = ω = 1, ν = 1.0, andq = 0.5. Panel
(a): Ω = 0.6; panel (b):Ω = 1.8. In the unshaded
region SR versus the noise amplitudea is impossible.
In the light grey region the functionA(a) exhibits a
maximum atam > acr; see Eq. (18). In the dark
grey domain SR vsa occurs (in the stability region,
am < acr). The thin dashed line depicts the position
of the critical memory exponentac.

d = Ωα(ν2 + Ω2)
α

2 cos

[
α

(
arctan

(
Ω

ν

)
+

π

2

)]
.

(35)
It can be seen from Eqs. (34) and (35), that one of the
boundariesγ1,2(α) tends to infinity ifd tends to zero.
This happens when the memory exponentα tends to
αc, where

ac =
π

π + 2 arctan
(

Ω
ν

) . (36)

Notethat neither the phase boundariesγ1,2(α) nor the
critical memory exponentac depend on the noise pa-
rameterq. So in the general case the critical memory
exponentac, which marks a sharp transition in the be-
havior of systems with fractional dynamics, depends
only on the ratio of the driving frequencyΩ to the
noise switching rateν (see also Fig. 3). Particularly,
in the adiabatic case (ν→ 0) the critical exponentac
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Fig. 4. A plot of the dependence of the response func-
tion A on the noise amplitudea in a region of hyper-
sensitive response [Eqs. (28) and (37)]. System pa-
rameter values:γ = 3 · 10−4, q = 5 · 10−3, Ω = 0.99,
α = 0.1, ν = 0, andA0 = ω = 1. The value ofA2 at
the local maximum isA2

m = 15857; A2 ≡ A2/A2
m.

is 0.5 and in the fast-noise limit(ν → ∞) ac tends
to 1. From analysis of Eqs. (33)-(35) it follows that
depending on the driving frequencyΩ, three differ-
ent regimes of the dynamical system (9) can be dis-
cerned.(i) ForΩ2 < ω2, SR vsa appears in the sta-
bility region for all values ofγ whenα < αc, but if
α > αc, there is an upper borderγ(α) above which
SR is absent (Figs. 2(a), 3(a)). (ii) In the case of
ω2 < Ω2 < ω2 + ν2 for α < αc the resonance exists
only if γ > Ω2 − ω2; in the regionα > αc the reso-
nance is absent. (iii) At the driving frequency regime
Ω2 > ω2 + ν2, if α < αc, there are two disconnected
regions (Figs. 2(b) and 3(b)) where SR vsa is possi-
ble. An important observation here is that the region
where the resonance is not possible grows as the noise
switching rateν increases (cf. Figs. 2(b) and 3(b)).
This tendency is in accordance with the fact that at
high values of the noise switching rate the system (9)
behaves as a deterministic fractional oscillator (with-
out noise).

Finally we consider, in brief, another interesting
SR phenomenon – hypersensitive response to noise
amplitude. A peculiarity of Fig. 4 is a rapid decrease
of A2 from maximum to minimum asa increases. It
is noteworthy that in the case of dichotomous noise
such an effect is absent. The effect is very pronounced
at low values of the damping constantγ. To throw
some light on the above-mentioned effect, we shall
now briefly consider the behavior of the SR character-
istic A2 in the parameter regimeν = 0, and

γΩα << q
∣∣∣ω2 − Ω2

∣∣∣ << ω2, q << 1. (37)

In this case, it follows from Eqs. (28) and (29) thatA2
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Fig. 5. SR forA2 versusthe noise switching rateν,
computed from Eq. (25)–(27) at various values of the
friction coefficientγ. Other parameter values:A0 =
ω = 1, a2 = 0.3, α = 0.3, Ω = 0.8, andq = 0.4.
Solid line: γ = 0.09; dashed line:γ = 0.095; dotted
line: γ = 0.1.

reaches the maximum

A2
max ≈ A2

0

q2

γ2Ω2α
(38)

at
a = amax ≈

∣∣∣ω2 − Ω2
∣∣∣ , (39)

andthe minimum

A2
min ≈ A2

0

γ2Ω2α

q2 (ω2 − Ω2)4
(40)

at

a = amin ≈
∣∣Ω2 − ω2

∣∣
√

1 − 2q
. (41)

For sufficiently strong inequalities (37),A2
min tends to

zero andA2
max grows up to very large values. Thus in

the case considered the responseA is extremely sen-
sitive to a small variation ofa: ∆a = amin − amax ≈
q

∣∣Ω2 − ω2
∣∣.

Formulas (37) – (41) are exactly the same as can
be derived from the results of [38] for an ordinary
stochastic oscillator (without memory,α = 1) if we
replace the friction coefficientγ with the correspond-
ing effective quantityγef = γΩα−1. This suggests
that the physical explanation of the effect of hyper-
sensitive response to noise amplitude exposed in [38]
for a stochastic oscillator without memory is also ap-
plicable in the case of a stochastic fractional oscillator.

The phenomenon of SR is not restricted to non-
monotonic dependence ofA on the noise amplitudea.
Figures 5 and 6 depict the behavior of the responseA
versus the noise switching rateν and versus the noise
flatness parameterq = 1/(2κ), respectively. In Figure
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Fig. 6. Dependence of the SR characteristicA2 on
the noise parameterq in the case of a long correla-
tion time. The curves correspond to the following
parameters:A0 = ω = 1, a = 0.03, Ω = 0.99,
γ = 0.001, andν = 0.0001; (Eqs. (25)–(27)). Solid
line: α = 0.9; dashed line:α = 0.5; dotted line:
α = 0.1.

5, one observes resonance versusν, which apparently
gets more and more pronounced as the friction coef-
ficient γ decreases. It is remarkable that in contrast
to the caseA vs a, SR vsν depends on the memory
exponentα very weakly: asα increases from zero to
1 only a slight deformation of the curvesA(ν) can be
observed.

A plot (Fig. 6) of the responseA2 versus the noise
parameterq for different values of the memory expo-
nentα shows a typical SR with nonmonotonic behav-
ior of the functionA2(q). At a long correlation time,
ν → 0, which is the case considered in Fig. 6, it fol-
lows from Eq. (28) that on condition

a2 > f1 > 0 (42)

the responseA2 reaches a minimum at

q = qm =
1

2a2

(
a2 − f1

)
. (43)

Note that the inequalities (42) are the necessary and
sufficient conditions for the SR phenomenon vsq to
occur in the adiabatic limit. Evidently, if the damping
parameterγ is low, the suppression ofA2 at q = qm

is very pronounced, i.e.,A2(qm) tends to zero asγ
vanishes. It is seen from Fig. 6 that the influence of
the memory exponentα on the resonance behavior of
A2(q) is very weak.

5 Conclusions
In the present work, we have analysed the phe-
nomenon of stochastic resonance within the context of

a noisy, fractional oscillator with a fluctuating eigen-
frequency driven by a sinusoidal forcing. The vis-
coelastic type friction kernel with memory is assumed
as a power-law function of time and the eigenfre-
quency fluctuations are modeled as a colored three-
level Markovian noise. The Shapiro-Loginov formula
[36] with the Laplace transformation technique allow
us to find an exact expression for the long-time behav-
ior of the mean oscillator displacement.

As one of the main results we have established
the effect of a very sensitive response of the mean os-
cillator displacement to small variations of the noise
amplitude at high values of noise flatness, i.e., the
amplitude of the output signal displays a quick jump
from a very high value to a low one as the noise ampli-
tude increases but a little. It is important to note that
such a phenomenon has been previously reported for a
stochastic oscillator without memory in Ref. [38]. As
another main result we have found, first, the existence
of a band gap for the values of the friction coefficient
γ between two regions of the(γ − α) phase diagrams
where SR vs noise amplitude is possible at sufficiently
small values of the memory exponentα < αc(Ω/ν),
and, second, the corresponding friction-induced reen-
trant transitions between these different dynamical
regimes of the oscillator.

We believe that the results obtained are of inter-
est also in cellbiology, where issues of memory and
multiplicative colored noise can be crucial [12, 20, 22,
26].

A further detailed study is, however, necessary –
especially an investigation of the behavior of second
moments [39].
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