
Nonlinear Evolutionary Process in Biophysics:  
an Hamiltonian Representation 

 
J. QUARTIERI*, S. STERI**, N. E. MASTORAKIS***, C. GUARNACCIA* 

 
*Department of Physics “E. Caianiello” and Faculty of Engineering,  

Via Ponte don Melillo 1, I-84084, Fisciano, ITALY 
University of Salerno, quartieri@unisa.it , guarnaccia@sa.infn.it  

 
**Department of Mathematics “R. Caccioppoli”,  

University of Naples, steri@unina.it  

*** Technical University of Sofia, 
English Language Faculty of Engineering 
Industrial Engineering, Sofia 1000, Sofia 

BULGARIA  
http://www.wseas.org/mastorakis  

 
 

Abstract: - The behaviour of a cellular colony in controlled growth is here exploited by means of new 
mathematical models. The first aim of the paper is to introduce the Hamiltonian function in an analytic 
nonlinear evolutionary process. In analogy with the finite optimal processes theory, this study leads to the 
introduction of a canonical representation of the process by means of two sequences of equations. This means 
that one has to introduce “adjoint variables”, namely “generalized momenta”, which play the role of classical 
momenta and have to be considered together with the “positional variables”. A correct explanation of the 
physical meaning of these new variables gives the possibility to extend the analogy with classical mechanics. In 
this scenario, a biological problem can be considered and used as a case study for this analogy. The authors 
have already studied the controlled evolution of a cellular colony in some recent papers. Now the application of 
an Hamiltonian representation to the stochastic process of a tumoral cells colony is approached by means of the 
introduction of the canonical variables. 
This hopefully could lead to the begin of a new optimal control of drug therapy in the evolution of a tumoral 
colony.   
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1 Introduction 
 
The primary aim of this paper is to introduce, à 

la Pontryagin [10], the Hamiltonian function in the 
representation of an evolutionary linear or nonlinear 
Cauchy problem, either autonomous or not. That is 
tantamount to introduce a canonical representation 
of the process starting from the initial configuration 
occupied by the physical system at the zero instant.  

The problem to be considered is the following 
one, e.g. autonomous, i.e. with a time independent 
evolutionary operator: 

 

[ [ [ [







∞+∈∈
=

=

,0,1,0

)()0,(

)(

: 0

tx

xPxP

PAP

ECP
dt
d

                (1) 

 
A is a differential operator which analytically 
depends on P, its first µ  derivatives and x, i.e. 

1+µ  arguments. 

The initial function Po(x) is supposed to be 
analytical in a disk of complex variable x, 
containing the origin as non singular point, enclosed 
in the µ  + 1 – disk in which A(P) is analytical, i.e. a 

function developable in a multiple power series of 
its arguments. 
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In order to solve problems like (1), (ECP), we 
consider an equivalent initial value problem, (IVP) 
⇔ (ECP), for an open normal first order differential 
system, [4, 5, 6, 11, 12, 13]. Putting: 
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We obtain (IVP): 
 













∈=

Θ=

=

+µ

 s.coordinate Taylor

(x)P as  assigned ,conditions initial

Nn  xPa

pppp

IVP xdx
d

nn

nnndt
d

n

n

0

000!
1

10

,)]([

)...,,,(

:     (2) 

 
IVP integration is allowed in the space of Cauchy 

sequences on C, in which IVP may be written as an 
ODE: 
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where D is the Groebner-Lie operator: 
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with +∞
=π=π 0)( nn  a sequence of parameters. 

Since +∞
=Θ 0)( nn  sequence is infinitesimal, we are 

allowed to introduce D and the correlated Lie 

operator tDe . Thereby: 
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is the solution of the above ODE. 
After the integration, we can introduce a 

Hamiltonian function which allows us to write the 
canonical representation of the assigned nonlinear 
autonomous problem; the same may also be pointed 
out for the non autonomous case. 

In order to illustrate in details this procedure, in 
this paper we consider a particular application, 
relevant in the fight against tumors. In fact, in the 

frame of our biomathematical investigations on 
tumors, the final aim of our work will be the 
optimization of drug therapy. Therefore, for the 
controlled birth and death process which, in our 
case, describes the malignant behaviour of cells 
colony subject to a suitable remedy by physicians, 
we shall write a canonical representation of 
malignancy, in the dynamics sense [9], supposing 
the process to be either conservative or not, namely 
subjected to a controller constant or variable in time. 

Our results can be generalized and extended to 
similar stochastic processes, as well as to an analytic 
evolutionary problem, like the above (1). 

Then an interesting analogy with classical 
mechanics may be found in the formulation of a 
principle similar to the Hamilton’s one and 
characterizing evolution in Gibbs’ space. 

After having underlined the aim and foreseen 
possible extensions of the present study, as a brief 
introduction to the problem, let us now put in 
evidence all our starting points, which represent the 
subjects of previous investigations, both ours and of 
other authors. 

We shall proceed from the following results: 
a) the stochastic process describing tumor 

evolution is integrable via generalized Lie series, 
according to an improvement of Gröbner’s method; 
this author solved initial values problems for finite 
normal differential systems by similar series [1, 2], 
whilst we extended the method to non finite initial 
value problems and to the integration of an 
equivalent Cauchy problem for an evolutionary 
equation [4, 5, 6, 11, 12, 13]; 

b) by introducing the probabilities generating 
function P(t, z), with [ [ [ [1,0,,0 ∈∞+∈ zt , a 
Cauchy problem for an evolutionary equation 
equivalent to the stochastic process may be 
formulated: solving the latter means to solve the 
former, [4, 5, 6, 11, 12, 13]; 

c) by demonstrating the continuously 
differentiability of P at z = 1, we can introduce an 
equivalent representation for malignancy involving 
those derivatives, which are linked to the moments 
of the distribution random variable (r.v.) X(t), 
number of malignant cells in the colony. 
 

2 First description of the model  
 

In this section, we briefly exploit the above 
points a), b), c); more details can be found in the 
references. 

Let us consider the following birth and death 
process involving probabilities (forward 
Kolmogorov’s equations) describing controlled 
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evolution of a malignant tumor, whose random 
variable is X(t), number of tumoral cells, while pn(t) 
is the probability of having n cells at t in tumoral 
colony. k,, µλ  are constants related to the biology 
of the spontaneous process, h(t) is a function of time 
describing drug action on colony cells: 
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or in compact form: 
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where the last equation and the relative initial 
condition are added in order to transform the 
problem in an autonomous or time independent one. 
In fact in the improved Gröbner method [4, 5, 6, 11, 
12, 13] in this way, i.e. by the symmetrization of 
variables, it is possible to integrate (1-2) through the 
following steps: 

a) the introduction of the Gröbner-Lie 
differential operator: 
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in which functions Nnn ∈ΘΘ ,,0 , are just the 

r.h.s. of (4) but depending on parameters iπ . 

Its existence is ensured by the infinitesimal 

nature of sequence +∞
=Θ 0)( nn . 

 
b) Afterwards we are able to introduce also the 

Lie operator: 
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It exists as a consequence of D existence. Then (3)-
(4) can be written on the space of Cauchy sequences 
as (see (1b)): 
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every other initial value being null. 

Then a unique solution of (3) exists, whose 
components are: 
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The forward difference Kolmogorov’s 

differential equations (3) are our improvement of 
those proposed in 1976 by Dubin, [3], and the time 
independent parameters linked to the biology of the 
process have the same meaning: λ  expresses the 
spontaneous birth of a new cell, µ  the death of an 
old cell, k the death of one cell due to 
immunological reaction of the host. Moreover we 
introduced the controller h(t) because we admit that 
the death can be also due to the action of drug. We 
require this action to be optimal, e.g. it ensures 
colony extinction after a fixed time T from the 
beginning of therapy. This achievement is the final 
goal of this and forthcoming studies, focused on a 
possible extension of Pontryagin principle. 

The corresponding evolution equation, obtained 
by the introduction of the probability generating 
function P(t, z), when putting u = 1 – P : 
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in which time dependent control, the h(t) function, 
makes non autonomous the evolution operator. On 
the contrary, in the spontaneous (non controlled) 
process, the evolution operator is autonomous, 
according to the Dubin model, [3]. 

The above Cauchy problem (8) may be easily 
solved by our improved Gröbner method, [4, 5, 6, 
11, 12, 13]. In fact a Taylor transformation links the 
above problem (8) to the initial value problem (3-4), 
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and integrating the latter, one can obtain the unique 
solution of the former, represented by the double 
series: 
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It can be also demonstrated that P is 

continuously differentiable at z = 1, then if: 
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the stochastic process which describes the controlled 
evolution is equivalent to the following one: 
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(9) can be written in a more compact and general 

form as follow: 
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represents the mean of distribution, while the 
variance is given by: 
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In other words we find that the derivatives of 

),( ztP  at  z = 1 are linked to the other moments of 
the random variable X(t): 
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We remark that every function nη  may be 

known, following Gröbner ideas, by applying 
operators analogue to (5) and (6), and by suitable 
definition of parameters into the initial values, as the 
peculiarity of the method demands. 

That can be obtained by considering the new 

unknown functions 
!

*
j

j
j

η
=η , being by this way 

ensured the existence of Groebner-Lie operator. 
Obviously reduction to autonomy from the time is 
demanded and may be obtained by symmetrization 
of variables. 
 
 

3 Hamiltonian function and canonical 
representation of malignant process 
 

Now let us demonstrate the following 
fundamental statement which will be useful to 
extend the Pontryagin principle to our stochastic 
process, in order to optimize the controller, and will 
allow analogies with classical mechanics: 
 
Theorem 1: Every stochastic process like (3-4) if 
conservative, i.e. h(t) =constant, admits a unique 
canonical representation (see below) by means of 
the Hamiltonian function 
 

,
0
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existing at every instant, and in which jΦ , the 

adjoint variables, are functions suitably defined. If 
the process is not conservative, the canonical 
representation is again available, then Hamiltonian 
function exists at every instant dropping within the 
convergence disk of h(t), supposing adjoint 
variables jΦ  suitably bounded, in every case 

concerning integrating Groebner-Lie operator 
existence. 
 

Proof: 
There are different cases that here we analyze. 

1) This point is in particular useful dealing with 
an extension of the Pontryagin principle, namely for 
a special aim and represents the starting point also 
in the other instances 2), 3).  

We proceed first by introducing the Hamiltonian 
function for any problem approaching the stochastic 
process (3-4). 

Let us introduce the “truncated” Hamiltonian 
function : 
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in which the adjoint variables jΦ  are analytic 

functions such that: 
i) 
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dt
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which is the representation of the normal differential 
system of the first m + 1 equations of our controlled 
process. This system, together with its relative 
initial conditions, represents an initial value problem 
asymptotically approaching the stochastic process 
(1-2) as +∞→m . 

ii) In addition, by requiring that holds the 
fundamental identity: 
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we obtain the (linear) system involving the adjoint 
variables. In fact: 
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so we obtain the following linear system involving 
adjoint variables: 
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iii) As a third condition, we require that: 
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where },...,2,1,0{)( mjj ∈  is the sequence of the first 

1+m  values of the random variable X(t). 
At the following step, Hm+1 is such that: 
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Then, if the sequence of partial sums: 
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the Hamiltonian function of the controlled process, 
as the limit: 
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as we are going to prove.  
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Similarly: 
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In order to prove the convergence of (20), we 

observe that in every point Tt ≤  the above 
sequence: 
 

0
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is uniformly convergent and it defines at least a C1 
function, if h(t) is in C1 . 

In fact at T, within domh(t) we can prove that: 
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That is true provided that E(X(t)) is a series of 

functions differentiable term by term. That 
statement holds. In fact: 
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derivation term by term of the series which defines 
the mean E(X). 
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In fact E(X) is the sum of a Lie series absolutely 

convergent at t = T. 
In conclusion there are two power series (of the 

Lie type) which define H and its derivative, which 
converge at t = T absolutely, and at t < T, i.e. within 
the circle of convergence of h(t). 

Note that 1CH ∈ only within the domain, 
domh(t) of h(t), whilst, if e.g. h(t) is a constant or a 
polynomial in t, that happens for every t. 

In fact T is any instant in the domain of existence 
of h(t) and dt

dh , in particular any instant if h(t) is a 

constant, i.e. the process is conservative, or a 
polynomial, inasmuch in that hypothesis E(X) and 

dt
XdE )(  exist for every T. 

Now having introduced the Hamiltonian H, and 
considered the instances in which its definition may 
be prolonged to every instant of the domain of h(t), 
we can integrate, regarding t as a complex variable, 
the following initial value problem: 
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In fact we can know the functions jΦ , which at 

T represent all possible values of the random 
variable X(t). This is possible through the usual 
method of generalized Lie series [4, 5, 6, 11, 12, 
13]. 

To do that we can refer to the new variables 
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The right hand side is wanted infinitesimal as 

+∞→i  . This happens certainly if, as in the sequel 
(see below, point 3), the adjoint variables are so 
upper bounded: 
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Such variables fit our request.  
In fact having introduced the suitable Lie 

operator, this finds all components of the unique 
solution for every admissible t: 
 

iTi
DTt

i i
et =Φ

∗−∗ π=Φ )(
*)( ][)(         (26) 

 
having operated the final substitution of parameters 
with initial values and where D* is the 
correspondent Gröbner-Lie operator, introduced in 
the usual manner. Then, in fact, H exists in T if the 

)(tjΦ  have in T the same ordered values of X(t), 

and the Hamiltonian function exists in every internal 
point of domain of h(t) as a C1 function, such as 
positional and adjoint variables. In fact solution 

+∞
=Φ 0)}({ ij t  has its components represented by Lie 

series, whose convergence radius is the radius of 
analyticity for h(t), being the problem linear but for 
h(t). That because in the integration à la Gröbner we 
must first proceed to a symmetrization of variables 
transforming the problem into an autonomous one, 
procedure that causes the system to lose its linearity, 
see: [1], [2], depending on )( 1−ph , being the new 
variable required by the symmetrization of variables 
procedure. 

The following point is useful in looking for 
analogies with classical mechanics. 

2) Now we can observe that if t is regarded as a 
complex variable and the process is in particular 
conservative, every t is admissible and it is: 
 

H = constant 
 

in fact     .0=
∂

∂=
t

H

dt

dH
 

 
Then if, as we are going to prove, 0][ =tH  exists, at 

every other instant stands: 
 

,][)( 0== tHtH  

 
i.e. in complex plane H exists for every t in which 
conjugated variables pj and jΦ exist, if H is existing 

at t = 0. In other words since the conservative 
problem is linear, pj and jΦ are existing at every t 

and so does H. This doesn’t stand if autonomous 
problem is nonlinear (see in the sequel point 3). 

In fact, supposing process to be conservative, we 
can think to change the starting conditions, assigned 
at T for the problem (24-25) as initial values, and 
considered now not any more at time T but at the 
initial instant 0. In the certain configuration the 
probabilities are: 
 

1)0(}))0(({
00 0 ===Φ nnr pnP  ;        (27) 

 .if0)0(}))0(({ 0nipjP ijr ≠===Φ  

 
Then at t = 0, 

 

)1()(
)(

,))0((

000
0

0

−−−−µ−λ=






=

=

nnknkh
dt

XdE

(9) from and nXE

t

 

 
Thereby: 

)1()()0( 000 −−−−µ−λ= nnknkhH  

 
Then H exists at t = 0, hence for every t.  
In such a manner we have a complete canonical 

representation of the stochastic process supposed 
conservative.  

Resuming: for a conservative process starting 
from the initial configuration, supposed known, 
which the system assumes with certainty at t = 0, H 
is defined by the constant assumed at t = 0; at every 
t on the real axis, H=constant is an integral, i.e. an 
equality to be satisfied by the solution of the 
canonical system at every instant. 

Then we have the following interpretation of the 
canonical representation of a conservative system. 

This is such that the solution, obtained according 
to the Gröbner approach by generalized Lie series, 
of its first part furnishes the distribution of the 
random variable X(t), while the components of the 
solution of its second part, obtained by the same 
procedure, represent a sequence of functions which 
at initial instant are the values of X(0), non random 
in this point, whose meaning must be detected (see 
the sequel), namely: 
 

,

;

00

0 Θ=−=

∈Θ=−=

Φ∂
∂

Φ∂
∂

H
dt

dp

i
H

dt
dp Ni

i

i

       (28) 

;,0)0(;1)0( 00
njpp jn ≠∀==        (29) 
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0

1

0

0

11

1

11

0

pp
H

dt
d

pipipi

j pjp
H

dt
d

Ni
i

i

i

i

i

i

i

j

i

i

∂
Θ∂

∂
∂Φ

∂
Θ∂

+∂
Θ∂

∂
Θ∂

−

+∞

= ∂
Θ∂

∂
∂Φ

Φ−=−≡

∈Φ+Φ+Φ−=

=Φ−=−≡

+−

∑
 (30) 

 

yprobabilit null with )0(

  certainty; with )0( 00

i

n

i

n

=Φ

=Φ
      (31) 

 
3) Furthermore, if the process is not 

conservative, we can still observe that a similar 
canonical representation can be introduced. In fact, 
like in conservative instance, if the Hamiltonian is 
directly introduced at t = 0, its existence elsewhere 
is guaranteed on the real axis within the 
convergence disk of h(t), provided that the jΦ  are 

under suitable constraints. This hypothesis will be 
suitable also in order to integrate the system 
involving adjoint variables. In other words the 
constraints ensuring H existence, also allow the 
representation of evolution by Lie series. 

Naturally within the analyticity disk of h(t), 
according with the general result for every analytic 
evolutionary process which demands convergence 
of Lie series inside the domain of the evolutionary 
operator. 

More in details, let us suppose to consider a 

bounded sequence of non negative numbers +∞
=δ 0}{ jj  

with: 
 

1}sup{ 0 ≤∆=δ +∞
=jj   . 

 
Let us assume that every || jΦ  is dropping in a 

circular neighbourhood of the integer j: 
 

,jj j δ<−Φ  

 
being: 

 

,0 rt <≤  

 
with r the radius of the convergence disk domh(t) of 
the analytical function h(t), or in a non symmetric 
neighbourhood of every integer j: 

 

,; 11 jjjjj jj δ=δδ+≤Φ<δ− +−  

 
being the last equality the condition of contiguity for 
the assigned intervals. 

If the above assumption holds, then: 
 

∞<∆++∆≤Φ≤

⇒=






∂
∂

∑∑

∑
∞+

=

∞+

=

+∞

==

1

0

0

11

)(

),(

j
j

j
jj

j
j

x

p
dt

d
j

dt

dp
p

dt

d
H

p
dt

d
j

x

tzP

dt

d

 

being ∞<∑
+∞

=1j
jp

dt

d
j within domh(t), 

and    ∑∑
+∞

=

+∞

=

<∆
11 j

j
j

j p
dt

d
jp

dt

d
 

  
i.e. H exists at every t dropping in domh(t). 

Resuming all above points: 
we introduce the Hamiltonian H in the stochastic 

representation of a birth and death process by 
defining the adjoint variables jΦ  as analytical 

functions which assume the integers, which are the 
values of the random variable X, number of entities, 
i.e. cells of colony, at an instant T which drops 
within the convergence circle of h(t), the function 
responsible of non autonomy of evolution. By this 
way H is defined as a C1 function. 

In order to obtain a canonical representation of 
the process, having in sight analogies with classical 
mechanics, it needs that adjoint variables assume the 
integers, values of X, as the initial values, namely at 
t = 0 from which the process starts. We need first to 
distinguish the autonomous instance, in which  

 
H = constant 

 
as an integral equality satisfied by all and only 

the solutions 
0

},{ Njjjp ∈Φ  of the canonical 

representation of the process; H, in this instance, 
which we can name conservative case, exists at 
every instant t. 

The non autonomous instance demands an 
additional hypothesis in order to do H existing at 
every instant 0≠t , dropping in the convergence 
disk of h(t), i.e. the adjoint variables must be 
properly bounded: 

 

.1; ≤∆∆+≤Φ jj  

 
This is a suppletory hypothesis also in 

conservative instance in order to integrate the 
system of the adjoint variables; in fact, in every 
instance, the infinitesimal feature of the right hand 
side terms in equations involving the new variables 

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE J. Quartieri, S. Steri, N. E. Mastorakis, C. Guarnaccia

ISSN: 1109-9518 8 Issue 1, Volume 6, January 2009



!i
i

i

Φ=Φ∗  is sufficient to the existence of 

integrating Groebner-Lie operator. Furthermore it 
allows an interesting interpretation, see the sequel, 
of the adjoint variables in every case: the adjoint 
variables describe trajectories walked in the 
evolution by the single values of the random 
variable X. 

 
 

4 More on adjoint variables meaning  
 
In the end we observe that in every instance, i.e. 

the process being either conservative or not, and 
starting from initial instant, the set of all 
configurations of adjoint variables jΦ , regarded as 

real valued positive functions, must include the 
trajectories of the random variable X. 

In fact, the following illustration of the process is 
allowed: all happens in the canonical representation, 
as the discrete r.v. X is substituted by the continuous 
r.v. with values: jΦ=Φ . Every adjoint variable 

may wander by chance in a neighbourhood of its 
certain value. In order to do that at every instant t 
the set of all possible determinations of the r.v. Φ , 
i.e. the totality of its admissible values, drops 
closely the simultaneous random configuration of 
r.v. X. More particularly the happening 
determinations of Φ  are picked up by chance from 
the compact ranges of every jΦ , resulting as 

component of the solution to the canonical 
representation of the evolution under constraints. 
Hence the random choice with probability pj , is 
done in the subset which has as upper bound the 
correspondent value j of the random variable X, plus 

jδ  i.e. jjX δ+= )(  and as lower bound 

1)( −δ−= jjX . Then every admissible value 

jΦ=Φ  is not greater than ∆+= )( jX , whilst 

the value j may be certain only at initial instant, 
provided that, in stochastic pattern, colony starts just 
from the certain configuration: 

 

elsewhere.not generally  and  )0()0(  and

;,0)0(;1)0(

,})0({

X

jmpp

j

mj

j

=Φ

≠==

=Φ

 
Resuming, at last we have: 

 

ℜ⊂δ+δ−⊆Φ⊂= −
+∞

= [,[ 100 jjj jjrangerangeXN U

density of  jU=Φ density of  0, Njj ∈∀Φ . 

 
Furthermore we can conclude that there are two 

ways in describing evolution of a stochastic process 
similar to ours: while canonical variables pj describe 
it in terms of probabilities the happening of every 
value of the random variable }{ jX = , the adjoint 

ones jΦ do the same in terms of trajectories of all 

possible random values. 
By that point of view, canonical representation of 

a stochastic process, i.e. its Hamiltonian form, is far 
to be artificial but needs in complete representation 
of evolutionary behaviour by probabilities and 
trajectories, if special purposes are in sight. 

In order to justify what said above, we can do the 
following considerations. Φ  may be regarded as a 
transformation one to one of the random variable X, 
because, given this last variable, a sole Φ  exists as 
the unique solution of the system of adjoint 
variables and, vice versa, starting from Φ , the sole 
X with associated distribution exists.  

We ask ourselves what is the associated 
distribution. At every instant, for conservation of 
probability principle: 

 

∫

∗
+

∗

δ

δ
− Φ=δ+δ−∈Φ=Φ

===
1

]}),[)(({

))(()(

1

j

j

dfjjtP

jtXPtp

jjjjr

rj

 

with obvious meaning of the integration extremes, 

∫

∗
+

∗

δ

δ

Φ=
1

)(
j

j

dftp jj  

 
where have been introduced any non negative 
integrable function playing the role of local density, 
then the above formula gives the probability that, at 

every instant, jΦ=Φ drops inside ],[ 1
∗

+
∗ δδ jj  and 

is null elsewhere. 
Namely t∀  
 

∫∑
+∞+∞

=
Φ==

00

)(1 dftp
j

j  

 
being f a density function, whose restriction to 

partial subintervals ],[ 1
∗

+
∗ δδ jj  are local density: fj . 

Resuming: the condition of upper bounded 
adjoint variables, sufficient for H existence in non 
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conservative instance, allows their determination by 
Lie series in every instance either conservative or 
non.  

Furthermore the integers, values of the discrete 
range of random variable X, are the certain 
determinations at the instant T of the adjoint 
variables dependent on them, and their probabilities 
to happen are the same to take place of oscillations 
in time of new variables close to them. Random 
walks around the values of certainty in the classical 
mechanics phrase are trajectories for the “dynamical 
system” representing X.  

  
 

5 Conclusions on biological problem  
 

A birth and death process similar to our (1-2) 
admits a canonical representation (24-25), (26-27) 
in the frame of classical Lagrangian dynamics, 
which may furnish hints in solving the trajectories 
determination problem of the relative random 
variable, provided that every adjoint variable jΦ  

has as upper bound the integer, say j, which is the 
correspondent value of the random variable, plus a 
suitable positive number, say jδ , and, as lower 

bound, the same integer minus some suitable 
positive 1−δ j  (see above), being the sequence 

0
)( Njj ∈δ  upper bounded by a number 1≤∆ .  

The integration is available by an extension of 
the classical Gröbner method which utilizes more 
general Lie series with respect to those which have 
been used by that author in his investigations, e.g. 
on finite initial value problems for linear or not 
linear but analytical normal differential systems. In 
the economy of our mathematical investigations on 
tumors, the above results will be useful to introduce 
some interesting analogies with classical mechanics 
and, in the control of the stochastic process by 
drugs, to solve the problem of optimization of the 
controller and so the drug administration if the aim 
is to extinguish colony. In fact, the controller is 
linked to the concentration of drug in situ and in the 
blood stream of the host to which the remedy is 
administered in daily doses, which are demanded 
optimal in practical fight against tumors under the 
necessity to restrain toxicity on noble parenchymal 
organs. 

Those aims will constitute the matter of 
forthcoming papers. However, it is easy to foresee 
that the same algorithm of the Hamiltonian may be 
useful in canonical representation of any 
evolutionary process. The representation must allow 

similar analogies with some principle of Lagrangian 
mechanics as we shall prove forth. 
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