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Abstract: - Systems for remote monitoring of motor activities in the elderly are becoming very popular in 
developed countries. In this context, recognition and classification of Activities of Daily Living (ADL) is a 
very important step that can open intriguing scenarios, especially if real-time techniques become available. 
The present work proposes a hierarchical classifier based on the Dynamic Time Warping (DTW) technique, 
applied on data recorded from a tri-axial accelerometer placed on the shin, to classify among different motor 
activities. The classifier was applied to the recognition of walking, climbing and descending stairs of five 
different subjects. After the calibration phase needed to extract the templates, the technique makes it possible 
to recognize activities by determining the distance between the signal input and a set of the previously defined 
templates. Signals coming from the three different channels are used in a hierarchical way, with three layers. 
The hierarchy has been set based on sorting channels by signal to noise ratio in descending order. The results 
show a classification with overall percentage of error less than 5%. 
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1   Introduction 
Accelerometers have been extensively used in 
rehabilitation engineering to gather information on 
the physical status of patients. With this idea in 
mind, different techniques applied to accelerometer 
signals have been devised to either monitor the 
activity of patients, estimate the amount of 
metabolic consumption and energy expenditure [1-
2] during different activities, or detect falls in the 
elderly [3].  
If long term monitoring of motor activities is to be 
pursued, a couple of issues need to be addressed: on 
the technological side, having a compact set up to 
minimize intrusiveness to the patient, and on the 
processing side, having a robust way to classify 
among different motor activities, which are 
generally associated with different amounts of 
energy expenditure. To perform the task of 
classifying activities, a number of studies have been 
presented in the past, which usually rely on the use 
of different ensembles accelerometers (typically 
either bi-axial or tri-axial), placed on the subject’s 
body surface in correspondence of the body 
segments. 
The redundancy offered by the presence of multiple 
axis accelerometers and different sets usually lets 
one improve classification performance, using 

different approaches to classification [4-6]. If 
instead, a single sensor is used [7], more refined 
techniques of classification are generally needed. 
The majority of the classification techniques are 
generally hierarchical, i.e. they first try to recognize 
body posture based on first order moments extracted 
from accelerometer data (typically the mean value of 
the signal components, with respect to gravity [8])), 
whereas discrimination among different activities 
corresponding to the same body posture is generally 
achieved by using differences in higher order 
moments, reflecting changes in terms of energy or 
amplitude. If it is possible to include information on 
the sequence between different activities and 
transitions, more sophisticated techniques are 
usually based on Hidden Markov Model [9], 
whereas joint time-frequency domain [10], or shape 
matching [11] are other methods which have been 
proven as effective in this sense. 
One of the often underestimated issues related with 
classification of motor activities resides in the ability 
of a system to discriminate between different 
activities, some of which are generally performed in 
a repetitive fashion (such as walking on level 
surfaces and up or down stairs, rising from a chair 
and sitting down), some can be performed 
simultaneously (such as reaching for an object while 
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walking) and at different speed depending on a 
number of unpredictable variables.  
Limiting to the velocity dependence, when the tasks 
are performed with significantly different speeds, 
the way the motor activity patterns, as captured by 
accelerometer data, vary cannot be modelled as a 
linear warping, so that it is necessary to take into 
account nonlinearities coming from the possible 
stretching and shrinking of the different phases of 
each activity. This is one of the reasons why 
performance in classification rates generally 
decrease when people are requested to perform tasks 
at varying speeds. 
To overcome these limitations, Dynamic Time 
Warping (DTW) has been proposed as a flexible 
solution for pattern matching techniques, because it 
takes into account shape modifications of template 
patterns [12-14]. It has been recently been proven as 
a reliable classifier based on a single sensor [15].  
DTW will be used in this work in the framework of 
a hierarchical classifier based on acceleration data 
coming from a single tri-axial accelerometer. The 
hierarchical approach has been chosen in this work 
with the idea in mind of minimizing the 
computational burden, and using the information 
coming from ancillary signals only when it will help 
in the classification, and thus minimizing the 
computational burden. 
 
 
2   Materials and Methods 
 
 
2.1 Participants and Procedure 
Five young healthy participants (age 25-33) were 
asked to take part to the study. They were requested 
to perform a sequence of three different activities, 
randomly interleaved: level walking (WW), stair 
ascending (SU), and stair descending (SD). Stair 
ascending and descending was performed on a 
stairway with steps 11 cm high and 30 cm long.  
  
 
 

 
Fig. 1. Monitored activities, and sensor placement 

 

To obtain a balanced number of samples for every 
motor activity and to avoid biased execution of the 
movement, the participants were first asked to 
familiarize with the set up, and then perform a 
number of motor activities in the most natural way. 
A portion of the obtained signals was then used for 
the calibration phase (approximately 20 s), whereas 
the remaining part was used to test the classifier, by 
generating four different activity paths: 
- P1: 11 walking steps, 8 stair ascending steps, 11 
walking steps, 8 stair descending steps; 
- P2: 8 stair ascending steps, 11 walking steps, 8 
stair ascending steps, 2 walking steps, 8 stair 
descending steps; 
- P3: 8 stair descending steps, 11 walking steps, 8 
stair descending steps, 2 walking steps, 8 stair 
ascending steps. 
- P4: 11 walking steps, 8 stair descending steps, 11 
walking steps, 8 stair ascending steps. 
 
 
2.2 Data Acquisition 
A tri-axial accelerometer sensor (based on coupling 
two Analog Devices ADXL202 bi-axial 
accelerometers) was placed on the medial portion of 
the right shin thus recording activity along radial, 
longitudinal, and lateral direction, respectively. 
The accelerometer signals were band-pass filtered 
between 0.2 and 15 Hz and fed at 2000 samples/s to 
a 12-bit A/D converter. This fairly high sampling 
rate was chosen to reduce the effect of quantization 
[16].  
 
 
2.3 Calibration 
Calibration is a needed phase to create a complete 
set of signal templates, one per motor activity, 
person, and channel. The process is fulfilled by 
segmenting the signals into epochs associated to a 
specific single motor activity. 
 

 
Fig. 2. Segmentation procedure. Small circles 

identify the segmented activities. 
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Signals have been portioned into epochs by 
calculating the integral and comparing it with a 
threshold value (see Figure 2) based on the 
statistical properties of the signal. The segmentation 
of the signal into epochs was associated to the 
detected motor activities. The template was chosen 
as the one that presented the minimum distance, in 
DTW terms, from all the others. The flow diagram 
corresponding to the calibration phase is presented 
in Figure 3. 
Templates associated to motor activities were 
respectively called as TWj, TSDj, TSUj, where j 
={1,2,3} represents the channel (1 for the 
longitudinal direction, 2 for the radial direction, and 
3 for the lateral direction, respectively). The total 
number of templates is thus 45 (5 people x 3 
directions x 3 activities). 
A graphical user interface, designed with the 
MatLab GUI Layout editor under Matlab© R2007A 
(The Mathworks™, inc.), was specifically created to 
see the different activities  in different channels, and 
to set the threshold and the first guess. 
 
 

 
Fig. 3. Flowchart of the calibration process 

 
 

2.4 Activity detection and data preparation 
The first phase of accelerometer data processing 
regards detecting single motor activities from the 
accelerometer data. For this, a statistical approach 
was used, which was based on calculating the 
integral over a predefined window, and then 
comparing it against a threshold value chosen on the 
statistical properties of the accelerometer data (the 
same for each channel). Each epoch may be of 

different length for the different speed with which 
each activity is completed. All those epochs are then 
grouped into a structure for the classification 
procedure described in the following. 
Around 70% of all the recorded signals were used to 
create the different paths (P1-P4) described before. 
This was considered as the testing set for the 
classification procedure that will be described in the 
following. 
 
 
2.5 Classification through DTW 
The proposed criterion for classification is based on 
finding, for each pair template-current activity, the 
warp-path at minimum distance, and then classifying 
among the different activities by looking for the 
minimum of these Warping path distances (see 
Figure 4). 
 
 

 
Fig. 4. Dynamic Time Warping (DTW) sample 

 
 

The input signal is considered as a sequence of n 
samples X=[x1,x2,…,xn], and the template is a 
sequence of m samples Y=[y1,y2,…,ym]. 
DTW builds a matrix D [n x m] in which each 
element represents the distance between the i-th 
element of X and the j-th element of Y. 
The matrix D is then used to obtain a matrix Θ, in 
which every element is the sum between the local 
distance di,j and the minimum of the total distances 
of the neighbour-most elements according to the 
equation: 
 

{ }jijijijiji d ,11,1,1,, ,,min −−−−+= θθθθ   (1) 
 
The warping path W, is a contiguous set of matrix 
elements that defines a mapping between X and Y. 
The k-element of W is defined as: 
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The warping path is generally calculated under a set 
of specifications: among them, the requirement to 
start and finish in diagonally opposite corner cells of 
the matrix, restriction to the number of allowable 
steps to adjacent cells, and monotonic behaviour 
over time. θi,j allows the alignment between X and 
Y. At the same time, θn,m represents the whole 
distance between  X and Y. 
 
 
2.6 Hierarchy determination 
The next phase targets the issue of including the 
DTW technique into a hierarchical framework for 
classification. To accomplish this aim, DTW was 
used for each channel separately to determine the 
hierarchy among the different channels, based on 
the goodness in terms of classification percentage. 
 
 

TABLE 1 
Overall performance on single axis DTW. 

 
 
Table 1 present the results for the classification 
percentage: channel 1, which corresponds to the 
component in the longitudinal direction of the 
acceleration, provides the best results. The radial 
component (channel 2) provides results almost as 
good as the ones coming from the longitudinal 
component, whereas the results coming from 
channel 3, which gives information on the lateral 
component of the acceleration vector, are not as 
good as the other two, thus reflecting the relative 
low signal to noise ratio in this component for the 
monitored activities. 
 
 
2.7 The classification framework 
From the results obtained in the previous section it 
was possible to identify a hierarchy among the 
different channels.  
 

a) Three-layer hierarchy 
The hierarchical scheme makes use of the 
longitudinal channel first. The current activity is 
then compared with the templates of the different 
activities for this channel only. If the difference, in 
DTW terms, between the two most similar activities 
is below a certain threshold, the second channel (i.e. 
the radial one) is taken into account, and the DTW 
calculation is repeated for the templates 
corresponding to the two chosen activities. The 
DTW distances over the two channels are then 
added up. If the difference between them is lower 
than a certain threshold, the last channel is then 
taken into account, the process is repeated, and the 
activity is estimated as the one with the minimum 
sum of DTW distances. The flow diagram of the 
overall process for the three layer hierarchy is 
presented in Figure 5. 
Table 2 reports the results of the recognition 
percentage and the utilization percentage of the third 
axis channel. 
 
  

 

 
PATH 

 

Fig. 5 : Flowchart for the three-layer hierarchical 
classifier 

 
 

b) Two-layer hierarchy 
Since the lateral channel resulted as the noisiest, and 
its utilization percentage is fairly low, it has been 
chosen to compare the results of the three-layer 
hierarchy, with a two-layer hierarchy applied on the 
radial and longitudinal channels only. Thus, if the 
distance between the first-guess activity and the 

 
Channel 1 

 
Channel 2 

 
Channel 3 

Path 1 95% 93% 79% 

Path 2 98% 93% 77% 

Path 3 90% 90% 78% 

Path 4 95% 95% 79% 

Mean 94,5% 92,75% 78,25% 
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second/nearest activity falls below a certain 
threshold, the second channel comes into play. 
The flowchart of an instance of two-layer 
hierarchical classifier is expanded in Figure 6. 
 

 
TABLE 2 

Overall performance for the three-layer hierarchy 

PATH 
Classification 
performance Third layer use 

Path 1 94% 14% 

Path 2 95% 10% 

Path 3 97% 13% 

Path 4 98% 16% 

Mean  96% 13.25% 

 
 

 
 

 
Fig. 6. An instance of the flowchart of ADL 

detection by distance between each epoch and each 
template. 

 
 
The presence of the second layer, which re-applies 
DTW on the second direction, and then averages the 
distances with the value obtained with the first 

direction, is especially needed for those epochs 
corresponding to the transition phases, when the 
distance values are not clearly distinguished. 
Table 3 reports the classification performance 
together with the utilization percentage of the 
second layer. 
 
 

TABLE 3 
Overall performance for the two-layer hierarchy 

PATH 
Classification 
performance 

Second layer use 

Path 1 100% 26% 

Path 2 98% 28% 

Path 3 90% 30% 
Path 4 97% 26% 
Mean 96.25% 27.50% 

 
 
3   Results and Discussion 
By the designed graphical interface, it is possible to 
view the results in a bar graph, which encodes the 
different classified activities with different bar levels 
and colour codes the use of the second layer. In 
particular, with the blue colour the use of the second 
layer is represented, whereas the different activities 
are coded such as: Walk -1; Stair Up- 2; Stair Down 
-3 (Figure 7): 
 

 
Fig. 7. GUI for activity classification. Green colour 

corresponds to single axis classification, blue depicts 
epochs classified making use of the second layer. 

 
 
From the obtained results it is clear that the lateral 
component of the acceleration data appears 
unnecessary for the discrimination among the 
monitored activities, thus setting the basis for a two-
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layer procedure for the classification. As a matter of 
fact, the third channel actually decreases, even if not 
in a relevant way, the performance of the classifier. 
By acquiring data only from the longitudinal and 
radial components of the acceleration vector, and 
then processing the radial component only when the 
classification is not clear cut, it is possible to both 
minimize the set up for activity classification, and 
optimize resources in terms of computational 
burden.  
In regards to this latter issue, the overall scheme for 
the classification procedure runs in approximately 5 
seconds for paths lasting 1 minute over a Pentium 
IV 30Ghz, 512M RAM: this burden time is 
consistent with the hypothesis of working in real 
time applications. 

 
4   Conclusion 
This paper describes a hierarchical classifier for 
dynamic activities while standing: level walking, 
stair ascending, and stair descending. By using a 
trial axis accelerometer placed on the shin of the 
volunteer, it is possible to classify in real time these 
three different activities with an overall 
classification performance higher than 96%.  
The calibration process is quite rapid, and allows the 
user to determine the stereotypic waveform, based 
on DTW distances. 
The two-layer hierarchy for classification shows a 
clear advantage as compared to the combined use of 
both channels, both in terms of computation time, 
and in terms of memory allocation. 
This concept could be extended to a higher number 
of accelerometers which might be likely needed if a 
higher number of different activities need to be 
monitored: by maintaining the hierarchical structure, 
it is envisioned to let new sensors come into play 
when classification is doubtful. 
For these characteristics, classifier applies to activity 
of tele-monitoring and remote assistance in real 
time. 
 
 
References 
 [1] P.C. Fehling, D.L. Smith, S.E. Warner, G.P. 

Dalsky, Comparison of accelerometers with 
oxygen consumption in older adults during 
exercise, Medicine & Science in Sports & 
Exercise, Vol. 31, 1999, pp. 171–175. 

[2] D. Hendelman, K. Miller, C. Baggett, E. Debold, 
P. Freedson, Validity of accelerometry for the 
assessment of moderate intensity physical 
activity in the field, Medicine & Science in 
Sports & Exercise, Vol. 32, 2000, pp. 442–449. 

[3] G. Williams, K. Doughty, K. Cameron, D.A. 
Bradley, A smart fall and activity monitor for 
telecare applications, Proceedings 20th Annual 
Int. Conf. of the IEEE Engineering in Medicine 
and Biology Society, Vol. 3, 1998, pp.1151-
1154. 

[4] P. H. Veltink, H.B. Bussmann, W. de Vries, W. 
L. Martens, R.C. Van Lummel, Detection of 
static and dynamic activities using uniaxial 
accelerometers, IEEE Transactions on 
Rehabilitation Engineering, Vol. 4, 1996, pp. 
375-385. 

[5] M. Makikawa, H. Iizumi, Development of an 
ambulatory physical activity memory device and 
its application for the categorization of actions in 
daily life,  Medinfo, Vol. 8, 1995, pp. 747–750. 

[6] M. Sekine, T. Tamura, M. Akay, T. Fujimoto, T. 
Togawa, Y. Fukui, Discrimination of walking 
patterns using wavelet-based fractal analysis,  
IEEE Transactions on Neural Systems and 
Rehabilitation Engineering, Vol. 10(3), 2002¸ 
pp. 188–196. 

 [7] M.J. Mathie, A.C. Coster, N.H. Lovell, B.G. 
Celler, Accelerometry: providing an integrated, 
practical method for long-term, ambulatory 
monitoring of human movement, Physiological 
Measurements, Vol. 25, 2004, pp. R1-20. 

 [8] F. Foerster, J. Fahrenberg, Motion pattern and 
posture: correctly assessed by calibrated 
accelerometers, Behavior Research Methods,  
Instruments, & Computers, Vol. 32 , 2000, pp. 
450–457 

[9] D.M. Karantonis, M.R. Narayanan, M. Mathie, 
N.H. Lovell, B.G. Celler, Implementation of a 
real-time human movement classifier using a 
triaxial accelerometer for ambulatory 
monitoring, IEEE Transactions on Information 
Technology in Biomedicine, Vol. 10, 2006. pp. 
156-167. 

[10] S.G. Trost, K.L. McIver, R.R. Pate, Conducting 
accelerometer-based activity assessments in 
field-based research, Medicine & Science in 
Sports & Exercise, Vol. 37, 2005, pp. S531-543. 

 [11] Y. Schutz, S. Weinsier, P. Terrier, D. Durrer, 
A new accelerometric method to assess the daily 
walking practice, International Journal of 
Obesity, Vol. 26, 2002, pp. 111-118. 

[12] H. Sakoe, S. Chiba, Dynamic programming 
algorithm optimization for spoken word 
recognition, IEEE Transactions on Acoustics, 
Speech, and Signal Processing, Vol. ASSP-26, 
1978, pp. 43-49. 

[13] S. Casarotto, A.M. Bianchi, S. Cerutti, G.A. 
Chiarenza, Dynamic time warping in the analysis 
of event-related potentials, IEEE Engineering in  

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Rossana Muscillo, Silvia Conforto,
Maurizio Schmid, Tommaso D’Alessio 

ISSN: 1109-9518 52 Issue 3, Volume 5, March 2008



Medicine and Biology Magazine, Vol. 24, 2005, 
pp. 68-77. 

[14] H. Li, M. Greenspan, Multi-scale Gesture 
Recognition from Time-Varying Contours, 
Proceedings 10th IEEE International 
Conference on Computer Vision, Vol. 1, 2005, 
pp. 236-243. 

[15] R. Muscillo, S. Conforto, M. Schmid, P. 
Caselli, T. D’Alessio, Classification of motor  

activities through derivative dynamic time warping 
applied on accelerometer data,  Proceedings 29th 
Annual International Conference of Engineering 
in Medicine and Biology Society, 2007, pp. 
4930-4933. 

[16] G. Pagnacco, E. Oggero, N. Berme,  
Oversampling data acquisition to improve 
resolution of digitized signals, Biomed Sci 
Instrumentation, Vol. 34, 1998, pp. 137–142. 

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Rossana Muscillo, Silvia Conforto,
Maurizio Schmid, Tommaso D’Alessio 

ISSN: 1109-9518 53 Issue 3, Volume 5, March 2008


	PATH
	PATH
	  

