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Abstract: - A new approach based on the adoption of wavelet transforms is presented for the R point 
localization in ECG signals. The conceived real time signal processing technique, which uses a fast parallelized 
algorithm, has been evaluated adopting the standard MIT-BIH Arrhythmia database which includes specially 
selected holter recordings with anomalous but clinically important phenomena. In the procedure a soft 
thresholding technique is applied to dyadic scales in which the ECG signal is decomposed. Therefore, noise 
contribution is reduced and then signal is easily reconstructed in the time domain for further processing. 
Moreover, the tool analyzes the signal on different level wavelet representation at the same time showing a 
great parallelism degree and an enhancement in processing time. To evaluate the algorithm noise immunity, the 
MIT-BIH Noise Stress Test Database has been adopted containing baseline wander, muscle artifacts and 
electrode motion artifacts as noise sources. The obtained performance shows the method validity in terms of 
algorithm speed up and characteristic parameter values. In fact, sensitivity and positive predictivity values of 
about 99.8% are obtained with a detection error rate of about 0.4%. Moreover, the conceived procedure gives 
satisfactory results also for ECG signals heavily corrupted by noise 
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1 Introduction 
Electrocardiography is an important tool in 
diagnosing the heart condition and consequently in 
discovering many cardiac diseases The 
Electrocardiogram (ECG) is a non invasive graphic 
record representing direction and magnitude of the 
heart electrical activity that is generated by 
depolarization and repolarization of the atria and the 
ventricles. Therefore it provides valuable 
information about the functional aspects of the heart 
and of the cardiovascular system and consequently 
is widely used for cardiac disease diagnostic and for 
urgent treatments of ill patients [1] In fact, an early 
detection of heart abnormalities can prolong life and 
enhance its quality adopting suitable cures. Most of 
the clinically useful informations for cardiac state 
health are indicated by the ECG shape such as 
intervals and amplitudes of the signal.  
The QRS detection is the most important task in 
ECG signal analysis systems. In fact, after the QRS 
identification, the heart rate may be calculated and 
other parameters can be examined to avoid serious 
pathologies such as ischemia. For example, 
accuracy of RR intervals is crucial for reliable heart 
rate variability (HRV) analysis, which is widely 
considered to provide a simple non-invasive and 
quantitative assessment of cardiac-autonomic 

function in health and in disease states [2]. HRV 
analysis has been increasingly recognized as a 
useful tool for understanding autonomic regulation 
during sleep as well as patient screening in 
obstructive sleep apnea syndrome, congestive heart 
failure and other disorders [3], [4], [5]. 
Due to the non-stationary behaviour of biological 
signals, disease symptoms may not show up all the 
time but would manifest at certain irregular intervals 
during the day. Therefore, the study of ECG pattern 
by analysts may have to be carried out over several 
hours (such as nigh-time data or 24 hours holter 
monitoring) with an high probability of missing 
vital informations. Therefore, computers based 
analysis is advisable. The implementation of a 
procedure for detection of P wave, QRS complex 
and T wave is a difficult task due to the time 
varying behaviour of the human body and 
consequently all processing methods should change 
their state during measurement. Moreover, noise 
contamination, due to baseline drifts changes, 
motion artifacts and muscular noise, is frequently 
encountered. 
Classical QRS detectors are composed of a 
preprocessor stage for QRS complex emphasizing 
and a decisional stage for QRS enhanced signal 
thresholding. The ECG signal is first band-pass 
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filtered for noise reduction and then differentiated 
for R wave large slope emphasizing. After passing 
through the filter, the signal may be squared for 
QRS high frequency content exploiting. A short 
time energy estimate is obtained by smoothing the 
resulting signal by a moving window integration. 
The window duration and the choice of the filter 
bandwidth is a difficult task. In fact, the choice of a 
suitable bandwidth is a trade off between noise 
reduction and high frequency details: adopting a too 
large band, noise reduction suffers while with a too 
narrow band, high frequency QRS details are lost. 
The duration of the sliding window is a trade off 
between false and missed detections. Fixed band-
pass filter/short time energy techniques do not 
accurately merge with morphological differences in 
ECG waveform which increase the complexity of 
QRS detection. Therefore, the problem solution is 
very complex because [6], [7], [8]: 
 

- signal frequency band of the QRS wave is 
different for different subjects and even for 
different heart cycles of the same subject; 

- noise and QRS complex pass-bands 
overlap. 

Many different approaches have been used to 
improve the accuracy of QRS detection, including 
the use of the Hilbert transform, genetic algorithms, 
procedures adopting artificial neural networks, filter 
banks, heuristic methods based on nonlinear 
transforms and wavelet transforms [8], [9], [10], 
[11], [12], [13], [14], 15].  
In this paper an improved signal processing 
technique, able to provide an easy implementation 
in design tools, is presented. Since heart rate has to 
be evaluated, the procedure is oriented towards R 
characteristic point detection; in fact the algorithm 
estimates the heart rate as inverse of the time 
interval between two consecutive R peaks. For R 
point localization, the wavelet transform is used. 
Moreover, for parallel computing and for 
implementation in design tool, parallel filter banks 
have used in the adopted technique. Experimental 
results show the method validity and its high 
sensitivity and predictivity parameters. In fact, 
results with minimum interferences from noise and 
artifacts have been obtained. Compared with other 
numerical procedures present in literature, the new 
method improves the speed up, shows an high noise 
immunity and is quite independent to time-varying 
morphologies in QRS complex. 
 
 
 

2 ECG technique 
A single normal cycle of the ECG represents 
successive atrial depolarization/repolarization and 
ventricular depolarization/repolarization which 
occur in every heartbeat.  
Each hearth beat produces a series of deflections 
away from the baseline on the ECG signal. These 
deflections represent the time evolution of the heart 
electrical activity. One heartbeat produces a single 
normal cycle of the ECG that is indicated with the 
letters P, Q, R, S and T (figure 1) [16]. 

 

Figure 1   ECG characteristic shape 

Typical standard ECG signal can be decomposed 
into three groups of basic elements: 

1. waves which are deviations from the isoelectric 
line (baseline voltage) such as P; Q; R; S; T; U; 

2. segments that are isoelectric line between 
waves; 

3. intervals that represent periods including 
segments and waves. 

The ECG signal can be divided into the following 
sections: 

- The P wave represents the atria activation 
(depolarization). The first half of the P wave is 
the activation of the right atrium, whereas the 
second half is the activation of the atria septum 
and the left atrium. The normal shape of the P 
wave does not include any notches or peaks 
and its duration can vary between 0.08 and 
0.11sec. in normal adults 

- The PQ interval represents the time between 
the beginning of atrial depolarization and the 
beginning of ventricular depolarization  

- The QRS complex is a general term 
representing activation in the ventricles and is a 
result of the depolarization of the ventricles. 
The Q and S waves represent negative 
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(downward) deflections on the plot of the lead, 
and the R wave represents positive (upward) 
deflection. The duration is normally less than 
100ms a higher value can reflect an 
abnormality due to intraventricular conduction 

- The T wave results from ventricular 
repolarization, whereby the cardiac muscle is 
prepared for the next cycle of the ECG. The 
normal morphology of the T wave is rounded 
and asymmetrical 

- The S–T segment is measured from the end of 
QRS complex to the onset of the T wave. This 
segment represents the early stage of 
ventricular repolarization and under normal 
conditions is isoelectric (constant potential). A 
marked displacement of the S–T segment 
signifies coronary artery disease 

- The P–R interval represents the atrioventricular 
(AV) conduction time, i.e. the time required for 
the electrical impulse to propagate from the 
sinus node through the atrium and the AV node 
to the ventricles (which results in ventricular 
depolarization). The normal range of the P–R 
interval is 120ms to 200ms. This interval can 
vary with heart rate.  

- The Q–T interval reflects the total duration of 
ventricular systole, and is measured from the 
onset of the QRS complex to the end of the T 
wave. Normally the Q–T interval is less than 
half the previous R–R interval. A long QT 
interval can be associated with heart failure, 
ischaemic heart disease, bradycardia, some 
electrolyte disorders (e.g. hypocalcaemia) and 
can be consequence of different drugs taking.  

Frequently the ECG signal is corrupted by noise. 
Baseline wander and 50Hz power line are 
predominant interference sources. Baseline wander 
is mainly caused by patient breathing, movement, 
bad electrodes, improper electrode site preparation, 
etc. The frequency range of baseline wander is 
usually below 0.5Hz, which is close to the 
frequency range of ST segments. For this reason, 
this type of noise could easily lead to false 
diagnosis. Eliminating the baseline wander and the 
power line interference in ECG signals is usually the 
necessary pre-processing step to enhance the signal 
characteristics for diagnosis [17]. 
 
 
3 Wavelet Transform Principles 
Wavelet transform provides temporal and spectral 
information simultaneously, so it is suited for 
determining characteristic points of non stationary 
and fast transient signals, such as ECG signals. This 

feature is suitable to distinguish the ECG signal 
from noise and interferences. 
The wavelet method decomposes a time variant 
signal into several components having various 
scales or resolutions. A suitable time and frequency 
limited wavelet is chosen as “mother”. Scaling and 
shifting the mother wavelet, a family of functions 
called “daughter” wavelets is generated. For small 
scale factor values, wavelet is constructed in the 
time domain and gives information about fine 
details of signals. Therefore, a global view of the 
signal is obtained by scale factor large values. The 
wavelet transform of a time signal at any scale is the 
convolution of the signal and a time-scaled daughter 
wavelet.  
There are essentially two types of wavelet 
decompositions: the redundant ones (generally 
continuous wavelet transform), and the 
nonredundant ones (orthogonal, semi-orthogonal, or 
biorthogonal wavelet bases) [18]. The first type is 
preferable for feature extraction because it provides 
for a description that is truly shift-invariant. The 
second type is preferable for data reduction, or when 
the representation orthogonality is an important 
factor. However, the choice between these types of 
decompositions has to take into account 
computational considerations, too. A decomposition 
in terms of wavelet bases using Mallat fast 
algorithm is typically orders of magnitude faster 
than a redundant analysis, even if the fastest 
available algorithms are used [19], [20]. 
As the aim of this paper is the implementation of a 
fast parallelized algorithm, a non-redundant wavelet 
decomposition has been chosen. To determine the 
best wavelet function to be used, the ECG signal 
properties have been studied, such as the shape and 
the time localization of events. Temporal signal 
shape is an important parameter, so orthogonal 
wavelets are unsuitable to be used. In fact they are 
unable to provide symmetry in the time domain and 
they introduce non-linear phase shift. The signal 
shape is maintained if the phase shift is linear. Thus 
the wavelet to be adopted should be a symmetrical 
function [21], [22]. Spline wavelets have properties 
satisfying the previous requirements and are well-
known in literature for their properties and 
advantages [23], [24], [25], [26], [27], [28]. 
The QRS detection is composed of slopes and local 
maxima/minima occurring at different time instants 
inside the cardiac cycle, the adoption of a spline 
function as mother wavelet is a suitable choice. 
The higher order of the spline wavelet results in the 
sharper frequency response of the equivalent FIR 
filter, that is always desirable, but this FIR filter has 
longer coefficient series, leading to greater 
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computational time consumption. Therefore, the 
cubic spline wavelet is assumed to have an order 
high enough for this application [8], [21]. 
Traditional wavelet theory considers a 
decomposition algorithm with an iterative structure 
[29] (in particular an asymmetrical tree structure) 
that does not efficiently merge with the novel 
computational techniques, such as parallel 
processing, concurrent programming and design 
tools. In this study the a’ trous and the Mallat 
algorithms for parallelized filter bank design have 
been used [30]. The algorithm generates a set of 
parallelized perfect-reconstruction filter banks for 
an arbitrary number of end-nodes of a traditional 
tree structure [31]. 
 
 
4 Procedure Description 
The implemented procedure, called 
R_POINT_DETECTOR, processes ECG data in real 
time without any pre-filtering procedure, showing 
an high noise immunity degree. 
For the method implementation, no external trigger 
source is necessary; therefore the ECG signal is the 
only input (figure 2). 

Figure 3 shows the adopted algorithm model in 
which the obtained results are indicated as:  

- ‘R_Number’ that evaluates the number of R 
points present in the frame under test; 

- ‘R_Indices’ that indicates the time position of 
located singularities 

  
 

 

Figure 2   ‘R_POINT_DETECTOR’ System model. 

 

 

Figure 3   Algorithm model realized with the 
software tool MATLAB Simulink® 

 

The choice of a suitable mother wavelet is basic to 
rich high performance for the proposed QRS 
detection technique. Since QRS complex general 
shape is similar to bi-orthogonal wavelet functions, 
choosing these functions as mother wavelet, QRS 
complexes could be reproduced by few wavelet 
coefficients reducing computation time and memory 
requirements [22]. A wide variety of functions can 
be chosen as mother wavelets but, after validation 
procedure tests, wavelet bior 3.3 has been adopted 
because it allows the perfect signal reconstruction 
keeping phase shift linear. Wavelet bior 3.3 is a 
cubic spline (figure 4)  
To locate R points and consequently QRS 
complexes, the method decomposes the ECG signal 
into six dyadic scales so to reduce noise sensitivity 
significantly (figure 5). Signal lower frequency 
components are in high degree scales while higher 
frequency components are in low degree scales. 
According to the power spectra of ECG signal and 
of noise and artifacts, it is evident that the larger 
contribute of the true signal is located in scales 4, 5 
and 6, while scales 1, 2 and 3 are mostly affected by 
noise [32].  
As QRS complexes are transient in ECG signal, 
they are detected exploiting the property that the 
absolute value of the dyadic wavelet localizes 
maximum points across several consecutive scales 
at the instant of transient occurrence. For noise 
reduction, soft thresholding technique is applied to 
levels 1, 2, 3. It is a point processing operator able 
to attenuate noise energy. In fact, wavelet transform 
compacts signal energy into a small number of 
coefficients having large amplitudes and spreads 
noise energy over a large number of wavelet 
coefficients with small amplitudes. Threshold 
operation reduces noise energy by removing those 
small coefficients while maintaining signal energy. 
For a given function p(y), the soft thresholding 
operator (Γλ) is defined as: 
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Several approaches have been proposed for 
threshold (λ) selection [33]. The choice is a trade off 
between two parameters; in fact a large λ value 
removes a significant amount of signal energy while 
a small λ value does not suppress a large amount of 
noise. The adopted value derives from a statistical 
study. In this way noise is reduced and then signal is 
reconstructed in time domain for further processing.  

 

Figure 4   Wavelet ‘bior3.3’. 

 

Figure 5   Decomposition of ICG signal over six 
diadic scales using a’ trous algorithm. 

 
ECG signal representation in wavelet domain is 
particularly indicated for noisy signals. In fact for 
searching characteristic points, processing of noise 
free scales only, such as scales 4-5-6, is sufficient. 
The procedure greater advantage is evident in 
comparison with frequency analysis which needs 
informations of the overall bandwidths for R point 
localizations. 
The method uses an evolution of the classical Mallat 
decomposition, called a’ trous algorithm. The a’ 
trous algorithm for non-ortogonal wavelets uses the 
same filter bank structure as the Mallat algorithm 
[34], but differs for high pass and low pass FIR 
filters. It has been demonstrated that after the 
application of wavelet filters for j-times, the 
precision of a’ trous algorithm is 2j time higher then 
Mallat algorithm [35] (table 1). 
  

 

Table 1   Precision of the Mallat and the a’ trous 
algorithms varying decomposition levels 

 
Usually, wavelet decomposition algorithms make 
use of filters in a tree structure. This is unsuitable 
for both the parallel computing and the 
implementation by design tools. To overcome these 
limits, equivalent parallel filter banks are used. 
However, the output signal realignment is necessary 
to equalize the delay introduced by each filter. This 
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structure makes the algorithm attractive for a 
hardware implementation. 
At this step the method first spots the positions of all 
QRS complex peaks, then the R point localizations. 
A point of maximum value is present in component 
signals (scales 4-5-6) in the same locations of each 
singularity in ECG signal.  
The parallel behaviour of the procedure makes the 
contemporary search of singularity points in each 
scale, possible. Therefore, the time necessary for the 
execution of this step is independent of the number 
of scales used for the signal decomposition. Making 
use of a parallel procedure, the proposed method 
looks inside scale 4, scale 5 and scale 6 for zero 
crossing points and for local maximum points. 
Singularities are selected adopting a threshold 
technique: in fact only points higher than the 
adopted threshold value are considered. Finally, a 
local maximum point (peak) is taken into account 
only if it is immediately followed by a zero crossing 
point. If a local maximum point is followed by 
another local maximum point, it is discharged. 
Occurrence of too closed peaks inside a 
decomposition scale is solved replacing them with 
one new virtual peak located in a middle position 
between them. In figure 6 the spatial representation 
of local maximum points after the replacement of 
too close maximums, is shown. For instance, peaks 
P and Q of scale 4 selected by the method as to 
close points, are replaced by the point R in a new 
spatial representation named scale 4a. 

 

Fig.6 Procedure for too close peaks management 
 
Each processed scale gives information about the 
same signal, so points located inside each scale are 
related to each others. For this reason, the method 
executes a tracing across scales to locate 
overlapping singular points. However, as the perfect 
coincidence of two or more points is almost 
impossible, a confidence interval of occurrence is 
associated to each point. 
For software implementation, a window having a 
suitable size is constructed around each singular 
point considering one scale at a time. The generic 

window in a generic scale is analyzed to determine 
if peaks of other scales are located inside it. The 
research is iterated both for all windows of a scale 
and for all scales. The method defines as valid peaks 
those that are present inside the window in two out 
of three scales at least. The best estimate of the valid 
peak position (the true R point position) is obtained 
averaging peak positions inside the different scales. 
Figure 7a shows the characterization of a new 
spatial representation named scale 4b for peaks of 
scale 4a consequently to the definition of a 
confidence interval for each point. For instance, the 
method defines a window for peak S and verifies if 
peaks of the other scales are located inside this 
window. In this example, point T of scale 6a is 
inside the window. Therefore point U is defined as 
“valid” value in the new representation named scale 
4b. U point localization is in the middle between S 
and T positions. Figure 7b and figure 7c show the 
same analysis for points belonging to scales 5a and 
6a, respectively. 

 

 

Figure 7   Parallel procedure for peak validation 

Points of scales 4b, 5b and 6b are grouped in one 
spatial representation indicated in figure 8 with 
TEMP. Points that are too closed in TEMP are 
replaced with one peak having the middle location 
as shown in representation named OUTPUT. 
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In conclusion, the following steps characterize the 
new method: 

1. signal processing in PARALLEL filter banks 
for wavelet decomposition; 

2. PARALLEL searching for local maximum 
points inside scales which contain the widest 
noise free signal contribute; 

3. replacement of too close peaks in each scale; 
4. validation of peak points for each scale with 

respect to peak position in other scales; 
5. R-point localizations adopting a simple 

decisional algorithm. 

 

Figure 8   Procedure last step for R point location. 

 
 
5 Results and Discussion 
Software detection algorithms for medical 
applications require detection performance 
evaluation according to the ANSI/AAMI standard. 
The parameters used to evaluate algorithms are: 
 

Sensitivity: 
FNTP

TPSe
+

=      (2) 

 

Positive Prediction: 
FPTP

TPP
+

=      (3) 

 

Detection error rate: 
FNTP
FNFPDER

+
+

=     (4) 

where: 
- TP (the number of true positives) is the number 

of correct identifications of R points present in 
the signal under test;  

- FN (the number of false negatives) is the 
number of R points present in the signal that 
the algorithm is not able to detect; 

- FP (the number of false positive) is the number 
of R points detected by the algorithm but really 
not present in the signal. 

The evaluation of the proposed detection 
methodology is carried out using recorded data from 
the standard MIT-BIH Arrhythmia database which 
includes specially selected holter recordings with 
anomalous but clinically important phenomena [36]. 
The signals contained in the reference database are 
sampled at 360 Hz and are characterized by          
12-bit /sample resolution. 
Denoting with R* the R point average value, 
simulations show that optimal threshold value is 
0.55R*. In this situation Se and P values of about 
99.8% are obtained, respectively (figure 9). For 
different threshold values, the above mentioned 
parameters decrease in dependence on the chosen 
threshold value. In fact, values lower than 0.55R* 
make performance worse because determine the 
increase of the FP parameter while values higher 
produce the growth of FN. 
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Figure 9   Se and P vs. threshold values. 

 
Adopting the proposed procedure, the shape of the 
DER curve as a function of threshold values is 
indicated in figure 10, which confirms 0.55R* value 
as optimal choice for the detection error rate 
parameter minimization. 
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Figure 10   DER parameter vs. threshold values. 
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Comparing the procedure to other approaches, it is 
noted that the method exhibits good results and, at 
the same time, minimizes computational efforts. The 
absence of the signal pre-filtering stage avoids 
additional computations other than the wavelet 
calculation and the subsequent feature extraction 
procedure. Moreover, the realized algorithm is 
suitable for real time signal processing and 
ambulatory applications (low computational load), 
contrary to some other implementations [28], [23], 
[8]. In fact in [8], the use of fast decomposition 
algorithms is precluded for the choice of a custom 
non-orthogonal mother wavelet, in [28] 600 samples 
of ECG signal are analyzed each time, so the 
procedure does not work on every incoming sample, 
while in [23] the scale thresholds are updated 
considering excerpts of 216 samples for each scale 
with an higher amount of data to store, which does 
not meet requirements of ambulatory applications.  

To evaluate the algorithm noise immunity, records 
from the MIT-BIH Noise Stress Test Database 
containing predominantly baseline wander (due to 
heavy respiratory activity), muscle artifacts (due to 
electrical activity of muscles) and electrode motion 
artifacts (due to the physical electrode motion that 
causes changes in the skin-electrode potential), have 
been also considered. Electrode motion artifact is 
generally considered the most troublesome, since it 
can mimic the appearance of ectopic beats and 
cannot be removed easily by simple filters, as noise 
of other types [37].  
The obtained performance confirm that the 
algorithm is immune from noise up to S/N ratio 
values equal to 24dB. Increasing the noise 
contribute, FN keeps almost constant while a growth 
of FP is observed, which makes the performance 
worse. In figure 11 the ECG is compared with the 
same signal having 24dB and 18dB S/N ratio, 
respectively [37]. It is evident the heavy effect of 
noise in corrupting the original signal even with a 
24dB S/N ratio. Moreover, the algorithm 
performance slightly reduces for S/N ratio equal to 
18dB reaching the following values as regards the 
characteristic parameters: Se= 95%, P= 96.5%  
In figure 12 the algorithm behaviour as a function of 
different S/N values is shown. It is evident that Se 
parameter is almost constant depending on FN 
parameter, therefore it is rather unaffected by noise 
corrupting ECG signal. For S/N values lower than 
24dB, P is dependent on noise signal amount, 
decreasing as FP grows while the DER curve shape 
is almost linear as it was expected.  

Therefore, results with minimum interferences from 
noise and artifacts have been obtained, confirming 
the algorithm high noise immunity degree 
 
 

 
Figure 11   ECG signal compared with noisy ECG 

signals 
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Figure 12   Characteristic parameter shapes vs. S/N 
ratio 

 
 
6 Conclusion 
In this paper, a real-time procedure for the ECG 
analysis is presented and validated. For the R point 
detection it combines the threshold technique and 
the wavelet transform. The adopted algorithm 
optimizes the computational time as it processes the 
ECG signal with a parallel procedure.  
The algorithm has been validated using the MIT-
BIH Arrhythmia standard database which contains a 
wide variety of ECG signal morphologies. The 
technique presents high sensitivity and predictivity 
parameters: in fact values of about 99.8% are 
obtained with a suitable threshold value. Moreover, 
the algorithm noise immunity also has been tested 
considering noise records from the MIT-BIH Noise 
Stress Test Database. 
Furthermore, the efficiency of the proposed 
procedure is demonstrated by its adaptation 

WSEAS TRANSACTIONS on BIOLOGY 
and BIOMEDICINE M. Rizzi, M. D'Aloia, B. Castagnolo

ISSN: 1109-9518 217 Issue 8, Volume 5, August 2008



capability both for different QRS morphologies and 
various cardiac rhythms. The adopted procedure is 
independent of the signal shape and consequently 
can be used for all those biological signals requiring 
a precise peak localization in presence of noise and 
artifacts. In fact, authors are now testing the 
algorithm adopting other biological signals. The 
preliminary procedure results are confirming the 
algorithm general validity and its capability to 
detect correctly peak values even in presence of 
noise, purposely added to the original signal. 
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