
Stationary Densities and Parameter Estimation for Delayed Stochastic 
Logistic Growth Laws with Application in Biomedical Studies 

 
Petras Rupšys  

Department of Mathematics 
Lithuanian University of Agriculture 

Studentų 11, LT-53361  
Akademija, Kauno r. 

Lithuania  
Phone +370 37 752275 
petras.rupsys@lzuu.lt 

 
 
Abstract –The study of nonlinear stochastic delayed process is significant for understanding nature of complex 
system in reductionistic viewpoints. This paper investigates the stochastic linear and logistic (Verhulst, 
Gompertz and Richards) models, and simulates the growth process of Ehrilch ascities tumor (EAT) in a mouse. 
In order to explain the oscillations of EAT growth we use a system of stochastic differential equations with 
time delay. We derive the exact and approximate stationary densities in the case of small time delays. For the 
estimation of parameters we propose the L1 distance and maximum likelihood procedures. As an illustrative 
experience we use a real data set from repeated measurements on Ehrilch ascities tumor in a mouse. The results 
are implemented in the symbolic computational language MAPLE. 
 
Key-Words: - Ehrilch ascities tumor, Stochastic differential equation, Density function, Fokker-Plank equation, 
Numerical solution. 
 
 
1 Introduction 
One of the most important nonlinear processes 
occurring in nature is the stochastic logistic growth 
process, which encompasses the Verhulst, Gompertz, 
Richards growth models. It is therefore important to 
understand how such processes can be simulated.  
We will be concerned with applications in growth 
modeling of Ehrilch ascities tumor (EAT) in a 
mouse. In applied sciences literature delay 
differential equations are widely used to model an 
oscillatory behavior of the processes of growth [3], 
[4], [6], [9], [12], [34], [37], [43]. In biological 
systems the retardation usually originates from 
maturing processes [24], [45]. The delay differential 
equations demonstrated more complicated dynamics 
than ordinary differential equations. The oscillations 
in the solutions of deterministic first order delay 
differential equations are usually generated by the 
delayed argument.  

The excessive complexity of living organisms 
and the related issue of variability in biological 
systems present difficulty to mathematical modeling 
of growth. It is widely recognized that the biological 
systems operates in a highly uncertain environment 
[5], [11], [16], [27], [28], [29], [30], [33]. The 
randomness is usually caused by a limitation of our 
knowledge of analyzed growth process. However, 

most available time-delayed growth models are 
deterministic, which do not necessarily give a 
satisfactory deterministic prediction of mean trends. 
Many scientists in ecology, forest biometry, 
biomedicine, finance, physics agree that stochastic 
perturbations are a major determinant of the 
process of growth. In biological systems, there are 
many highly organized networks of physical, 
chemical and organic reactions and motions to 
sustain biological order within the system. These 
reactions and motions are essentially irreversible 
and they inevitably produce randomness. 
Fluctuations of the growth dynamics can be 
modeled in various ways. For example, it can be 
suggested to consider extensive (multiplicative, 
state-dependent) or intensive (additive, noise 
amplitude) random perturbations. As was shown 
[2], the additive and multiplicative noise 
perturbations of Ito type in a scalar delay 
deterministic equation may induce the oscillations 
in the previous deterministic non-oscillatory 
system. A periodic behavior of the stochastic model 
is amplified by the combination of noise and delay. 
The interaction of noise and delay supports 
oscillations. This phenomenon has been entitled as 
an autonomous stochastic resonance. It appears that 
in many ecological systems the growth process 
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exhibit only small fluctuations around steady-state 
fixed points. This fact is a mathematical motivation 
to use the linear systems by delays and weak 
perturbation noises for the modeling of the growth 
processes in ecology, biology, biomedicine, finance 
and forestry. The linear evolution equations [2], [18] 
correspond to a linearization of the nonlinear 
evolution equations around the steady state 
amplitudes of the deterministic dynamics. 

In this paper we study the dynamic behavior of 
nonlinear system, which include time structure. We 
firstly hypothesize a generalized stochastic logistic 
delay growth model by a nonlinear stochastic delay 
ordinary differential equation explaining this 
dynamic (inspired by a previous non-delayed 
stochastic logistic model [16], [31], [32], [33], [35]). 
The delayed model has a high complexity and 
requires much computer calculations. Our current 
computing power makes it relatively easy. We check 
the consequences of the model against EAT data. To 
our knowledge no studies have been performed on 
such biological data using such nonlinear 
methodologies. There are a number of advantages to 
the nonlinear stochastic models, including the ability 
to simulate first two moments and transition 
probability density, and to forecast the probability of 
treatment success or failure.  
 The present paper has three main goals. Firstly, 
we will determinate approximate and exact stationary 
distributions of stochastic linear model involving 
time delay, and linearize the nonlinear delay 
stochastic logistic differential equations around the 
steady state and study the stationary densities of the 
resulting equations. These distributions involve 
delay-dependent effective potential function. 
Secondly, we will adapt two approaches: the 
maximum likelihood procedure and the L1 distance 
procedure for the estimating of the drift, diffusion 
parameters and the time delay size. During the past 
decades a variety of approaches for statistical 
inference in discretely observed diffusion processes 
have been developed [14], [28], [29], [31], [32], [40], 
[42]. Thirdly, we will analyze the growth of the EAT 
in a mouse under additive and multiplicative 
stochastic perturbations. 

 The paper is organized as follows. In Section 2 
we fix the notation and definition of stationary 
distributions, and we describe the general 
methodology used for corresponding estimation 
methods. We apply this methodology to EAT data. 
Section 3 summarizes the present results and gives 
some conclusions and closing remarks. 

 

 

2 Materials and Methods 
In this section we determine the exact and 
approximate stationary distributions of some 
nonlinear time-delayed stochastic logistic growth 
models involving small delays. Our next objective 
is concerned with applications of stationary 
distributions to the modeling of EAT. In applied 
sciences stochastic growth models have pioneered 
the use of transition probability densities to 
describe movements among state levels [1], [12], 
[17], [23], [26], [35]. This methodology has been 
rarely adapted due to difficulties with estimating 
the transition probability density. The transition 
probability methodology has been based on the 
assumption that we deal with Markov processes. 
Unfortunately, in many cases, stochastic growth 
law with time-delayed feedback is described in 
terms of a stochastic delay differential equation. 
Hence, in many biological systems there is an 
effect of the long time memory on its current 
behavior and require a description in terms of non-
Markov processes.  

 Let us consider a stochastic growth law 
described by an ordinary delay stochastic logistic 
differential equation with both the additive and 
multiplicative noises in the following form 

( ) ( ) ( )( ) ( )
( ) ( )⎩

⎨
⎧

+−=
tdWtX

tdW
dttXtXftdX στ, ,

( ) ( ) [ ]00 ;, ttsssX τϕ −∈= , ];[ 0 Ttt∈ , (1) 
when σ  is a constant controlling the amplitude of 
noise, )(tW  is the standard Brownian motion (white 
noise), which is a random process whose increments 
are independent and normally distributed with zero 
mean and with variance equal to the length of the 
time interval over which the increment take place, 
( )sϕ  is known function, 

))())(())(),(( τατ −+=− txtxrGtxtxf , 

( )( ) ( )
K
txtxG −=1  (Verhulst law), ( )( ) ( )tx

KtxG ln=  

(Gompertz law), ( )( ) ( ) 1,1 −≥⎟
⎠
⎞

⎜
⎝
⎛−= β

β

K
txtxG  

(Richards law), r  the intrinsic growth rate, and K  

is the saturation level (also the ratio 
K
r  is known as 

the decay rate). Instead, both parameters r , K  in 
our model are dependent on random variables that 
we can’t include in our model without doing it too 
complex. The logistic type models have a rich 
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history dating back to Verhulst (1838) [46] and are 
well-known in the applied sciences [16], [20], [21], 
[22], [25], [33], [35], [39], [44], [45], [47]. Above 
presented three logistic models are closely related. 
The Verhulst model is a two parameter symmetric 
model. The Richards and Gompertz models generalize 
Verhulst model and have asymmetric growth.   
 In general, stochastic process )(tX  can be 
characterized by means of transition probability 
density of the nonlinear Fokker-Planck partial 
differential equation (also known as the Chapman-
Kolmogorov equation [10]). Next, we discuss a 
transition probability density of the stochastic 
process )(tX  described by (1). In the sequel ),( txp  
denote the probability density of the stochastic delay 
differential equation (1). It is shown [7], [8], that the 
delay Fokker-Planck equation of the stochastic 
process )(tX  with both the additive and 
multiplicative noise described by equation (1) takes 
the form  

⎪
⎪
⎩
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∂
∂

−
∂
∂

+−
∂
∂
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∫

∫

∫
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here ),;,( ττ −txtxp  is the joint probability density 
of the stochastic process )(tX . The approximate 
stationary probability density for the stochastic delay 
differential equation (1) that involves the 
multiplicative noise has the following form  

⎟
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where cN  is a normalizing constant, the effective 
drift and diffusion coefficients )(xfeff , )(xDeff  are 
described by 
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with 2/)( 22)0( xxD σ= , xxrxGxf α−= )()()0( . For 
the stochastic delay differential equation (1) that 

involves the additive noise the approximate 
stationary probability density has the following 
form 

⎟⎟
⎠

⎞
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⎝
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= 2

)(2
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σ
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a
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where the effective potential )(xVeff  is described 
by 
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and the normalizing constant cN  is determined from 
the normalization condition 

 1)( =∫
+∞

∞−

dxxpa
st . 

 

 

2.1 Linear delay differential equation 
In this section we consider the linear case of 
equation (1) with both additive and multiplicative 
noise 

( )
⎩
⎨
⎧

+−−−=
),()(

)(
)()()(

tdWtX
tdW

dttbXtaXKtdX στ (8) 

)()( ssX ϕ= , ];[ 00 tts τ−∈ , ];[ 0 Ttt∈ ,  
where parameters a, b, ( 0>+ ba ) correspond to 
friction coefficients, 0>σ  corresponds to the 
fluctuation strength, K/(a+b)  corresponds to the 
equilibrium fix point, τ  the size of delay, the 
function )(sϕ  describes the initial condition of the 
stochastic process on ];[ 00 tt τ− . In this section for 
the stochastic linear delay differential equation (8) 
we pose two questions. First, how can be expressed 
approximate stationary probability density and 
exact stationary probability density. Second, how 
can the parameters K, a, b, τ , σ  be estimated from 
experimental data.  
 
2.1.1 Deterministic linear equation 
The linear delay differential equation has the form 

)()()( τ−−−= tbxtaxK
dt

tdx , (9) 

)()( ssx ϕ= , ];[ 00 tts τ−∈ , ];[ 0 Ttt∈ , 
when K, a, b, τ  are nonnegative parameters,  

0>+ ba . The solutions of equation (9) are 

oscillatory provided 
e

b 1
>τ . The presence of a 
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delay term in the scalar linear differential equation 
(9) induces the oscillation of all solutions if the delay 
τ  is sufficiently long or large intensity b. 
Nonoscillatory solutions can still exist for small 
intensity or delay. Finally, the solutions of equation 

(9) undergo damped oscillations for 
2

1 πτ << b
e

, and 

diverging oscillations for 
2
πτ >b . 

 Generally, the parameters K, a, b, τ  have to be 
estimated from the data set ( ){ }nixt ii ,...,2,1,, =  on 
the dependent variable x and independent variable t. 
The problem of estimating parameters K, a, b, τ  
from historical data is one of choosing the estimates 
∧
K , 

∧
a , 

∧
b , 

∧
τ , such that the predicted value 

( ) iii xtxbaKtx
∧∧∧

≡≡ )(,,,  is close to observation xi.  
We numerically integrate the linear delay ordinary 
differential equation (9) by means of a second-order 
scheme with constant step size tΔ  in the following 
form: 

( ) ( )

{ } ( )
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2
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tbxaxKtbxaxKxx

iii

iiiiii

Δ
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−−+

θθθ
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here {}⋅I  is the indicator function, 
N

tTt 0−
=Δ  is the 

step size, 
tΔ

=
τθ , Ni ,...,0,...,1, +−−= θθ . Next we 

estimate the parameters K, a, b, τ  by least squares 
method, minimizing the sum of the squared deviation 
function: 

( ) ⎟
⎠
⎞

⎜
⎝
⎛ −
′
⎟
⎠
⎞

⎜
⎝
⎛ −=

∧∧
xxxxbaKS τ,,, , 

where 
∧
x  is the 1×n  array of corresponding 

numerical integration of equation (9), x  is the 1×n  
array of observed data. 
 
2.1.2 Exact and approximate stationary 
probability densities 
As suggested in [13], for small delays and diffusion 
function of the form ))(( tXg , the drift term 

)()( τ−−− tbXtaXK  and the diffusion terms σ , 
)(tXσ  may be expanded using a Tailor expansion in 

the following form 
( ) ( )( ) )()(1)()( 2τττ OtXbaKbtbXtXK ++−+=−−− , 

( ) )(1 2τστσ Ob ++= , 
( ) )()(1)( 2τστσ OtXbtX ++= . 

Hence, the stochastic delay linear differential 
equation (8) takes the approximate non-delay form 

( ) ( )( )
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 for the additive noise, and 
( ) ( )( )
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)(1)(
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στ
τ

+
++−+=

             (11b) 

for the multiplicative noise.  

 For the stochastic non-delay linear 
( 0=b , 0=τ , 0>a ) differential equation (8) exists 
an exact stationary density. The stationary solution 
for the additive noise takes the following form 
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and for the multiplicative noise 
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where )(⋅Γ  is a gamma function. 
 We now investigate the exact stationary 
solution of the Fokker-Planck equation (2) for the 
stochastic delay linear differential equation (8) with 
the additive noise. In the additive case of equation 
(8), the delay Fokker-Planck equation (2) takes the 
form 
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Due to the Gaussian distribution of fluctuation 
force and the linear form of drift function, the exact 
stationary probability densities )(xpst , 

),;,( τ−tytxpst  can been defined by 
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where the parameters )(τc , )(τd  and variance )(τR  
are unknown. Substituting (15) and (16) into (14) we 
have 
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For deriving the variance )(τR  of the process 
)(tX was used the approach developed in [7]. The 

variance )(τR  takes the form 

( )
( )

( )
( )

( )
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

>=+

≥>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

≥>⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

+

=
−

−

0,1
2

0,
cosh

sinh1
2

0,
cos

sin1
2

)(

2

12

12

baa

ba
ba

b

ab
ba

b

R

τσ

ϖτ
ϖτϖσ

ϖτ
ϖτϖσ

τ , (17) 

where 22 ba −=ϖ . For ab >  there exists *τ , 

defined by equation ⎟
⎠
⎞

⎜
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⎛−=

b
ai arccos*

ϖ
τ , such that 

the stationary solution (15) exists only for [ )*;0 ττ ∈ . 
In particular, the statistical inference based on the 
exact solution (15), (17) is suited to stochastic linear 
delay equation (8) only for [ )*;0 ττ ∈ . Considering 
this we explore an approximate stationary probability 
density for the stochastic delay linear equation (8) 
with the additive noise. 
 For the limiting case ( 0→τ ) the exact 
stationary probability density (15) coincides with the 
non-delayed stationary probability density (12). 
 Now, let us study the approximate stationary 
density of the stochastic linear delay process with the 
additive noise described by equation (8). In the linear 
delay case (8) we have that ττ bxaxKxxf −−=),( , 

( )xbaKxf +−=)()0( . Hence, equations (6)-(7) give 
the following forms 
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 On the other hand, replacing K by ( )Kbτ+1 , a 
by ( )( )bab ++ τ1 , and 2σ by ( ) 221 στb+ in 
equation (12), we get the same approximate 
stationary probability density (18) of the stochastic 
process )(tX described by (8) with the additive 
noise. 
 Now we are dealing with the approximate 
stationary probability density of the stochastic 
linear delay differential equation (8) with the 
multiplicative noise. Using the before-mentioned 
notations, we have that ττ bxaxKxxf −−=),( , 

( )xbaKxf +−=)()0( , 
2

)(
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equations (3)-(5) take the following form 
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2.1.3 Stochastic linear model estimation 
There are many approaches to estimating the 
parameters. Very popular approaches for the 
estimating of parameters are the maximum 
likelihood procedure and the L1 distance procedure. 
The estimation approaches that we follow are the 
L1 distance procedure and the maximum likelihood 
procedure [31], [32]. The parameters K, a, b,τ , σ  
may be divided into two groups: the drift 
parameters K, a, b, τ  and the diffusion parameter 
σ . A natural approach would be to first estimate by 
least squares estimate method the parameters of the 
deterministic ordinary delay linear differential 
equation (9), which represents the drift part of the 
stochastic ordinary delay linear differential 
equation (8). 
 Now we discuss the minimizing of the L1 
distance between the observed density (histogram) 

),( txpe  and the fitted density (exact stationary or 
approximate stationary probability 
densities) ),,,,;( στbaKxp , )(),,,,;( xpbaKxp st≡στ  
or )(),,,,;( xpbaKxp a

st≡στ  defined by equations 
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(12), (13), (15), (18), (19)). The function ),( txpe  
depends on the observed data, and the function 

),,,,;( στbaKxp  depends on the used stochastic 
growth law. The L1 distance is defined by 

∫∑
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01

),,,,;(),(1),,,,( dxbaKxptxp
m

baKd j
e

m

i
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where m is the number of division of time. In order to 
simulate numerically the integral defined by the 
right-hand side of equation (20), we define an 
observed density as 
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i xxx  is one if the observation xk is 

in [ [2/;2/ Δ−Δ− ii xx  and zero otherwise, ix i ⋅Δ= , 
n is the number of observations, Δ  is the step size. 
Hence, the numerical approximation of equation (20) 
takes the form 
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 Next we consider the maximum likelihood 
procedure for estimating the parameters of the 
stochastic ordinary delay linear differential equation 
(8). The basic idea of the method is that an original 
stochastic differential equation (9) with the 
multiplicative noise is first converted into a 
stochastic differential equation with a constant 
diffusion part by transformation ))(ln()( tXtY = . In 
non delay case ( 0,0 == τb ), the maximum 
likelihood function for the observed data 
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for the multiplicative noise. 

 

2.1.4 Analysis of the EAT growth data 

Let us discuss a numerical example to illustrate 
theory established in the previous sections 2.1.2, 
2.1.3. In 1995, Schuster et al. [41] studied the 
development of Ehrilch ascities tumor (EAT) in a 
mouse by creating a microtumor model based on 
the Verhulst law with time delay. The mathematical 
reasons for the usage of time delay authors based 
by the oscillatory behavior of delay differential 
equations. The drift term of our presented 
stochastic model (1) differs from the classical 
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deterministic form of the delay Verhulst equation [6], 
[15], [43], Schuster’s model [41], generalized West-
Delsanto’s model [16], fuzzy dynamic’s model [25], 
and 3-dimensional optimal control problem (see, 
[21], [22], and references therein). 

 Now we formally follow the ideas presented for the 
linear delay stochastic model in sections 2.1.2, 2.1.3, 
since it corresponds to the linearized form of all 
logistic models (1).  

 Compatibility is a central aspect to the 
responsible application of models to the applied 
sciences. In this paper the analysis of models’ 
precision is based on the data used to fit them. We 
will examine three statistics: coefficient of 
determination for nonlinear regression (R2), relative 
error (RE%), and Acaike’s Information Index (AII) 
as follows: 
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where 
ii Xxr  the correlation coefficient between the 

measured ix  and the estimated iX  n  is the total 
number of observations, x  is the average value of the 
observed data, p  the number of model parameters, 
∧
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model defined by  
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In this paper we additionally check the acceptability 
of our stochastic models by calculating the Shapiro-
Francia statistic [38], W ′ , and plotting the normal 
percentile plot of residuals. 
 The stochastic differential equation (8) has been 
numerically integrated by means of a second order 
Euler weak scheme with step size 3/1=Δt  day. We 
initially simulate 6000=s  trajectories defined by 
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for the additive noise, and 
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for the multiplicative noise (here {}⋅I  is the 

indicator function, 
t
tTN
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= 0  is the number of 

steps, 
tΔ

=
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dWWW jiji += − ,1, . Ni ,...,2,1= ), dW  is an 
independent random variable of the 
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constant). The mean prediction value iX  is 
calculated by 
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 The estimation method that we follow is first 
estimate by least squares estimate method the 
parameters of the deterministic linear model (9), 
which represents the drift term of the stochastic 
linear model (8), and then use the maximum 
likelihood procedure to estimate the parameter σ , 
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which represents the amplitude of diffusion. 
Practically we could estimate simultaneously all 
parameters appearing in equation (8) by the 
maximum likelihood procedure. Unfortunately, the 
precise of such estimate suffers from the adjusted 
transformation ))(ln()( tXtY =  of the original 
process )(tX , and the linearization of the drift term of 
transformed process )(tY .   
 The parameter estimates for both additive and 
multiplicative models and their corresponding 
goodness of fit statistics are shown in Table 1. The 
additive and multiplicative models provide very 
similar results, as indicated by the graphs that 
represent the mean predicted curves on the trajectory 
of the observed EAT in a mouse over time (Figure 1), 
and the goodness of fit statistics (Table 1). The 
additive and multiplicative models explain 93% and 
93.4% of the total variance. An analysis of the results 
in Table 1 based on the above mentioned three 
goodness of fit statistics indicate that the stochastic 
delay linear growth model with multiplicative noise 
fits better than with additive noise. The goodness of 
fit statistics R2, RE%, AIC (Table 1) show us that the 
delay linear model fits better than the non delay 
linear model. 

 Because the quality of fit, measured by statistics 
R2, RE%, AIC, does not necessarily reflect the quality 
of future prediction, we examine the residuals. A 
basic graphical approach for checking normality of 
residuals is the normal percentile plot. The normal 
percentile plot compares the ith ordered value of 
residual, ir , with the i/(n+1)th value of the standard 
normal distribution, ))1/((1 += − nizi φ  (rankits). The 

normal percentile plots are reported in Figure 2. 
Both almost straight lines formed by the normal 
percentile plots in Figure 2 indicate that each of 
models gives the correct residuals. The values of 
the Shapiro-Francia statistics for the time delay 
stochastic linear model with the additive noise, 
0.9826, and multiplicative noise, 0.9842, are above 
the 5% critical point 9310.0)13;05.0( =′W . So, 
these values are consistent with the assumption that 
the residuals have a normal distribution. 
 It is evident that the growth of a tumor may be 
affected by the environment such as chemotherapy 
and radiotherapy. The treatments not only kill the 
tumors, but also activate them. 
 The amplitude of multiplicative noise reflects 
environment’s random changes. The additive noise 
gives a diffusion factor in the tumor growth 
process. The stationary mean and variance are 
presented in Table 2, and shown in Figure 3. In 
delay case we used the approximate stationary 
densities (18), (19), since the exact stationary 
density (17) does not exist for the parameter 
estimates presented in Table 1. The increase in 
mean means that the tumor grows up, otherwise 
extincs. The increase in variance means that the 
tumor falls down, otherwise grows up. As we can 
see in Figure 1, the variance has tendency to grow 
for both linear delayed models. In Figure 3 we can 
see the differences between the stationary 
distributions of both additive and multiplicative 
models. Although the additive and multiplicative 
curves are quatitatively different (by shape), they 
are quantitavely similar (by first moment). 

 

Table 1.  Parameter estimates and goodness of fit statistics. 

Parameters Statistics 
Noise 

K a b τ  σ  2R  RE% AIC 

Additive 164380061 0.1090   152915007 0.7432 38.09 499.35 

Multiplicative 164380061 0.1090   0.2413 0.7450 37.60 499.01 

Additive 106215545 0.0000 0.2627 8.8619 196690406 0.9304 19.8 482.37 

Multiplicative 106215545 0.0000 0.2627 8.8619 0.1640 0.9394 18.5 481.75 

 
Table 2. Stationary mean and variance.  

Non-delay process Delay process Noise Mean Variance Mean Variance 
Additive 0.16077 1010 0.55192 1017 0.43424 109 0.15519 1018 

Multiplicative 0.15079 1010 0.82866 1018 0.41998 109 0.43349 1016 
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a) 

         
b) 

Fig. 1. Curves on the stochastic linear trajectory of mean (a), and variance (b) of the observed EAT in mouse over 
time (solid line –delayed, dot line – non-delayed): additive noise (left), multiplicative noise (right). 
 

 

 
Fig. 2. Normal percentile plots: additive noise 
(top), multiplicative noise (bottom). 
 

 

 
Fig. 3. Stationary probability densities (solid line –
delayed, dot line – non-delayed): additive noise (top), 
multiplicative noise (bottom). 
 
 For the delayed stochastic linear growth model 
(8) we are not able to determinate the exact transition 
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probability density of the process )(tX . So we 
simulate an approximate transition probability 
density of the process )(tX using a Monte Carlo 
simulation method and the 2.0 order weak Euler 
scheme (21)-(22). However, discretization 
introduces a bias in the simulation of density, 
which tends to 0 as Δ  tends to 0. The simulated 
probability densities (number of simulations 

6000=s , 3/1=Δt ) are shown in Figure 4. 
 

 

 
Fig. 4. Simulated transition probability densities for 
linear model: additive noise (top), multiplicative 
noise (bottom). 

 
 

2.2 Logistic delay stochastic equation 
Next we consider the delay stochastic differential 
equation (1). When 0=σ , we have the deterministic 
delay differential equation 

)())(()()( τα −+= txtxGtrx
dt

tdx , (23) 

( ) ( ) [ ]00 ;, ttsssx τϕ −∈= , ];[ 0 Ttt∈ .  
A steady state solution *x  of equation (23) is defined 
by 0)( *** =+ xxGrx α . The non-zero solution 

0)(* ≠≡ txx  is not a solution of the perturbed 
equation (1). Hence, we linearize equation (1) around 
the non-zero steady state. This linearization yields 
the stochastic linear differential equations 
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Gompertz model, 
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Richards model. 
 The parameters of the deterministic model (23), 
which represents the drift term of the stochastic 
model (1) we estimate by least squares estimate 
method, using the order 2.0 scheme of equation (23), 
and then use the maximum likelihood procedure to 
estimate the parameter σ , using the linearized forms 
(24)-(26) of logistic growth models. The parameter 
estimates for all logistic models and their 
corresponding goodness of fit statistics are shown in 
Table 3. The order 2.0 weak Euler scheme of 
stochastic differential equation (23) takes the 
following form 
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for the additive noise, and 
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for the multiplicative noise.  
 The values of the Shapiro-Francia statistics for 
all time delay and non-delay stochastic models 
with the additive and multiplicative noises are 
above the 5% critical point 9310.0)13;05.0( =′W . 
It is evident that these values are consistent with 
the assumption that the residuals have a normal 
distribution.  
 The predicted mean, variance and normal 
percentile plot curves of the Verhulst, Gompertz, 
Richards models are shown in Figure 5. The 
summaries of the R2, RE%, AIC goodness of fit 

statistics are presented in Table 3. Hence, all delayed 
logistic models of EAT growth have very high 
goodness of fit statistics. The normal percentile plots 
in Figure 5 show that all models of EAT growth fit 
the observed data set very well at 5% confidence 
level. As we can see from Table 3, all stochastic 
delayed logistic models perform the observed data set 
well and produce consistently better goodness of fit 
statistics then stochastic delay linear model.  For the 
goodness of fit statistics presented in this paper, the 
Richards law shows superior quality. The Richards 
type simulated transition probability density functions 
of the tumor growth process )(tX are shown in 
Figure 6. As we see in Figures 5, 6 the spreading of 
the transition probability density function for the 
additive noise is higher than in the multiplicative 
case. The stochastic logistic equations of tumor 
growth provide an adequate description of EAT 
dynamics. Note that the mean of EAT’s trajectory not 
monotonically evolves toward the steady-state value 
for the all used stochastic logistic growth models, and 
the path by which the variance of EAT’s trajectory 
evolves to the steady-state value not always 
increasing too for the Verhulst, Gompertz and 
Richards models. 
 
  

    
Table 3.  Parameter estimates and goodness of fit statistics for logistic growth models 

Parameters Statistics 
Model Noise r K β  α  τ  σ  2R  RE% AIC W’ 

Additive 0.567 1241932694.    85532511.. 0.824 31.58 494.5 0.931 
Multiplicative 0.567 1241932694.    0.1969 0.894 24.25 487.9 0.947 
Additive 0.543 1422721716  -826 11.823 36050467 0.990 7.65 457.7 0.940 Verhulst 
Multiplicative 0.543 1422721716  -.826 11.823 0.093 0.994 5.80 450.4 0.996 
Additive 0.317 1272123477.    31801499. 0.851 29.01 492.2 0.962 
Multiplicative 0.317 1272123477.    0.278 0.854 28.68 492.0 0.979 
Additive 0.220 1776053855  -.364 9.7382 17172051 0.982 10.19 465.1 0.968 Gompertz 
Multiplicative 0.220 1776053855  -.364 9.7382 0.140 0.982 10.10 464.8 0.975 
Additive 0.500 1217468088. 2.629   78365123.. 0.863 28.06 490.5 0.968 
Multiplicative 0.500 1217468088 2.629   0.215 0.872 27.52 489.8 0.975 
Additive 0.5307 1421767563 1.073 -.848 11.679 23019341 0.991 7.09 455.7 0.987 Richards 
Multiplicative 0.5307 1421767563 1.073 -.848 11.679 0.048 0.995 5.62 449.6 0.990 
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Fig. 5. Curves on the Verhulst, Gompertz, Richards mean trajectory (a), variance (b), normal percentile plot (c): 
additive noise (left), multiplicative noise (right). 
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Fig. 6. Simulated transition probability densities for Richards model: additive noise (left), multiplicative noise 
(right).

 

 

3 Conclusions 
The stochastic logistic single-species population 
model that we have considered is one of the several 
possible stochastic versions of the corresponding 
deterministic logistic population growth in a 
random fluctuating environment characterized by 
white noise. Obviously no model can perfect 
describe every growth pattern phenomenon that 
researches encountered in their practice and the 
same is true for our used stochastic time delay 
models. From an examination of Figures 1, 5 and 
Tables 1, 3, it is obvious that the all used logistic 
stochastic models fit better the linear stochastic 
model and their variances are much less too. 
Numerical simulations suggest that the variance of 
all used models with the multiplicative noise grows 
up and it means that the tumor falls down. Hence, 
stochastic models may provide new insight (not 
possible in a deterministic model) into the 
evolution and treatment of tumor. In these data, 
stochastic logistic type growth models with 
multiplicative noise are more effective in 
predicting the tumor growth then with the additive 
noise. 

 In the final note, we wish to point out that the 
method implemented here for obtaining the 
population dynamics, based on postulated growth 
model as a function of the time, could be modified 
incorporating more growth laws. The dynamics of 
population growth can be expanded using more 
predictor variables of single-species population.  

 The research presented here can be extended 
in several directions. First type of possible 
extension is to understand better the main features 
of the growth processes of the biological, 
ecological, physical, economical systems, in order 
to choose the most adequate mathematical model. 

Second type of extension is to apply the delayed 
stochastic logistic growth laws to theoretical 
examination of the growth processes in biology, 
ecology, biomedicine, physics, economics. 

 Finally, it is interesting to consider an 
alternative information theoretic approach of 
modeling and assessing of dynamics of single-species 
population. The information theoretical measures 
play a crucial theoretical role in physics of 
macroscopic equilibrium systems. The Shannon’s 
entropy and Fisher’s information represent promising 
tools to illustrate the behavior of multidimensional 
systems in biology, ecology, biomedicine. A stable 
steady state in biology is important for an 
understanding of biosystems as dynamical complex 
processes. A departure from steady state indicates a 
negative unhealthy situation of biosystem. The 
importance of stable steady state, as a criteria for 
biological well-being, emphasize many researches. 
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