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Abstract: We present new numerical characterization of DNA sequences that is based on the modified 
graphical representation proposed by Hamori. While Hamori embeds the sequence into Euclidean space, we use 
analogous embedding into the strong product of graphs, 4     nK P , with weighted edges. Based on this 
representation, a novel numerical characterization was proposed in [14] which is based on the products of ten 
eigenvalues from the start and the end of the descending ordered list of the eigenvalues of the L/L matrices 
associated with DNA. In this paper we compare two further numerical characterizations of the same type 
emphasizing the robustness of the approach. 
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1 Introduction 
 
Deoxyribonucleic acid (DNA) is the chemical inside 
the nucleus of all cells that carries the genetic 
instructions for making living organisms. A DNA 
molecule consists of two strands that wrap around 
each other to resemble a twisted ladder. The sides 
are made of sugar and phosphate molecules. The 
”rungs” are made of nitrogen-containing chemicals 
called bases. Each strand is composed of one sugar 
molecule, one phosphate molecule, and a base. Four 
different bases are present in DNA - adenine (A), 
thymine (T), cytosine (C), and guanine (G). The 
particular order of the bases arranged along the 
sugar - phosphate backbone is called the DNA 
sequence; the sequence specifies the exact genetic 
instructions required to create a particular organism 
with its own unique traits. Each strand of the DNA 
molecule is held together at its base by a weak bond. 
The four bases pair in a set manner: Adenine (A) 
pairs with thymine (T), while cytosine (C) pairs 
with guanine (G). 
 
Nowadays the automated DNA sequencing 
techniques have led to an explosive growth in the 
number and the length of DNAs sequences from 
different organisms. This has resulted in a large 
accumulation of data in the DNA databases, but has 
also called for the development of suitable 
techniques for rapid viewing and analysis of the 
data. Graphical representations of DNA sequences 

were initiated by Hamori [6] and later expanded by 
many others, see the review [24] and a number of 
more recent papers, for example [[10], [11], [12], 
[15], [16] [17][18],[24],[27], [3]] the list being by 
no means exhaustive. 
 
The advantage of graphical representation of DNA 
sequences is that they allow visual inspection of 
data, helping in recognizing major differences 
among similar DNA sequences. These techniques 
provide useful insights into local and global 
characteristics and the occurrences, variations and 
repetition of the nucleotides along a sequence which 
are not as easily obtainable by other methods. 
 
Two-dimensional plots are obviously useful for 
visual communication of the results of an analysis, 
but can also be useful to help checking for the 
presence of an effect by human eye rather by a 
computer program, and finally, they are used for 
identifying unsuspected structures in the data. 
Recently, it has been shown that some of the 
graphical representations lead to numerical 
characterizations of DNA sequences and 
quantitative measures of the degree of 
similarity/dissimilarity between the sequences [[15], 
[16], [17], [18], [24], [27]]. Similarly as topological 
indices used as molecular descriptors can 
dramatically improve the search for synthesis of 
compounds with a desired property [23], it is hoped 
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that the numerical descriptors of DNA may be used 
to predict some properties of the DNA sequences. 
An important advantage of a characterization of 
structures by invariants, as opposed to use of codes, 
is the simplicity of the comparison of numerical 
sequences based on invariants. The price paid is a 
loss of information on some aspects of the structure 
that accompanies any characterization based on 
invariants. The loss of the information, however, 
can in part be reduced by use of larger number of 
descriptors (invariants) [[19],[20]]. 
 
By a graph we mean a set V(G) of vertices, together 
with a set E(G) of edges. A graph is the complete 
graph  if any two of its distinct vertices are 
adjacent. A graph is called the path  if it is 
isomorphic to a graph on n distinct vertices 

 and n-1 edges . 

Kn

, nv…
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As the four bases A, G, C, and T are regarded 
independent, at least four dimensions are needed for 
an embedding that is free of using some arbitrary 
conventions. A number of graphical representations 
first embeds the DNA sequence into an Euclidean 
space of some dimension, using a projection to  2-D 
plot, where for the projection again some more or 
less arbitrary choice has to be made. 
In this paper, we essentially use a more dimensional 
presentation, but instead of working with Euclidean 
coordinates we rather embed the sequence into a 
graph, more precisely into a strong product of 

times a path. A geometric representation would 
then be more than two dimensional as an isometric 
drawing of  is only possible in three dimensions. 

4K

4K
 
In figures here we use a particular drawing of the 
graph, which in our opinion seems to give a good 
impression of the sequence to the observer. 
The one dimensional plot of 4  is of course not 
isometric (i.e. the edges  in the plot have different 
lengths) but we believe that the resulted drawing 
may be a reasonable compromise between the 
arbitrary projection(s) and a unique more 
dimensional embedding which can, of course, easily 
be found by an isometric embedding of the complete 
graph 4  into Euclidean space, for example by 
mapping A, C, G, and T to the edges of a tetrahedron 
in 3D or to the four unit vectors in 4D. 

K

K

Furthermore, based on this graph representation we 
propose a novel numerical characterization of the 
DNA sequence. 
 

In contrast to some other numerical chara-
cterizations that are based on the graphical 
representations [[12], [18], [27]], our representation 
is free of arbitrary choices because it is based on the 
graph and not on its drawing, i.e. embedding and 
projection. The numerical characterization uses 
eigenvalues of a matrix that is based on the graph 
distances. 
 
The numerical invariant is computed for the first 
exon of the β -globin gene for the 10 different 
species, a dataset shown in Table 1, that is used in 
many recent studies [[10], [11], [12], [15],  [16], 
[17], [18], [24], [27]] and is taken from EMBL-EBI  
database [29]. This dataset is one of the primary 
tools for comparison of different graphical and 
numerical characterizations and was first used by 
Nandy [13] and later by other authors [10],[15], 
][16], [18], [24]]. The reason why Nandy decided to 
use this gene lies in the fact that β -globin 
sequences represent a conservative gene, that is, the 
gene that changes little from one species to another. 
The differences between the values of the invariant 
are used as a measure of similarity/dissimilarity 
among the species. 
 
We do not attempt to extensively comment the 
results because this is not an area of our expertise. 
However we wish to note that our results are not 
like those obtained by similar computations which 
are based on eigenvalues of the graphical 
representations [15], but are based on graphs, 
therefore our approach is using less computational 
effort. 
 
For example in [15] one has to compute 12 different 
permutations of the graphical representation before 
the actual characterization, while our approach 
computes only one. 
 
 
2 Modified Hamori curve 
representation 
 
We based our research on DNA sequence 
representation introduced by Hamori [6]. In this 
method, the information content of a DNA sequence 
is mapped into a three-dimensional space function 
(H curve). The positive x-direction is used to count 
the number of bases in the sequence. At each point 
of x on the corresponding yz plane the four corners 
(NW, NE, SE and SW as four points on the 
compass) are taken to represent the four bases A, C, 
G and T. Basic rule for the construction of the 
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Below is depicted a product of two copies of a 
general graph together with the factors.   

sequence map is to move one unit in the 
corresponding direction depending on which 
nucleotide (base) is being plotted and to draw a 
connected line of all such points plotted, one for 
each unit in the x-direction. Thus a sequence like 
ATGGTGCACCTGACT... will generate a spiral 
along the x-axis. 
 
H-curve representation is sensitive to the directions 
chosen for four bases. For example representation 
with bases ACGT corresponding to four corners is 
different from AGCT, since the distance from base A 
to base G is different in this two cases. 
 
We modified this approach by putting the corners of 
four bases on the complete graph  and weighted 
all the edges in  with 1. This way we avoided the 
drawback of the original representation. Edges in 
the x direction or along  are weighted with 1 if 
the base in the coding sequence is the same as the 
previous one and with 

4K

4K

nP

2  otherwise. 
 
Formally, a sequence of the length n in this paper is 
a path in the strong product of the graphs  
and . The strong product  of graphs  
and  has as vertices the pairs (g,h) where 

1 and 2 . Vertices 1 1( ,  and 

2 2  are adjacent if either 1  is an edge of 

1  and 1  or if 1 2  and 2{ ,  is an edge 
of 2 or if  is an edge of 1G  and 1 2{ ,  is 
an edge of 2G . The strong product is one of the 
standard graph products 

4K

1G

}

nP
G
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1 2{ , }g g

)g h

}
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[9]. For example, the strong 
product of two edges (complete graphs on 2 
vertices, 2 , is the complete graph on four vertices, 

4 ). Another example is the product of two paths of 
length 2  
 

 

 
 
Here 4K  is a complete graph on vertices , , ,A C G T  

. The edges and  is a path on the vertices 
of the product are weighted as follows: 

 nP 1,2, ,n…

 

 
1      or 

(( , )( , ))
2  and i k j≠ ≠⎪⎩

 
Figure 1 shows modified Hamori curve, where first 

 edges between the 4K 's have weights indicated 
with the numbers on gray background. The factor 

4K  is drawn on a circle and projected to obtain a 2-
D drawing. Any other possibly nicer drawing of the 
final graph can be used 

i k j
W i j k

= =⎧⎪= ⎨  

few

a hel

[1]. However, we find our 
way of drawing the graph and the path a reasonable 
compromise that can be used as p for easier 
understanding of our concept. Note that all the 
edges within the vertical factor ( )4  K and all the 
horizontal edges have weight 1 w
etween

hile all edges 
  factors that are not horizontal have b 4K

weight 2 . 
 
The motivation for choosing 2  is the intuitive 
assumption that the two factors in the product are 
orthogonal, hence the corresponding edge is the 
diagonal of a unit square. 
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Fig. 1 Modified Hamori curve 

 
Table 1 The coding sequences of the first exon 
of β -globin gene of 10 different species 
Species & Coding sequence 
Human (92 bases) 
ATGGTGCACCTGACTCCTGAGGAGAAGTCT-
GCCGTTACTGCCCTGTGGGGCAAGGTGAAC-
GTGGAGTAAGTTGGTGGTGAGGCCCTGGGC-
AG 
Opossum (92 bases) 
ATGGTGCACTTGACTTCTGAGGAGAAGAAC-
TGCATCACTACCATCTGGTCTAAGGTGCAG-
GTTGACCAGACTGGTGGTGAGGCCCTTGGC-
AG 
Gallus (92 bases) 
ATGGTGCACTGGACTGCTGAGGAGAAGCAG-
CTCATCACCGGCCTCTGGGGCAAGGTCAATG-
TGGCCGAATGTGGGGCCGAAGCCCTGGCCA-
G 
Lemur (92 bases) 
ATGACTTTGCTGAGTGCTGAGGAGAATGCTC-
ATGTCACCTCTCTGTGGGGCAAGGTGGATGT-
AG AGAAAGTTGGTGGCGAGGCCTTGGGCAG 
Mouse (92 bases) 
ATGGTGCACCTGACTGATGCTGAGAAGGCTG-
CTGTCTCTTGCCTGTGGGGAAAGGTGAACTC-
CGATGAAGTTGGTGGTGAGGCCCTGGGCAG 
Rabbit (90 bases) 
ATGGTGCATCTGTCCAGTGAGGAGAAGTCTG-
CGGTCACTGCCCTGTGGGGCAAGGTGAATGT-
GGAAGAAGTTGGTGGTGAGGCCCTGGGC 
Rat (92 bases) 
ATGGTGCACCTAACTGATGCTGAGAAGGCTA-
CTGTTAGTGGCCTGTGGGGAAAGGTGAACCC-
TGATAATGTTGGCGCTGAGGCCCTGGGCAG 

Gorilla (93 bases) 
ATGGTGCACCTGACTCCTGAGGAGAAGTCT-
GCCGTTACTGCCCTGTGGGGCAAGGTGAAC-
GTGGATGAAGTTGGTGGTGAGGCCCTGGGC-
AGG 
Bovine (86 bases)    
ATGCTGACTGCTGAGGAGAAGGCTGCCGTC-
ACCGCCTTTTGGGGCAAGGTGAAAGTGGAT-
GAAGTTGGTGGTGAGGCCCTGGGCAG 
Chimpanzee (105 bases) 
ATGGTGCACCTGACTCCTGAGGAGAAGTCT-
GCCGTTACTGCCCTGTGGGGCAAGGTGAAC-
GTGGATGAAGTTGGTGGTGAGGCCCTGGGC-
AGGTTGGTATCAAGG 
 
While Hamori embeds the sequence into Euclidean 
space, we use analogous embedding into the strong 
product of graphs, 4 n    K P

/L L

, with weighted edges. 
Based on this representation, a novel numerical 
characterization was proposed in [1] which is based 
on the products of ten eigenvalues from the start and 
the end of the descending ordered list of the 
eigenvalues of the  matrices associated with 
DNA. Below we explain this and two further 
numerical characterizations of the same type. 
 
 
3 Numerical characterization of DNA 
sequences 
 

In order to numerically characterize a DNA 
sequence given by the 2-D graphical representation 
based on our approach one can associate with a 
corresponding zigzag curve a matrix and consider 
matrix invariants that are sensitive to the form of the 
curve. This approach was first outlined and used by 
Randić, Vračko, Lerš, and Plavšić [16]. One of the 
possible matrices they use is the L/L matrix (the 
length/length matrix) whose elements are defined as 
the quotient of the distance between a pair of the 
vertices (dots) of the zigzag curve and the sum of 
distances between the same pair of vertices 
measured along the zigzag curve. Here we use 
analogous matrix based on the weighted graph 
representation of DNA, i.e. the entries of the L/L 
matrix are the quotients between the graph distance 
and the weighted graph distance. 

 
Using this weights we can construct the L/L 

matrix as is shown in Table 1 where we used the 
first 6 bases of the first exon of β − globin gene of 
human. 
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For example, the first three entries of the first 

row are 1 0.707,  
2

2 0.707 
2 2+

, and 

3 0.783
2 2 1+ +

. 

 

Table 2: The upper triangle of the L/L matrix of 
the sequence ATGGTGCACC 

Base A T G G T G 
A 0 0.707 0.707 0.783 0.762 0.751
T  0 0.707 0.828 0.783 0.762
G   0 1.00 0.828 0.783
G    0 0.707 0.707
T     0 0.707
G      0 

 
 
Formally, we assign the matrix xLL  to the 

sequence x with   

 ( , ) ,
(( , ), ( , ))x

i j

LL i j
d x i x j

=
j i−

(( , ), ( , ))d x i x j

 

 
where  is the distance in the 
weighted graph 

i j

4      nK P . More precisely, 

 for
1

,( , )) ((
j

i j
k i

i x j W
−

=
∑ 1(( , ) , 1))kd x x k+= +, )(kx k j i> . 

(For i=j we put and for (( ,d x ),( ,i ji x )) 0j = j i<   

we define   .)  (( , ( , ))id x x i),( , )) (( , ),i j ji x j d x j=

 
We will characterize the coding sequences of the 
first exon of β -globin gene of 10 species (including 
human), shown in the Table 1, by means of the 
leading eigenvalues, λ , of the L/L matrix. 
Eigenvalues of a matrix are one of the best known 
matrix invariants. If a matrix is symmetric, as is the 
case with all the matrices considered here, the 
eigenvalues are real. A set of eigenvalues can be 
viewed as a characterization of a structure, but as is 
well known such characterization is not unique. In 
other words, different graphs and different 
structures may have the same set of eigenvalues. 
Such graphs are known as isospectral and have 
received considerable attention in mathematics [[4], 
[7]] and chemistry [8], of which we only indicated 
some earlier contributions. While it was initially 
thought that the complete coincidence of all 
eigenvalues may be an exception rather than a rule, 

the subsequent research revealed that isospectral 
graphs are more a rule than exception. That, 
however, does not diminish their utility, although 
they would fail to discriminate structures in testing 
for isomorphism [19]. On other hand, if two 
structures are similar they are likely to have similar 
eigenvalues and consequently similar product of 
leading eigenvalues. In a recent study in which the 
DNA sequence was characterized by average 
distances between various nucleic acid bases was 
shown that is very sensitive already when a single 
nucleic base has been changed [22]. 
 
Our characterizations are based eigenvalues of the 
matrix L/L. In [14] the product of the 10 largest and 
10 smallest eigenvalues was taken. Here we will 
compare this numerical characterization with the 
second which is the product of the five largest and 
five smallest eigenvalues. Species have different 
lengths of DNA sequence, shortest is DNA 
sequence of the bovine (86 bases) and longest of the 
Chimpanzee (105 bases). 
It may be reasonable to consider ways to cancel out 
from comparison the influence of different lengths 
of sequences as much as possible. Therefore we also 
consider a normalized characterization, where we 
take the n-th root of the product of the eigenvalues. 
 

1( )xΛ  product of 10 largest and 10 smallest 
eigenvalues 

2 ( )  product of 5 largest and 5 smallest 
eigenvalues 

xΛ

( )n x  Λ
2 ( )n x  Λ

 
 
3 Similarities/dissimilarities among 
the coding sequences of the first exon 
of β - globin gene of different species 
 
We will illustrate a natural method for the 
characterization of the DNA sequences with the 
examination of the similarities/dissimilarities among 
the 10 coding sequences shown in Table 1. The 
analysis of similarity/dissimilarity is based on the 
assumption that two DNA sequences are similar if 
the corresponding difference between the value of 
the numerical characterization is small. 
 
The values of the numerical characterizations are as 
follows: 
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species 1( )xΛ  2 ( )xΛ  ( )n xΛ  
human 0.0121903 0.411371 0.990391 
chimpanzee 0.0144888 0.597189 0.995102 
gorilla 0.0128425 0.44091 0.991233 
opossum 0.00357022 0.0997373 0.975255 
gallus 0.00864563 0.285579 0.98647 
lemur 0.00220456 0.0610567 0.970066 
mouse 0.0533748 1.68273 1.00567 
rabbit 0.00692271 0.243408 0.984422 
rat 0.0192638 0.756461 0.996971 
bovine 0.112602      2.89767       1.01245 
 
 
Formally we can define similarity relations as: 
 
  ( , ) | ( ) ( ) |,S x y x y= Λ −Λ
 
where  ,x y  are sequences of the species. 
In this way we obtain a matrix of mutual similarities 
among species. First we present a matrix with 
similarities (because of  the size, we present them at 
the end of paper) and then we draw two graphs 
based on the values in the matrix. First graph 
represents nearest similarities relation and second 
graph represents widest dissimilarities relation.  
Similarities/dis-similarities matrix for 1( )xΛ

2 ( )

 is in 
Table 3 and corresponding graphs are on Fig 2 and 
3. Similarities/dissimilarities matrix for xΛ  is in 
Table 4 and corresponding graphs are on Fig 4 and 5 
and finally, similarities/dissimilarities matrix for 

( )n xΛ  is in Table 5 and corresponding graphs are 
on Fig 6 and 7. 
 
While of course not surprisingly the three similarity 
measures give different numerical values, the 
overall results are not very much different. In 
particular, the smallest differences are associated 
with the pairs (human, chimpanzee), (human, 
gorilla) and (gorilla, chimpanzee) which is in 
accordance with our intuitive expectations and, not 
surprisingly, also in accordance with other studies 
[[10], [16]]. On the other hand, the largest entries in 
the similarity/dissimilarity matrix appear in rows 
belonging to bovine and opossum. 
We may conclude that all presented numerical 
characterizations have captured some important 
features of the DNA sequences considered. 
 
4 Conclusion 
 
Our objective in [14] was to arrive at a numerical 
characterization of DNA sequences. This may be 

accomplished in a relatively simple algebraic 
manner and  as such makes the proposed approach 
very attractive for the characterization of DNA 
sequences having 1,000 or more bases. 
In this follow-up report we add results on related 
numerical characterizations showing that the 
approach is robust, hence the somewhat arbitrary 
choice of 5 or 10 eigenvalues taken does not 
severely influence the results of the method. 
The preliminary results presented here support the 
intuition that some important structural information 
of the sequences is encoded in the spectrum, and in 
particular in the largest and smallest eigenvalues. 
We have provided a method that is computationally 
more efficient than some earlier approaches. 
Needles to say that the outlined approach may be 
suitable for characterization of local fragments of 
DNA, which is precisely how one may look on the 
truncated DNA fragment considered in this work. 
Conceptually and computationally the approach is 
simple and therefore can be very useful in the field 
of bioinformatics. 
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Table 3 Matrix of the 1( )xΛ  similarities 

Human Chimpanzee Gorilla Opossum Gallus Lemur Mouse Rabbit Rat Bovine 
0 0.00229851 0.000652253 0.00862008 0.00354466 0.00998573 0.0411845 0.00526758 0.0070735 0.100412 

0.00229851 0 0.00164626 0.0109186 0.00584317 0.0122842 0.038886 0.00756609 0.00477499 0.0981132 

0.000652253 0.00164626 0 0.00927233 0.00419692 0.010638 0.0405323 0.00591984 0.00642125 0.0997594 

0.00862008 0.0109186 0.00927233 0 0.00507541 0.00136566 0.0498046 0.00335249 0.0156936 0.109032 

0.00354466 0.00584317 0.00419692 0.00507541 0 0.00644107 0.0447292 0.00172292 0.0106182 0.103956 

0.00998573 0.0122842 0.010638 0.00136566 0.00644107 0 0.0511703 0.00471815 0.0170592 0.110397 

0.0411845 0.038886 0.0405323 0.0498046 0.0447292 0.0511703 0 0.0464521 0.034111 0.0592271 

0.00526758 0.00756609 0.00591984 0.00335249 0.00172292 0.00471815 0.0464521 0 0.0123411 0.105679 

0.0070735 0.00477499 0.00642125 0.0156936 0.0106182 0.0170592 0.034111 0.0123411 0 0.0933382 

0.100412 0.0981132 0.0997594 0.109032 0.103956 0.110397 0.0592271 0.105679 0.0933382 0 

 
 

 
Fig. 2 Largest 1( )xΛ  similarities 

 
 

 

 
Fig. 3 Largest 1( )xΛ  dissimilarities 
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Table 4 Matrix of the 2 ( )xΛ similarities 

Human Chimpanzee Gorilla Opossum Gallus Lemur Mouse Rabbit Rat Bovine 

0 0.185818 0.029539 0.311634 0.125792 0.350314 127.136 0.167963 0.34509 2.4863 

0.185818 0 0.156279 0.497452 0.31161 0.536133 108.554 0.353782 0.159271 2.30048 

0.029539 0.156279 0 0.341173 0.155331 0.379853 124.182 0.197502 0.315551 2.45676 

0.311634 0.497452 0.341173 0 0.185842 0.0386806 1.583 0.14367 0.656723 2.79793 

0.125792 0.31161 0.155331 0.185842 0 0.224523 139.715 0.0421717 0.470881 2.61209 

0.350314 0.536133 0.379853 0.0386806 0.224523 0 162.168 0.182351 0.695404 2.83661 

127.136 108.554 124.182 1.583 139.715 162.168 0 143.933 0.926273 1.21493 

0.167963 0.353782 0.197502 0.14367 0.0421717 0.182351 143.933 0 0.513053 2.65426 

0.34509 0.159271 0.315551 0.656723 0.470881 0.695404 0.926273 0.513053 0 2.14121 

24.863 230.048 245.676 279.793 261.209 283.661 121.493 265.426 214.121 0 

 

 
Fig. 4 Largest 2 ( )xΛ similarities 

 
 
 

 
Fig. 5 Largest 2 ( )xΛ  dissimilarities 
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Table 5 Matrix of the ( )n xΛ similarities 

Human Chimpanzee Gorilla Opossum Gallus Lemur Mouse Rabbit Rat Bovine 
0 0.004710 0.000841 0.015136 0.003921 0.020325 0.015281 0.005969 0.006579 0.022056 

0.004710 0 0.003869 0.019847 0.008632 0.025035 0.010570 0.010679 0.001868 0.017345 

0.000841 0.003869 0 0.015978 0.004762 0.021166 0.014439 0.006810 0.005737 0.021214 

0.015136 0.019847 0.015978 0 0.011215 0.005188 0.030418 0.009167 0.021716 0.037193 

0.003921 0.008632 0.004762 0.011215 0 0.016403 0.019202 0.002047 0.010500 0.025977 

0.020325 0.025035 0.021167 0.005188 0.016403 0 0.035606 0.014356 0.026904 0.042381 

0.015281 0.010570 0.014439 0.030418 0.019202 0.035606 0 0.021250 0.008701 0.006775 

0.005969 0.010679 0.006810 0.009167 0.002047 0.014356 0.021250 0 0.012548 0.028025 

0.006579 0.001868 0.005737 0.021716 0.010500 0.026904 0.008701 0.012548 0 0.015477 

0.022056 0.017345 0.021214 0.037193 0.025977 0.042381 0.006775 0.028025 0.015477 0 

 
 

 
Fig. 6  Largest ( )n xΛ  similarities. 

 
 

 
Fig. 7 Largest ( )n xΛ  dissimilarities. 
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