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Abstract: - A new method that aims to automatically classify a set of objects in spite of the imperfection and the 
uncertainty of their heterogeneously-assigned data is proposed in this paper. This method is based essentially on 
possibility theory to estimate the similarity among the objects, and on belief theory and multidimensional scaling 
methods to construct the compatible evidential class partition. This method is applied to a medical database and robust 
results have been obtained without knowing the key attributes of the concerned pathologies and without taking into 
account any a priori medical knowledge. 
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1 Introduction 
Clustering is the unsupervised classification of patterns 
(observations, data items, examples or features) into 
groups (clusters). The clustering problem has been 
addressed in several contexts in many disciplines. This 
reflects its broad appeal and usefulness in exploratory 
data analysis. However, all the proposed clustering 
methods depend mainly on measuring the similarity and 
suppose that the similarity of the objects is already 
calculated, in spite of the fact that it is sometimes 
difficult to estimate it, especially in the presence of 
heterogeneous and imperfect data. In this paper we 
propose a general clustering method as follows: given a 
set of ""c  classes { }cωωω ,...,, 21=Ω  and a set of ""n  
objects { }nOOOO ,...,, 21=  where each object iO  from 
O  consists of ""S  attributes { }iSii xxx ,...,, 21 , in such a 
way that these attributes could be heterogeneous 
(quantitative, binary, qualitative, ordinal, etc.) and could 
have imperfect values (imprecise and vague 
assignments, missing values, etc.). We aim to assign to 
each element of O  its appropriate class. For this purpose 
we propose the approach schematized in figure 1. This 
approach depends basically on possibility theory and on 
evidential clustering. Section 2 presents the theory of 
possibilities and illustrates the main steps to construct 
the dissimilarity matrix, whereas section 3 presents the 
theory of belief and summarizes the main phases to 
construct the evidential partition in which we aim to 
allocate to each object a basic belief assignment of its 
membership to all the possible sets of classes in such a 
way that the conflict degree between the masses given to 
any two objects reflects their dissimilarity presented in 
the proximity matrix. Then, the construction of the fuzzy 
and hard partition is described in section 4. This 
approach is applied to a medical database and the results 

presented in section 5, show the capability to distinguish 
the different categories of digestive pathologies, 
depending only on the values of the attributes, without 
any previous knowledge. Furthermore, this approach 
outperforms the prior works as we will see in section 6. 
Then, some discussions and conclusions will be 
presented in section 7. After that, a very important 
application of this approach in data fusion will be 
presented as a perspective in section 8.  
 

 
   Fig.1 Proposed approach outline. 

 
2   From Raw Data Matrix to 
Dissimilarity Matrix  
Data to be analyzed are commonly presented in one of 
two different formats: as a raw data matrix or as a 
dissimilarity matrix. The raw data matrix is an Sn×  

      Raw Data Matrix )( Sn×  

Possibility Theory

    Possibility-Based Dissimilarity Matrix 
)( nn×  

 Evidential Clustering 

         Evidential Partition )2( n×Ω
 

Pignistic Transformation 

     Fuzzy Partition )( n×Ω  

       Hard Partition 
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matrix )( ikxX ≡ , where ikx  denotes the value of the 
thk variable observed for the thi  object. Many data 

mining techniques as the evidential clustering, first 
require the transformation of the raw data matrix into an 

nn×  matrix of pairwise dissimilarities (distances) 
)( ijD δ= , where ijδ  denotes the dissimilarity between 

the thi  and thj  objects.  Because of the defects and the 
limits of the traditional similarity measures presented 
briefly in the following subsection, we propose to use 
the possibility theory presented in subsection 2-2 to 
build the dissimilarity matrix D. The construction of the 
dissimilarity matrix is explained in subsection 2-3 
supported with a concrete example in subsection 2-3-1. 

 
2.1 Traditional Similarity Measures Limits 
Traditional similarity (dissimilarity) measures 
(Minkowski, Canberra, Hamming, Jaccard, etc.) [1] 
suppose generally that the value of each attribute is 
precise (disregarding the existence of imprecise data), 
certain (disregarding the existence of uncertain values), 
and given (disregarding the existence of missing values) 
while on the contrary, real databases contain a 
remarkable amount of incomplete and imperfect values. 
Actually, the uncertainty of data is a delicate widespread 
problem in many domains. For instance in the medical 
domain, patients can not describe exactly how they feel 
or what has happened to them, doctors and nurses can 
not tell exactly what they observe, laboratories report 
results only with some degree of errors, physiologists 
don’t precisely understand how the human body works, 
medical researchers can not precisely characterize how 
diseases alter the normal functioning of the body, 
pharmacologists don’t fully understand the mechanism 
accounting for the effectiveness of the drugs, and no one 
can precisely determine one’s prognosis [13].  In 
addition, some constraints and conditions should be 
considered when dealing with each similarity measure. 
For instance, division by zero could take place in a 
considerable amount of these measures, besides the need 
to know the nature of each variable in the records that 
contain heterogeneous attributes (quantitative, 
qualitative, ordinal, etc.) in order to choose a suitable 
measure. Moreover, the similarity interval should be 
taken into account during the aggregation and during the 
interpretation of the resulting value ([0,1] is the most 
common similarity interval usually proposed, even 
though some measures like the angular separation 
similarity belong to [-1,1]). In reality, a value of an 
attribute can be given in different ways. For example, if 
we examine the value of the attribute “age”, in some 
patient records “age” could be assigned as {18 yeas, 
close to 18 years, more than 15 years, young, between 15 
and 20, unknown, 18 or 19, it’s quite possible to be 18 or 

19 and somehow possible to be 17 or 20, defined by a 
probability distribution, etc.}. Similarity calculation 
according to the traditional measures can not be easily 
carried out between two heterogeneous values, for 
example, between a value given as 25 and another value 
given as close to 25, or as a probability distribution, 
whereas these assignments can be modeled easily in 
possibility theory [19-20]. For these reasons and in order 
to construct a general approach, we don’t recommend 
the use of the traditional measures overburdened with a 
lot of conditions and constraints. Instead, we propose to 
use the possibility theory measures developed by Zadeh, 
Prade, Dubois, and Rakoto [2], [4-5], and [23] in order 
to build the similarity (dissimilarity) matrix among the 
objects of our set.  
 
2.2 Possibility Theory 
Possibility theory provides a method to formalize 
subjective uncertainties of events, that is to say a means 
of assessing to what extent the occurrence (the 
realization) of an event is possible and to what extent we 
are certain of its occurrence, without having however the 
possibility to measure the exact probability of this 
realization because we don’t know an analogous event to 
be referred to, or because the uncertainty is the 
consequence of observation instrument reliability 
absence. Let’s attribute to each event defined on the 
universe of discourse Ω  (in other words to each element 
belonging to ( )Ωρ ) a coefficient ranging between 0 and 
1 assessing to which degree the occurrence of an event is 
possible, where the value “1” means that the event is 
completely possible, while the value “0” means that the 
event is impossible. To define this coefficient, we 
introduce the possibility measure Π  which is a function 
defined over )(Ωρ , taking values in [ ]1,0 , such that: 
 
Axiom 1: ( ) 0=Π φ              (1) 
Axiom 2: ( ) 1=ΩΠ                                                       (2) 
Axiom3: )(,..., 21 Ω∈∀ ρAA  

)()( ,...2,1,..2,1 iiii ASUPA Π=∪Π ==                                  (3) 
where SUP indicates the supremum of the concerned 
values. 
 
We can say that the possibility measure is totally 
defined, if we can attribute a possibility coefficient to all 
the singletons of Ω . Consequently, the possibility 
distribution function π  defined on Ω , whose values are 
included in [ ]1,0 , such that 1)(sup =∈ xx πχ  must be 
defined. As a result the function Π  can be defined form 
the function π  by: 

( )Ω∈∀ ρA  )(sup)( xA Ax π∈=Π                       (4) 
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Reciprocally, π  can be defined form Π  by: 
 

Ω∈∀x  { })()( xx Π=π                          (5) 
 
We should also mention here that the characteristic 
function of a subset from Ω  can be considered as a 
possibility distribution π  defined on Ω .  To calculate 
the possibility degree of the couple ),( yx  given that 

1Ω∈x  and 2Ω∈y  where ,1Ω 2Ω  are two non-
interactive universes of discourse, the conjoint 
possibility distribution defined on the Cartesian product 

21 Ω×Ω should be calculated from:  
 

1Ω∈∀x 2Ω∈∀y  ))(),(min(),( yxyx γχ πππ =       (6) 
 
In fact, the possibility measure is not sufficient to 
describe the incertitude of the realization of an event, 
because sometimes the realization of both the event A 
and its complement CA could be completely possible 
simultaneously ( 1)( =Π A  and 1)( =Π CA  at the same 
time). This means that in this particular case it is 
impossible to take a decision concerning the realization 
of A depending on the estimated possibility measure. For 
this reason, another function, defined on )(Ωρ , whose 
values are included in [ ]1,0  and which is called the 
necessity measure (denoted N) is defined as follows: 
 
Axiom 1: 0)( =φN              (7) 
Axiom 2: 1)( =ΩN              (8) 
Axiom 3: )()( 21 Ω∈∀Ω∈∀ ρρ AA  

)()( ,...2,1,....2,1 iiii ANINFAN == =∩            (9) 
where INF stands for infimum. 
 
2.2.1 Relations between Possibility and Necessity 
Measures 
 
There are some interesting relations between the 
possibility measure Π  and the necessity measure N  
presented in the following equations: 
 

)(Ω∈∀ ρA )(1)( CAAN Π−=                               (10) 
)(Ω∈∀ ρA ))(1()( xINFAN Ax π−= ∉                    (11) 

)()( ANA ≥Π                                                            (12) 
1))(1),(( =−Π ANaMax                                          (13) 

If 0)( ≠AN  then 1)( =Π A                                      (14) 
If 1)( ≠Π A  then 0)( =AN                                      (15) 

)()Pr()( AAAN Π≤≤                                              (16) 

Where )Pr(A  stands for the probability of any event 
)(Ω∈ρA . 

 
2.3 Possibility-Based Similarity Estimation 
Suppose that we have two objects jO  and kO  containing 
“S” attributes: 
 

]....[ 21 Sjijjjj xxxxO =  

]....[ 21 Skikkkk xxxxO = .  
 
Each attribute could take a precise or an imprecise value 
modeled by its possibility distribution, and this value can 
be either numerical or nominal. The values of some 
attributes could be unassigned (missing value). Besides, 
each attribute is associated with a “tolerance function” 
defined by an expert as a formula or as a table permitting 
to describe mathematically to which degree we consider 
that two values of this attribute are similar. An example 
of tolerance function is the function that we call “close 
to”. Such a function can be defined by the following 
formula: 

Δ

−
−= yx

yxa

aa
aa 1),(μ  if  Δ≤− yx aa          (17) 

0),( =yxa aaμ  Otherwise 
 
Where Δ  is a variable that influences the slope of the 
function and consequently the notion of “close to”. The 
tolerance function can be also:   
- The function of tolerance "True/false": two values of 
an attribute are similar if they are identical (similarity 
equals to 1). If the values are different, the similarity is 
null, this type of functions is used especially when 
dealing with nominal variables having independent 
categories. In the case of ordinal variables we must use 
the function “close to”. 
- The "ad hoc" tolerance functions which are defined by 
the experts to reflect their point of view about the 
similarities between the attributes. 
In our approach the similarity between the two objects 

jO  and kO  can be estimated by means of two measures: 

the possibility degree of similarity between jO  and kO  
that tells us to which degree it is possible that these 
vectors are similar, and the necessity degree of similarity 
of these vectors that tells us to which degree we are 
certain of their similarity. The probability of the 
similarity between jO  and kO  exists between the 
necessity degree that represents the lower limit and the 
possibility degree that represents the upper limit. To 
calculate the possibility and the necessity degrees of 
resemblance, we must calculate the local possibility and 
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necessity degrees between their corresponding attributes 
and aggregate them by taking their average, for example 
in order to take a decision concerning the total similarity. 
The local possibility and necessity degrees of similarity 
between ijx  given by its possibility distribution 

),(
,

yxijxX ijj

π  and ikx  given by its possibility distribution 

),(
, ikxX

xx
ikk

π  for all { }Si ,...,2,1∈  are calculated 

according to the following relations: 
Supposing that D  is the definition domain of the 
considered attribute ix  ( DDU ×= ) and that μ  is the 
tolerance function associated to this attribute, the 
conjoint possibility distribution Dπ  is calculated as: 
 

))(),(min(),( ,, yxxx
ikkijj xXxXikijD πππ =          (18) 

 
In this case, the local possibility degree of similarity iπ  
can be calculated as: 
 

))](),([min(),( uuSUPxx DUuikiji πμπ ∈=          (19) 
 
The local necessity degree of similarity iN  can be 
calculated as: 
 

))](1),([max(),( uuINFxxN DUuikiji πμ −= ∈          (20) 
 
We consider that if the value of an attribute is given in 
one object and is unassigned in the other (the case of 
missing values), it is completely possible that these 
values are similar 1=iπ  but we are entirely uncertain 

0=iN . Now that the local possibility and necessity 
degrees are calculated between the attributes, the global 
possibility and necessity degrees between the objects can 
be calculated by averaging the local degrees. The 
average possibility jkΠ  and the average necessity jkN  

are calculated from the following equations: 
 

S
S

i
ijk ∑

=

=Π
1

π             (21) 

SNN
S

i
ijk ∑

=

=
1

           (22)   

 
2-3-1 Concrete Example of Possibilistic 
Similarity Estimation 
Suppose that we would like to calculate the similarity 
between two patient records in a medical database. Each 
record contains patient’s age, sex, weight, symptoms, 
biological analysis ...etc. The values of these attributes 

could be imprecise, vague, uncertain, or unassigned. In 
all the cases, these values can be easily modeled by 
possibility distributions. Actually, even if the value of an 
attribute was assigned as a probability distribution, we 
are able to transform it to a possibility distribution by 
applying Prade-Dubois transformation rule [19-20]. For 
each attribute, we calculate the possibility degree and the 
necessity degree of similarity between its assigned 
values in the first and in the second record. We call these 
degrees “local degrees” since they are estimated at the 
attribute level. The average degree of all the local 
degrees calculated between all the considered attributes 
of the record is called the global degree of similarity 
between the records. Let us make things easier by taking 
numeric values, for this purpose we will take the 
attribute “age” in the patient record, and will suppose 
that we consider that the values of two ages are 
considered similar if the difference between them 
doesn’t exceed ten years old. In other terms, we take the 
tolerance function (equation 17) whose 10=Δ  (see 
figure 2). Let us suppose also that the age is assigned in 
the first record as “is about 40” and in the second record 
as “is about 50” (see figure 3 in which the value of each 
age has been modeled by a fuzzy number 10± ). 
 

 
   Fig.2 The tolerance function for 10=Δ . 

 
 

 
   Fig.3 The two ages modeled by fuzzy numbers. 

 
To estimate the local possibility and necessity degrees of 
similarity, we apply the steps presented in section 2-3 as 
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follows: the conjoint possibility distribution that 
represents the intersection between the two modeled 
values of the attribute “age” is calculated using equation 
18 (figure 4). The maximum value of the intersection 
between the tolerance function and the conjoint 
distribution represents the possibility degree of similarity 
Π  (figures 5 and 6). For the values given in this 
example we find that 60.0=Π . Then, we use equation 
20 to calculate the necessity degree of similarity (figure 
7). We find that 161022.2 −×=N . Table 1 shows the 
local possibility and the necessity degrees of similarity 
of the attribute “age” for other values of Δ . 

 

 
   Fig.4 The conjoint possibility distribution. 

 
 

 
Fig.5 The intersection between the tolerance function 

and the conjoint possibility distribution. 
 

 
Fig.6 Possibility degree estimation. 

 

 

 
   Fig.7 Necessity degree estimation. 

 
 

Δ  Π  N  
20 0.70 0.30 
30 0.80 0.40 
50 0.84 0.60 
99 0.90 0.76 

Table 1 Possibility and necessity degrees of similarity of 
the attribute “age” for different values of Δ  

 
We apply the same steps to all the other attributes of the 
records taking into account that 1=Π i  and 0=iN  if 
the value of an attribute is assigned in a record and is a 
missing value in the other record, and that 0=Π i  and 

0=iN  if the attribute exists in a record and doesn’t 
exist in the other. This can take place in the databases 
whose records come from different sources (hospitals) 
because the attributes of the records that come from a 
hospital can not be exactly the same as those which 
come from another one even if all the records 
characterize the same pathology.  
 
3 From Dissimilarity Matrix to 
Evidential Partition 
Belief theory provides a method to model and to 
quantify the credibility assigned to events for which we 
ignore the probability of occurrence, by means of its 
belief functions that introduce degrees in reliability 
assigned to these events [2-3] and [23]. Let us consider 
the domain of reference Ω  over which belief 
coefficients are determined. These coefficients are 
obtained by distributing a global mass of belief equal to 
1 to all the possible events, according to our belief in 
their occurrence. A Basic Belief Assignment (BBA) on 
Ω , also called a mass of belief is any function m that 
assigns a coefficient between 0 and 1 to the different 
parts of Ω  such that: 
 
  0)( =φm              (23) 
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∑
Ω∈

=
)(

1)(
ρA

Am             (24) 

 
Any non-empty part E of Ω  such that 0)( ≠Em  is 
called a focal element or focal proposition. 
 
For any event A, we can collect testimonies in its favor 
and determine the “belief function” ( Bel ) which 
corresponds to it, i.e. the sum of masses of belief of the 
focal elements which involve A: 
 

∑
⊆

=
AE

EmABel )()(            (25) 

 
We can also determine its “Plausibility function” ( Pl ) 
by taking into account all the focal elements related to A, 
i.e. the sum of the masses of belief of the focal elements 
which are related to A and which make its occurrence 
possible, as: 
 

∑
≠∩

=
φAE

EmAPl )()(             (26) 

 
Let us now assume that we have two BBAs 1m  and 2m  
representing distinct items of evidence. The standard 
way of combining them is through Dempster’s rule of 
combination: 
 

∑
=∩−

=⊕
ACB

CmBm
K

Amm )()(
1

1))(( 2121         (27) 

∑
=∩

=
φCB

CmBmK )()( 21           (28) 

 
K is called the degree of conflict between 1m  and 2m  
and it represents the degree of disagreement between the 
two information sources. From a robust dissimilarity 
matrix we can build an evidential partition )( klmM ≡ , 

Ω≤≤ 21 k , nl ≤≤1  using evidential clustering 
method, where  klm  denotes the basic belief of assigning 

the thl  object "" OOl ∈  to the thk  subset of  )(Ωρ . 

For example if  { }321 ,, OOOO =  and { }21 ,ωω=Ω , 
then:  
 

{ } { } { }
{ } { } { }

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

ΩΩΩ

=

)()()(
)()()(
)()()(

)()()(

321

232221

131211

321

mmm
mmm
mmm

mmm

M
ωωω
ωωω
φφφ

               (29) 

 

3-1 Evidential Clustering 
For two BBAs im  and jm  quantifying one’s beliefs 

regarding the class of two objects iO  and jO , we can 

combine the vacuous extensions of  im  and jm  in the 

Cartesian product Ω×Ω=Ω2  using: 
 

)()()( BmAmBAm jiji =××                        (30) 
Ω⊆∀ BA, φ≠A  φ≠B  

 
)( BAm ji ××  is the BBA that describes one’s beliefs 

concerning the class membership of both objects. In 2Ω , 
“ iO  and jO  belong to the class” corresponds to the 

following subset of  2Ω :  
 

{ }),(),....,,(),,( 2211 ccS ωωωωωω= . 
 
 Let jiPl ×  be the plausibility function associated with 

jim × . We have [3]: 
 

{ }
∑∑

≠∩≠∩×Ω⊆×
×× =×=

φφ BA
ji

SBABA
jiji BmAmBAmSPl )()()()(

)(/2

 

∑
=∩

× −=−=
φBA

ijjiji KBmAmSPl 1)()(1)(               (31) 

 
Given any two pairs of objects ),( ji OO and ),( ji OO ′′  

it’s natural that if )()( SPlSPl jijijiij ′′×′′ ≤⇒δδ f  or 

equivalently: jiijjiij KK ′′′′ ≥⇒δδ f  i.e. the more 
dissimilar the objects, the less plausible it is that they 
belong to the same class and the higher is the conflict 
between the BBAs. According to Denoeux [3] we can 
construct M easily from D as follows: each object iO  in 

M can be represented as a point in a −Ω2 dimensional 
space and the degree of conflict ijK  between two BBAs 

may be seen as a form of “dissimilarity” between iO  and 

jO . Therefore we can transpose multidimensional 
scaling algorithms (MDS) to our problem [3] and [12], 
by optimizing the evidential partition M so that the 
degrees of conflict ijK  reflect the corresponding 

dissimilarity ijδ . The objective function to be minimized 
is given by: 
 

∑
=

+=
n

i
imHfMIfMJ

1
)(),(),( λ          (32) 
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[ ] [ ]22)(),( ∑∑ −−=
ji

ij
ji

ijij KKfKfMI
pp

δ         (33) 

∑
∈

=
)(

2 )
)(

(log)()(
mFA Am

A
AmmH          (34) 

 
),( fMI is the stress function used in the ordinal MDS 

where K  is the average degree of conflict and f  is any 
increasing function. H(m) is the entropy function (as we 
would like to extract as much information as possible 
from the data it is reasonable to require the BBAs to be 
as informative as possible). Actually, H(m) tends to be 
small when the mass is assigned to few focal sets with 
small cardinality; λ  is the penalization coefficient that 
controls the extent to which the entropy term influences 
the form of the solution. Increasing λ  for instance, will 
result in simpler BBAs with a smaller number of focal 
sets. 
 
4 From Evidential Partition to Fuzzy 
and Hard Partition 
A fuzzy partition may be obtained from the evidential 
partition by calculating the Pignistic probability function 

)( imp ω  induced by each BBA im  and interpreting it as 
the membership degree: 
 

{ }
∑

∈Ω⊆

=
AA

im
i

A
Amp

ω

ω
/

)()(  Ci ,...,2,1=        (35) 

 
A hard partition can then be easily obtained by assigning 
each object to the class with the highest Pignistic 
probability. 
 
5 Experiments and Results 
Our approach was applied to a medical database 
concerning the upper gastrointestinal tract (esophagus, 
stomach, and duodenum), where each object iO  consists 
of 24 attributes with 145 modalities (or 33 attributes with 
206 modalities if a sub-object exists) describing the 
lesions and the pathologies that the object contains [11]. 
The characterization of the digestive images has been 
provided by the same medical expert by means of an 
interactive qualitative description interface (see figure 
8). The attributes of this base could be qualitative, 
quantitative, or unevaluated (missing values), but they 
take always precise values. The database contains the 
following pathologies: Dilated lumen, Stenosis, Extrinsic 
compression, Web, Ring, Hiatal hernia, Food, Liquid 
Blood, Blood clot, z-line, spot, Circular Barrett’s, 
Moniliasis, Simple erosion, Ulcer (edge), and Petchial 

mucosa. For more information about this base, see [6-
10].  
 

 
   Fig.8 Image description interactive interface. 

 
In our tests the similarity was modeled by the global 
necessity degrees between the objects stored in a matrix 
denoted as X. For simplicity and clarity graphic 
representation of our result, we will give as examples 
subsets of the main data subsets (submatrices of X), 
without loosing the generality of our approach: suppose 
that { }8211 ...,,, OOOP =  is the set of the objects whose 
pathology class is “stenosis (esophagus)”, 

{ }12111092 ,,, OOOOP =   is the set of the objects whose 
pathology class is “extrinsic compression”, { }133 OP =  
represents the class “web shape”, { }1615144 ,, OOOP =  
represents the class “ring”, { }18175 ,OOP =  contains the 
objects whose class is “Hernia” (see figure 9). Figure 10 
represents the partition obtained by applying the steps 
illustrated throughout this paper to the subset 

{ }211 , PPS =  whereas figure 11 presents the partition of 
{ }543212 ,,,, PPPPPS = . In fact, we can construct any 

combination of sets and depict the corresponding 
partition and the result will be as expected.  For instance, 
figure 12 depicts the partition of { }4213 ,, PPPS = . 
Contrary to the other clustering methods that don’t take 
in consideration the pre-processing of the imperfect data 
disregarding the estimation of similarity, which is 
essential and delicate in the clustering process, our 
approach achieves the clustering taking into account all 
the basic phases demanded in the process in a very 
simple and clear manner, and the results are always as 
expected.  Besides, this approach can be used in text-
based image retrieval as well as in clustering. In fact, 
image retrieval has been mainly studied based on image 
content using primitives [24]: color, shape, detected 
contours, texture, transformation coefficient, etc. 
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 In content-based image retrieval there are not imperfect 
or missing values in the extracted features, while to our 
knowledge this is the first study that takes into account 
the imperfect descriptive features of the medical images 
characterized directly by the doctors or the experts. 
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   Fig.9 The simplified tested database. 
 
 
 

 
Fig.10 The partition obtained by applying our approach 

to 1S . 

 
Fig.11 The partition obtained by applying our approach 

to 2S . 

 
Fig.12 The partition obtained by applying our approach 

to 3S . 

6 Comparison with Prior Works 
Many attempts and methods that aim to overcome the 
limits and the drawbacks of the traditional measures of 
similarity have been proposed in the literature. However, 
theses methods have not been general and they treated 
very particular cases and databases. The most recent and 
efficient method among them is the method proposed by 
Zemirline et al. [14-18], presented briefly as follows: 
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Supposing that Ω  is the set of all the modalities of the 
attributes of the cases in the casebase and that the class 
(pathology) of each case in this base is known: 
For each class and for all the cases belonging to the 
considered class, the normalized frequency of 
appearance of each element of Ω  is calculated in order 
to construct this class membership function represented 
by the histogram. The membership functions of all the 
classes of the casebase form the knowledge base, from 
which we calculate the similarity as follows: 
Supposing that 

iAf  is the frequency of appearance of the 
modality i  in the set of cases belonging to the class “A”, 
and je  is the set of the modalities that describe the case 

j . Aμ  is the membership degree to class “A” calculated 
by equation 36: 
 

)(max)(
jii AjAAA fff

Ω∈
=μ                                        (36) 

                                         
The similarity can be calculated by equation 37 (note 
that the proposed similarity is asymmetric) 
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The major restriction of Zemirline’s method is that it 
supposes that there is a sufficient number of cases that 
belong to each class in order to build a reliable 
knowledge base, whereas in reality, sometimes we have 
only two or three cases of some pathologies in the 
database, and consequently no reliable membership 
functions (knowledge base) could be build basing on 
these objects. Actually, even if we have a considerable 
number of some cases, nothing can guarantee that these 
cases represent all the possible models of the considered 
pathology. Furthermore, this method can not deal with 
the imperfection of data (imprecision, uncertainty, or the 
missing values) though this imperfection could change 
entirely the knowledge base which the authors try to 
construct. Moreover, this method can not deal with all 
the types of data that we can find in databases (like the 
ordinal data for example). 
 
7 Discussion and Conclusion 
In this paper, we proposed an approach that depends 
mainly on belief theory, possibility theory, and Pignistic 
probability theory. By means of possibility theory, the 
similarity estimation can be easily carried out between 
objects having heterogeneously-assigned (symbolic and 
numeric) and imperfect (missing, imperfect, and 
uncertain) data without any complicated preprocessing 
steps needed to deal with these types of data. 

Furthermore, the possibility-based similarity estimation 
is very general and can be applied to any other problem 
in data mining (segmentation, classification, association, 
seriation, etc.). The belief theory-based clustering 
proposed by Denorex [3] has been shown to be very 
simple and efficient in getting very satisfactory results 
whether when it was applied to well-defined similarity 
matrices assigned by experts in [3] or when it is applied 
to the possibility-based similarity matrix in this paper. 
Herein, the proposed approach was applied to a digestive 
database. In reality, thanks to its generality, it could be 
applied to other types of pathologies or even in other 
domains without any modification or limitation. 
Moreover, this approach could be developed to be used 
in content-based case retrieval or in case-based 
reasoning in order to take a decision or a diagnosis by 
the doctor. Additionally, this method could be a very 
useful tool in image understanding, organization and 
retrieval when the attributes of an object represent 
descriptions of the pathologies that exist in the images. 
Finally, this approach provides the necessary framework 
to get use of the achieved information stored in the 
electronic health records whose number is in permanent 
increase thanks to the cheap storage support and the fast 
advances in technology, in order take the appropriate 
decision or the correct diagnosis [21].  
 
8 Perspectives 
 

 
Fig.13 Data fusion 

 
In addition to the perspectives that we mentioned briefly 
in the previous section, this method can be very useful in 
combining different similarity matrices in a meaningful 
manner. For example, supposing that we have a set of 
objects (a set of endoscopic images of the stomach for 
instance) and that we have two different experts 
(doctors) as schematized in figure 13. The first doctor 
describes the texture, the colors, and the homogeneity of 
the lesions that appear in the images, while the second 
describes the form, the diameters, the organization, and 
the dimensions of these lesions. In other words, we 
suppose that the same object could be represented in 
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several manners. Thanks to our method that extracts 
from each representation of the objects the 
corresponding evidential partition, and thanks to the 
considerable number of the available fusion methods that 
enable us to easily combine several evidential partitions 
(like the methods of Dempester, Shafer, Yager, Dubois 
and Prade [3] and [22-23]) we can easily combine the 
two descriptions of the images. In the remote sensing 
domain like another example, we can combine in the 
same way the descriptions provided by a radar sensor 
that shows some aspects of the considered scene in an 
image and the descriptions provided by an infrared 
sensor that provides another type of aspects and details 
of the same scene, in order to take a decision concerning 
the class of the detected objects.     
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