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Abstract: -. In mammals, cytosines of most CpG dinucleotides in their genomes except gene promoters are subject 
to modification by methyl group (methylation). A number of genes in a mammal are regulated developmental- 
specifically or tissue-specifically by the methylation. Mammalian DNA methylation contributes to regulation of 
gene expression, repression of parasitic sequences, inactivation of X chromosome in female, genomic imprinting, 
etc. Aberrant methylation results in a part of cancers and genetic diseases in human. Therefore it is required that 
methylation status on human genome is comprehensively revealed in each kind of cells. However, since 
comprehensive methylation analyses require a lot of times and large labor, methylation status on only a part of 
genomic regions is revealed in mammals. Because of this, machine learning using already known methylation data 
and prediction of methylation status on other genomic regions are important. Moreover, since sequence differences 
between DNA regions showing different methylation status also remain unclear, those differences should be also 
determined. Therefore we conducted machine learning by support vector machine using our previously reported 
methylation data, and predicted methylation status on DNA sequences using DNA sequence features. Furthermore 
we explored different sequence features among four types of methylation using random forest. Consequently high 
methylation prediction accuracies were observed between two different methylation status pairs. Moreover it was 
revealed that sequences containing CG, CT or CA were important for discrimination between them. 
 
Key-Words: - CpG island, DNA methylation, Human chromosome 11, Human chromosome 21, Support vector 
machine, Random forest 
 
1 Introduction 
Human genome project has enabled us to obtain the 
entire sequences of human genomic DNA. It has also 
revealed that human genomic DNA has genes of about 
25,000. When the genes function, the genetic 
information of them is transcribed to messenger RNA 
(mRNA) and is generally translated to proteins. The 
expression of genes is regulated by transcription 
factors, DNA methylation, histone phosphorylation, 
acetylation and methylation, etc [1]-[4].  These 
chemical modifications of DNA or histone proteins 
are called epigenetic modification. The Epigenetic 
modification can lead to heritable changes of gene 
function without any changes of DNA sequence. 

Mammalian genomes have less CpG dinucleotides 
than expected from the numbers of C and G on their 
DNA sequences [5]. This results from modification by 
methylation at 5-position of cytocine of CpG 
dinucleotides, because methylated CpG dinucleotides 

but not unmethylated CpG dinucleotides tend to be 
converted to TpG dinucleotides [5],[6].  

DNA methylation contributes to regulation of gene 
expression [7], inactivation of X-chromosome in 
female [8], repression of parasitic sequences, genomic 
imprinting [9] and chromosome stabilization [10],[11]. 
When cytocines of CpG dinucleotides in the promoter 
region are methylated, transcription factors can not 
directly or indirectly bind to the promoter region. 
Therefore DNA methylation in promoter regions 
generally contributes to suppression of genes.  

The vanishment or disorder of DNA methylation 
system results in embryonic lethality or an incidence 
of a part of cancers: correct maintenance of DNA 
methylation system is critical for mammals [12]-[14].  

Mammals have enzymes that add a methyl group at 
5-position of cytocine of CpG dinucleotides, and 
therefore most CpG dinucleotides are subject to 
methylation [15]. However CpG-rich sequences (i.e., 
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CpG island) in promoter regions are exceptional DNA 
regions because they are exempt from methylation in 
all developmental stages and adult tissues [16]-[18]. 
Approximate half of genes in a mammal have the CpG 
islands on their promoter regions [19],[21]. However a 
part of CpG islands are allele-specifically methylated 
or tissue-specifically methylated. For example, CpG 
islands on the X-chromosome in female and in the 
vicinity of imprinted genes are methylated in an 
allele-specific manner [8],[21]. Moreover, a part of 
tissue-specifically expressed genes are biallelically 
methylated in their repressed tissues. 
 Genome projects in some organisms have revealed 
their almost complete genomic sequences, but DNA 
methylation modification of their genomic sequences 
has remained unclear. We therefore previously 
developed HpaII-McrBC PCR (HM-PCR) method to 
comprehensively examine methylation status of CpG 
islands on chromosome 21 and 11 [22],[23]. In 
HM-PCR method, CpG islands are identified in silico, 
and each of those CpG islands is classified into one of 
four kinds of methylation status (i.e., null, complete, 
incomplete and composite) using two restriction 
enzymes with complementary methylation sensitivity. 
Several other methods have also been developed to 
comprehensively analyze methylation status on 
genomic sequences. These methods have revealed 
methylation status in a part of human genome 
sequences. 

However little is known about the relationship 
between DNA sequences and their methylation status: 
we do not know how DNA methylation enzymes 
discriminate among sequences to which add null, 
complete, incomplete, or composite methylation. 
Therefore, to reveal the relationship between DNA 
sequence composition and methylation status, it is 
required that computational approaches are applied to 
these comprehensively analyzed methylation data.  

In addition, machine learning using these 
methylation data and prediction of methylation status 
on other genomic regions are also important because 
comprehensive methylation analyses are 
time-consuming and labor-intensive. 

In this study, we therefore conducted machine 
learning and prediction of methylation status of CpG 
islands on human chromosome 11 and 21 by support 
vector machine (SVM) using short DNA sequence 
features. Moreover, we explored different DNA 
sequence features among CpG islands with null, 
complete, incomplete, or composite methylation using 
random forest.  

 

 
2 Materials and methods 
2.1. Methylation data of CpG islands on human 
chromosome 11 and 21 
The 656 and 149 CpG islands analyzed were identified 
in the human chromosome 11q and 21q sequences as 
the regions having the following features: length 
>200bp, GC content >50%, expected CpG frequency 
>0.6 for chromosome 11; length >400bp, GC-content 
>50%, expected CpG frequency >0.6 for chromosome 
21 [22],[23]. Methylation status of computationally 
identified CpG islands was investigated in human 
peripheral blood leucocytes by HpaII-McrBC PCR 
(HM-PCR) method. The HM-PCR method can classify 
CpG islands into 4 classes according to their 
methylation status (i.e., null, complete, incomplete and 
composite) [22],[23]. Fig.1 describes the principal of 
HM-PCR. In Fig.1, each edge-rounded square shows 
methylation status of two alleles in a single cell. Open 
circles and squares in edge-rounded squares depict 
unmethylated HpaII- and McrBC-recognition sites, 
respectively. In contrast, closed circles and squares in 
edge-rounded squares depict methylated HpaII- and 
McrBC-recognition sites, respectively. HpaII is a 
restriction enzyme which can recognize CCGG 
sequence and digest unmethylated CCGG sequence but 
not methylated one. In contrast, McrBC is also a 
restriction enzyme which can cut methylated  
RmCN40-60RmC sequence but not unmethylated one. If 
CpG island is biallelically methylated (i.e., complete 
methylation), HpaII will not digest this CpG island but 
McrBC will digest. Therefore we can obtain 
amplification products from HpaII-digested genome by 
PCR using the CpG island-specific primer pairs (see 
right black panel in Fig.1). In contrast, no amplification 
can be obtained from McrBC-digested genome 
because template genome for PCR is completely 
digested by McrBC. By contrast, since CpG island with 
null methylation is completely digested by HpaII but 
not by McrBC, PCR specific to this CpG island yields 
amplification products from McrBC-digested genome 
but not from HpaII-digested one (see right black panel 
in Fig.1). The CpG island consisting of completely 
methylated and unmethylated alleles (i.e., composite 
methylation) can be completely digested by neither 
HpaII nor McrBC. Therefore PCR amplification occurs 
in both HpaII- and McrBC-digested genomes (see right 
black panel in Fig.1). The CpG island methylated 
partially in both alleles (i.e., incomplete methylation) is 
digested by both HpaII and McrBC. Consequently no 
amplification is obtained from both enzymes-digested 
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genomes.  
645 null methylation- (542 and 103 CpG islands on 

chromosome 11 and 21, respectively), 116 complete 
methylation- (87 and 29 CpG islands on chromosome 
11 and 21, respectively), 14 composite methylation- (7 

and 7 CpG islands on chromosome 11 and 21, 
respectively), and 25 incomplete methylation-CpG 
islands (17 and 8 CpG islands on chromosome 11 and 
21, respectively) were used in support vector machine 
and random forest.  

 

 
Fig. 1: Principal of HpaII-McrBC PCR method 
 
 

2.2 Counting of DNA sequence patterns on 
each CpG island and preparation of vector 
data. 
All the combinations of 4 characters (A, C, G, and T) 
in length 2-5 were generated. For instance, DNA 
sequence patterns in the length of 2 are 16 
combinations of AA, AC, AG, AT, CA, …, GT, TA, 
TC, TG, TT. Then K-grams were counted for each 
CpG island using each of window size 2-5. The 
counting numbers of DNA sequence patterns in each 
CpG island were divided by the length of the CpG 
island. Note that counting of zero in each DNA 
sequence pattern was also considered as zero. Then 
each CpG island was converted into a vector having 
dimensions of the number of DNA sequence patterns. 
For instance, in DNA sequence patterns of length 2, a 
vector has 16 dimensions of attributes: AA, AC, AG, 
AT, CA, …, GT, TA, TC, TG, TT. 

 3

 
2.3 Feature ranking by random forest 
2.3.1 Ranking of Important features for 
discrimination between null- and complete- 
methylated CpG islands on chromosome 11 and 21 
Random forest [24] was applied to determining 
important features for classification of CpG islands 
into correct methylation classes (i.e., null and 
complete). Two matrix data were used in this analysis: 

one is the vector dataset from CpG islands on 
chromosome 11 and the other is the vector dataset 
from CpG islands on chromosome 21. In each matrix 
data, a row corresponded to a vector (i.e., a CpG 
island) and a column was an attribute (i.e., a DNA 
sequence pattern). Since the total number of attributes 
(i.e., DNA sequence patterns) was 1,360, total number 
of columns in each matrix data was also 1,360. 
RandomForest function [25],[26] of R program 
package was performed for generating a value called 
MeanDecreaseGini for each attribute. The number of 
constructed decision trees was 500 and the size of a 
decision tree was the square root of 1,360. Based on 
the MeanDecreaseGini, attributes were ranked in the 
order of importance (discriminative power). 
 
2.3.2 Ranking of Important features for 
discrimination among CpG islands showing four 
methylation status on chromosome 11 and 21 
Random forest [24] was applied to determining 
important features for classification of CpG islands 
into correct methylation classes (i.e., null, complete, 
incomplete and composite). Compared to CpG islands 
showing null and complete methylation , incompletely 
methylated CpG islands (17 and 8 CpG islands on 
chromosome 11 and 21, respectively) and compositely 
methylated CpG islands (7 and 7 CpG islands on 
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chromosome 11 and 21, respectively) are too few.  
Accordingly, to conduct two class discriminations 
among four methylations (i.e., null, complete, 
composite and incomplete) by random forest, we 
combined CpG islands showing null, complete, 
incomplete and composite methylation on 
chromosome 11 with those on chromosome 21, 
respectively. RandomForest function [25],[26] of R 
program package was performed for generating a 
value called MeanDecreaseGini for each attribute. The 
number of constructed decision trees was 500 and the 
size of a decision tree was the square root of 1,360. 
Moreover since large bias of data number between 
training datasets leads to class misprediction of test 
data, the sampsize option of randomforest function in 
R was used, and smaller number of CpG islands 
between two methylation status was adopt as each 
training dataset size. Based on the MeanDecreaseGini, 
attributes were ranked in the order of importance 
(discriminative power). 
 
 
2.4 Prediction of DNA methylation status on 
CpG islands by support vector machine 
2.4.1 Prediction of DNA methylation status (null 
and complete) of CpG islands on chromosome 11 
and 21 by support vector machine 
We used support vector machine (SVM) for learning 
and prediction of DNA methylation status (null and 
complete) on CpG islands. 8 matrix data were used in 
these analyses: four matrix data (four vector datasets 
with attributes of DNA sequence patterns of each 
length) from CpG islands on chromosome 11 and four 
matrix data (four vector datasets with attributes of 
DNA sequence patterns of each length) from CpG 
islands on chromosome 21. In each matrix data, a row 
corresponded to a vector (i.e., a CpG island) and a 
column was an attribute (i.e., a DNA sequence pattern). 
The ksvm function included in the kernlab package 
[27] for R was used for learning. We used RBF kernel 
and σ  parameter of 0.05 for learning by SVM. 

For chromosome 11, we randomly selected 86 from 
542 unmethylated CpG islands and 86 from 87 
methylated ones as learning data. After learning, 
remained data were used for prediction. These 
processes were repeated 87 times and average of their 
prediction accuracies was calculated. In addition, 28 
and 28 out of 103 unmethylated and 29 methylated 
CpG islands on chromosome 21 were randomly 
selected for learning by SVM, respectively. Then, 

remained data were used for prediction. These 
processes were repeated 29 times and average of their 
prediction accuracy was calculated. The prediction 
accuracy was computed as follows: 

FNTNFPTP
TNTPaccuracyPrediction

+++
+

=  

where and  denote true positive, 
false positive, true negative, and false negative, 
respectively. 

,,, TNFPTP FN

 
2.4.2 Prediction of DNA methylation status (null, 
complete, incomplete and composite) of CpG 
islands on chromosome 11 and 21 by support vector 
machine 
Compared to CpG islands showing null and complete 
methylation, incompletely methylated CpG islands 
(17 and 8 CpG islands on chromosome 11 and 21, 
respectively) and compositely methylated CpG 
islands (7 and 7 CpG islands on chromosome 11 and 
21, respectively) are too few.  Accordingly, to conduct 
two class discriminations among four methylation 
status (i.e., null, complete, composite and incomplete) 
by SVM, we combined CpG islands showing null, 
complete, incomplete and composite methylation on 
chromosome 11 with those on chromosome 21, 
respectively. Moreover since large bias of data 
number between training datasets leads to class 
misprediction of test data, training datasets of the 
same number were sampled from CpG islands 
showing each of two methylation status. Remained 
CpG islands from each methylation status were used 
as test datasets. Fig. 2 describes the detailed 
preparation process of training and test datasets. In Fig. 
2, there are vector data (i.e., CpG islands) of N and M 
showing methylation status A and B, respectively. 
Here suppose that M is much larger than N.  For 
preparation of test data, one and M-(N-1) vector data 
from methylation status A and B were randomly 
extracted, respectively. Remained vector data of N-1 
from each methylation status (i.e., methylation status 
A and B) were used as training data. Then in next 
sample preparation, different one vector data from 
previous times was selected as test data from 
methylation status A, and M-(N-1) vector data were 
randomly sampled as test data from methylation status 
B. Remained N-1 vector data from methylation status 
A and B were used as training data. These processes 
were repeated N times and average of their prediction 
accuracies was calculated. 
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Fig. 2: Preparation process of training and test datasets for support vector machine 
 

Here the ksvm function included in the kernlab 
package [27] for R was used for learning. We used 
RBF kernel and σ  parameter of 0.05 for learning by 
SVM. 

The prediction accuracy was computed as follows: 

FNTNFPTP
TNTPaccuracyPrediction

+++
+

=  

where and  denote true positive, 
false positive, true negative, and false negative, 
respectively. 

,,, TNFPTP FN

 
 

3 Results 
3.1. Prediction of DNA methylation status (null 
and complete) of CpG islands on chromosome 
11 and 21  
Epigenetic modifications including DNA methylation 
are subject to erasure in early development. After that, 
epigenetic modifications regenerate in DNA or histone 
proteins during later development. In this 
reprogramming process, how modification enzymes 
discriminate sequences to which add chemical 
modifications from those to which do not add? The 
answer remains unclear but Bock et al. [28] reported 
the differences of sequences between unmethylated 
and methylated CpG islands on chromosome 21. In that 
report, unmethylated CpG islands had more CpG 
dinucleotides and less TpG or CpA dinucleotides than 
methylated CpG islands because methylated CpG 
dinucleotides are prone to convert to TpG 

dinucleotides. Therefore we examined whether other 
sequence features contribute to discrimination between 
unmethylated and methylated CpG islands using 
methylation data of chromosome 11. In addition, we 
examined whether there are any common DNA 
sequence features between chromosome 11 and 21 for 
the classification of CpG islands into correct 
methylation classes.  

Table 1 shows the ranking top ten of important 
attributes (i.e., DNA sequence patterns) based on 
MeanDecreaseGini of random forest for discriminating 
between unmethylated and methylated CpG islands on 
chromosome 11 and 21. In the ranking top ten of both 
chromosomes, DNA sequence patterns containing CG, 
TG, or CA were important attributes and there were not 
any important attributes that do not contain those 
dinucleotides. These results supported the report by 
Bock et al. [28] in which frequencies of CpG, TpG, and 
CpA are different between unmethylated and 
methylated CpG islands. As was pointed out by Bock 
et al., differential mutation rates of CpG → TpG 
between unmethylated and methylated CpG islands 
may lead to these differential frequencies of sequence 
patterns containing CG, TG, or CA [28]. 

Table 2 shows the prediction accuracy of 
methylation status of CpG islands on each 
chromosome. In Table 2, “Dataset” means vector data 
(i.e., CpG islands) and their attributes (i.e., DNA 
sequencing patterns) used in SVM. For example, 
“Attributes_of_length2_chromosome11” describes 
CpG islands on chromosome 11 and DNA sequence 
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patterns of length 2. As shown in Table 2, high 
prediction accuracies over 80% were obtained in both 
chromosome data. Moreover, when CpG islands on 
chromosome 21 were used as training and test data, 
better prediction accuracies were obtained. These 
results seem to result from that methylated CpG islands 
on chromosome 21 but not unmethylated ones 
frequently have tandem repeat sequences. Since 
tandem repeat sequences tend to have biased 
frequencies of relatively long DNA sequence patterns, 
it may be easier to separate unmethylated CpG islands 
from methylated ones on chromosome 21. This 
interpretation was also supported by that chromosome 
21 displayed longer DNA sequence patterns as 
important attributes in Table 1 compared to 
chromosome 11. Moreover longer DNA sequence 
patterns and mixtures of DNA sequence patterns of 
length 2-5 displayed better prediction accuracy in both 
chromosomes (see Table 2). These results suggest that 
more attributes lead to better prediction accuracy 

because they give each vector more information.  
 

3.2. Prediction of DNA methylation status (null, 
complete, incomplete and composite) of CpG 
islands on chromosome 11 and 21 
Although HM-PCR method can classify CpG islands 
into four methylation status (i.e., null, complete, 
incomplete and composite), previous reports including 
Bock et al. analyzed only discrimination between null 
and complete methylation. Therefore we tried two 
class discriminations among these four methylation 
status by support vector machine. Table 3 shows the 
results of two class discriminations among four 
methylation status for CpG islands on human 
chromosome 11 and 21. (A)-(F) in Table 3 describe 
each result of prediction accuracies for all 
combinations among null, complete, incomplete and 
composite methylation. 

 
Table 1: Important attributes for classification between null and complete methylation classes 

 by random forest 
Ranking Chromosome11 Chromosome21 

1 CG CGCGG 

2 TG CGCCG 

3 GCG CCGC 

4 CGG CGCG 

5 GCGC GGGCG 

6 CGGGA CCCGC 

7 CCGG GCGCA 

8 GGCG CCCG 

9 CGGA CCCGG 

10 CCCG GCGCG 
 
 
Table 2: Prediction accuracy of methylation status of CpG islands by support vector machine 
Dataset Prediction_accuracy (%) 

Attributes_of_length2_chromosome11 82.05 

Attributes_of_length3_chromosome11 84.82 

Attributes_of_length4_chromosome11 86.7 

Attributes_of_length5_chromosome11 87.1 

Attributes_of_length2,3,4,5_chromosome11 87.58 

Attributes_of_length2_chromosome21 85.16 

Attributes_of_length3_chromosome21 88.29 

Attributes_of_length4_chromosome21 91.79 

Attributes_of_length5_chromosome21 90.75 

Attributes_of_length2,3,4,5_chromosome21 91.7 
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  “Dataset” in Table 3 describes length of DNA 
sequence patterns (i.e., attributes) and CpG islands (i.e., 
vectors) used in methylation prediction by support 
vector machine. For example, 
“Attributes_length2_chromosome11_21” describes 
DNA sequence patterns of length 2 and CpG islands on 
chromosome 11 and 21. As (A) in Table 3 shows, 
prediction accuracies between null and complete 
methylation were over 80% in all length of DNA 
sequence patterns. These findings corresponded to 
separately analyzed results of CpG islands on each 
chromosome (see Table 2). In addition, classification 
between null and composite methylation also displayed 
high prediction accuracies over 80% in DNA sequence 
patterns of length 4, 5 and mixture of length 2-5. 
However over-predictions of null methylation were 
observed in these attributes (see Table 3). Table 4 
dedicates details of methylation prediction between 

null and composite methylation. As shown in Table 4, 
although attributes of length 2 and 3 in methylation 
prediction of compositely methylated CpG islands 
showed accuracies over 50%, attributes of length 4, 5, 
and mixture of length 2-5 showed accuracies under 
50% (see rows of “composite” in (A)-(E) of Table 4). 
However the attribute of length 3 in “null vs 
composite” showed better accuracy than results of the 
other methylation predictions except “null vs 
complete” (see (A)-(F) in Table 3). In addition, 
classifications between null or incomplete and 
complete or composite displayed relatively higher 
accuracies (see Table 3). In contrast, prediction 
accuracies were relatively lower between null and 
incomplete or between complete and composite (see C 
and D in Table 3). These may be because there are any 
relationships between null and incomplete or between 
complete and composite.  

 
Table 3: Prediction accuracy of methylation status (null, complete, composite and incomplete) 

 of CpG islands by support vector machine 
 
 (A) Null vs Complete 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 84.06
Attributes_length3_chromosome11_21 87.1
Attributes_length4_chromosome11_21 88.98
Attributes_length5_chromosome11_21 89.99
Attributes_length2,3,4,5_chromosome11_21 89.98

 
(B) Null vs Composite 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 71.36
Attributes_length3_chromosome11_21 79.46
Attributes_length4_chromosome11_21 87.15
Attributes_length5_chromosome11_21 90.53
Attributes_length2,3,4,5_chromosome11_21 87.36

 
(C) Null vs Incomplete 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 60.43
Attributes_length3_chromosome11_21 63.94
Attributes_length4_chromosome11_21 65.59
Attributes_length5_chromosome11_21 64.51
Attributes_length2,3,4,5_chromosome11_21 66.99

 
(D) Complete vs Composite 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 50.34
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Attributes_length3_chromosome11_21 49.18
Attributes_length4_chromosome11_21 46.84
Attributes_length5_chromosome11_21 53.64
Attributes_length2,3,4,5_chromosome11_21 51.72

 
(E) Complete vs Incomplete 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 67.4
Attributes_length3_chromosome11_21 69.46
Attributes_length4_chromosome11_21 71.87
Attributes_length5_chromosome11_21 76.34
Attributes_length2,3,4,5_chromosome11_21 75.01

 
(F) Incomplete vs Composite 
Dataset  Prediction_accuracy (%) 
Attributes_length2_chromosome11_21 59.89
Attributes_length3_chromosome11_21 65.38
Attributes_length4_chromosome11_21 72.53
Attributes_length5_chromosome11_21 75.27
Attributes_length2,3,4,5_chromosome11_21 74.18

 
 

Table 4: Detailed results of prediction accuracies between null and composite methylation 

 
Here one possible interpretation is that mutation rate of 
CG → TG is different between null or incomplete and 
complete or composite. If this interpretation is correct, 
completely and compositely methylated but not 
incompletely and unmethylated CpG islands will be 

methylated in germ line cells. This is because only 
conversion of CG → TG in germ line cells but not in 
somatic cells is transmitted to next generation. 
 Furthermore since “non vs complete” and “non vs 
composite” displayed relatively higher prediction 
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accuracies, important DNA sequence patterns for 
discrimination between non and complete or between 
non and composite were examined using 
MeanDecreaseGini of random forest (see Table 5). 
Table 5 shows the ranking top ten of important 
attributes (i.e., DNA sequence patterns of length 2-5) 
based on MeanDecreaseGini of random forest. Left 

(non vs complete) and right (non vs composite) 
columns in Table 5 show that DNA sequence patterns 
containing CG, TG, or CA are important for 
discrimination between non and complete or between 
non and composite. This result suggests that 
compositely methylated CpG islands are methylated in 
human germ line cells. 

 
Table 5: Important attributes for classification of CpG islands into correct methylation classes 

 by random forest 
Ranking ch11_ch21_non_complete_2_5letters ch11_ch21_non_composite_2_5letters
1 TG CGGAC 
2 CATG TCCCG 
3 CCCGG GACGT 
4 CGCG CCTCG 
5 CCCG TCCC 
6 CCG GCCTC 
7 CCGG CTCCT 
8 GCG CA 
9 CGGGA CGCGG 
10 CCGGG ACACG 

 
4 Conclusion 

In this study, we examined whether sequence 
features on CpG islands are important for their 
methylation status using random forest and SVM. The 
learning and prediction by SVM showed that DNA 
sequence features could distinguish unmethylated 
CpG islands from completely methylated ones in high 
prediction accuracies of over 80%. This result was 
consistent with previous report of Bock et al. for CpG 
islands on human chromosome 21. In addition, our 
result suggested that frequencies of sequences 
containing CG, CT or CA are different between 
unmethylated and methylated CpG islands on 
chromosome 11 as well as chromosome 21. 
Furthermore, when CpG islands on chromosome 21 
were used as training and test data, better prediction 
accuracies were obtained compared to chromosome 11. 
These results may result from higher frequency of 
methylated CpG islands with tandem repeat sequences 
on chromosome 21 than chromosome 11. In addition, 
metylation prediction of two classes among four 
methylation status by SVM revealed relatively high 
prediction accuracy between unmethylated and 
compositely methylated CpG islands on chromosome 
11 and 21. This result may result from different 
mutation rate of CG → TG not only between 
unmethylated and methylated CpG islands but also 

between unmethylated and compositely methylated 
CpG islands. 
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