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Abstract: - This paper reveals a sequential decomposition method based on Convolution Kernel Compensation 
(CKC). It operates in real time and can decompose linear mixtures of finite-length signals. Multiple-input multiple-
output (MIMO) signal model is used with finite channel responses and trains of delta pulses as inputs. Our approach   
compensates the channel responses and reconstructs the input pulse trains in real time, when samples of the observed 
signals become available. Two versions of the sequential decomposition were tested: sample-by-sample and multiple 
sample input. The time complexity of the two approaches, is analytically evaluated and supported by the experimental 
measurements. Performance tests on the synthetic surface electromyograms (sEMG) provide estimations of average 
rate and standard deviation of the reconstructed pulse trains for single motor units (MU).  

 
Key-Words: – Compound signal decomposition, Surface electromyogram, Real-time signal processing, Sherman-
Morrison-Woodbury matrix inversion, Sequential convolution kernel compensation 

 
1. Introduction 
Linear modelling of multiple observations excited by 
multiple input source signals has been shown to be of 
practical value in many different signal processing 
problems. Over the past decades, it has been applied to 
the fields of biomedicine, radar, sonar, image 
processing, speech separation, etc. 

In the field of electrophysiology, monitoring and 
diagnosing of the human neuromusclar system is 
frequently based on electromyograms (EMG). Different 
acquisition techniques have been proposed, enabling 
detection of electrical potentials in vicinity of muscle 
fibers or nerves. These measurable action potentials 
(AP) accompany muscle contractions and are controlled 
by the drive from the central nervous system (CNS). In 
normal conditions, a group of several tens or hundreds 
of muscle fibers is innervated by a single motoneuron, 
forming a basic functional unit of skeletal muscles, the 
so called motor unit (MU) [2]. In a muscle, several tens 
of MUs are active simultaneously, even at moderate 
contraction levels. 

Recently, multichannel acquisition systems became 
available, enabling noninvasive simultaneous 
recordings of up to several hundreds of surface EMG 

(sEMG) channels. Due to low selectivity of surface 
electrodes, the measured signals are typically composed 
of contributions of many individual motor-units, whose 
action potentials (MUAPs) sum up to form highly 
interferential signal patterns [2]. A real EMG diagnostic 
value, whose application has been paved by the 
tradition of the needle EMG measurements, is based on 
the knowledge about its constituent components 
observed through individual MUAPs. Therefore, a 
strong need for reliable, robust and fast methods for 
decomposition of sEMG signals has recently emerged.  

One of the new promising decomposition 
approaches was developed in the System Software 
Laboratory at the University of Maribor and called 
Convolution Kernel Compensation (CKC) [1]. Its 
original derivation utilizes the correlation matrix built 
out of several simultaneous measurements that are 
processed in rather long segments. Hence, the 
underlying approach is batch, which does not meet the 
requirements for a fast, real-time decomposition. A 
sequential version of CKC (sCKC) was partially first 
derived in [3]. Although being computationally 
efficient, sCKC suffers from an inferior quality of 
decomposed signals. In this paper, we introduce a novel 
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block-sequential CKC (bsCKC) method, which 
employs blocks of sEMG signals and combines the 
computation efficiency of sCKC with accuracy of batch 
CKC.  

The main goal of this paper is to analyse the 
sequential methods’ (sCKC and bsCKC) performance 
on synthetic sEMGs and their computational 
complexity. 

Our manuscript is organized as follows. In Section 
2, a brief summary of the batch version of CKC is 
provided, followed by the derivations of sCKC and 
bsCKC in Section 3. Section 4 outlines the 
computational efficiency of both sCKC and bsCKC 
methods, whereas the performance of sCKC on 
synthetic sEMGs is discussed in Section V. The 
conclusions are presented in Section VI. 
 
 
2. Data Model and Convolution Kernel 

Compensation technique 
The basic formulation of the CKC approach [1] uses a 
MIMO model of sEMG. It assumes M different 
observations { }( ); 0,1, 2,... ; 1,...,ii x n n i= = =x M , each 

comprising superimpositions of responses from N 
sources: 
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where  is a L-samples long response of the j-th 

source, as it appears in the i-th observation, whereas 

)(lhij

)(js n − l  stands for a train of delta pulses from the j-th 

source. When noisy observations are considered, (1) is 
modified as follows:  
 

Minnxny iii ,...,1);()()( =+= ω ,     (2) 
 

where (n) stands for stationary, zero-mean white 
Gaussian random noise. 

iω

In order to improve the ratio between the number of 
observations and the number of unknowns, the model 
(1) is extended with K-1 delayed repetitions of each 
observation: 

 

( ) ( ) ( ) ( ) ( ) ( )1 1 1, 1 ,...., 1 ,...., ,...., 1 .
T

M Mn y n y n y n K y n y n K= − − + − +⎡ ⎤⎣ ⎦y

                          (3)  

Adopting the model from Eq. (2) and the extensions 
from Eq. (3), an index of global pulse train activity can 
be defined as follows: 

 
# 1T T n−( ) ( ) ( ) ( ) ( )n n n nγ = ⋅ ⋅ ≈ ⋅ ⋅yy s sy C y s C s      (4) 

  
where # stands for pseudoinverse, T and -1 for transpose 
and inverse, respectively, yyC  is the correlation matrix 

of the noisy observations, iy , and ssC  the correlation 
matrix of noise-free source signals, is . Suppose we fix 
the premultiplying vector )( 0ny  in (4) to the position 

, and rewrite the expression: 0n
 

)()()( 00
nnnn yCy yy=ν #T .                  (5) 

 
It was proven in [1] that when only the j-th source is 
active in time sample n0 ,  yields the estimation of 

the pulse train from the j-th source: 

)(
0

nvn

 

0
( ) ( )n jv n s n≈ .            (6) 

 
Eq. (5) gives a recipe for decomposing a linear, 

convolutive mixture of pulse trains. Sensitivity of 
approximation (6) was explained in [1]. 
 
 
3. Sequential CKC with Single or 

Multiple Sample Input 
Sequential CKC upgrades the batch CKC method by 
reducing the time support for computation of 
correlation matrix yyC  from the entire signal segment to 

a single sample or block of consequent samples. It also 
updates premultiplying vectors )( 0nTy  from Eq. (5) in 
iterative manner, as already explained in [3]. 

Both sequential methods comprise two major steps. 
In the first step, premultiplying vector )( 0nTy  is 
initialized and, afterwards, iteratively optimized to yield 
the filter fj of the single MU innervation pulse train sj 
[3]. This initialisation is explained in detail in 
Subsection 3.1. In the second step, the inverse of 
correlation matrix #

yyC  is calculated in iterative manner, 

as outlined in Subsection 3.2. 
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3.1 sCKC Initialisation 
Just like its batch version, sCKC uses activity index 

)(nγ  to pinpoint the time instant n0 that defines the 
starting filter: 
 

)( 0nj yf = ,                      (7) 

where index j counts the number of different filters that 
produce different pulse trains. Instead of using entire 

)(ny , sCKC uses only the first S samples of 
observations for the initialisation. In order to avoid the 
reidentification of the already identified pulse train, 
sCKC method prevents selection of another time instant 
nj within a region ε : 

( ,
2 2j j
L Ln nε = − + ) ,             (8) 

where L is the maximal MUAP length (in samples). 
When all possible candidates for starting filters  are 

selected from activity index, sCKC gradually improves 
them using element-wise product between 
decompositions of initially recognised pulse trains  

jf

 
)()()(

1010
nnn nnnn ννν ⋅= ,           (9) 

 
which emphasizes only pulses triggered in a MUs active 
in time instants  and , respectively. It was 

estimated in [1] that already four proper positions  

combine in a pulse train which most probably belongs 
to a single source. Denoting this train with 

0n 1n

in

)n(
3210 nnnnν , 

suppose that pulses in this train appear at 0 1, , gt t −K . 

Then by averaging all the observation vectors in this 
time instants, an improved filter is constructed: 
 

∑
−

=

=
1

0
)(1 g

i
ij t

g
yf .           (10) 

 
After initialization, sCKC checks for possible 

repetitions of the same pulse train using a threshold 
 

max( ) 0.85
ij nT ν= ⋅            (11)  

to discriminate the pulses in the j-th estimated train vni  
from the baseline noise. Resulting MU discharge 

patterns are then mutually compared and all their 
repetitions discarded.  
 
3.2 Sequential Inverse of Correlation Matrix 
Sequential CKC method relies on iterative calculation 
of the inverse 1−

yyC , which proves to be computationally 

highly intensive. To cope with this problem, the 
following Sherman-Morrison formula was proposed in 
[5] for the cases with the single-sample inputs: 
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where ( )ny is a vector of newly available samples of 

extended observations used for updating 1−
yyC . When a 

block of P signal samples of extended observations 
( ) ( : )P n n n P= +Y y  is available, (12) can be 

replaced by Sherman-Morrison-Woodbury formula [4]: 

1
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where I stands for matrix identity. Eq. (13) provides a 
theoretical framework for block-sequential CKC 
method. However, the application of (12) or (13) causes 
the estimated pulse amplitudes decrease in time, as 
shown in Fig. 1. This is mainly because (12) and (13) 
lack the normalization by the number of signal samples. 
As a result, the values of the matrix inverse 1−

yyC  

decrease with iteration steps in (12) or (13).  

To avoid this problem, the inverse matrix must be 
renormalized by the number of available samples, 
which turns (10) into: 
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and (11) into : 
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where 1
,

−
nyyC  is the correlation matrix inverse of 

extended observations, calculated over n samples of 
observations. 

 

Fig. 1: Estimated pulse train as obtained by sCKC 
without normalisation. 

 

3.3 Sequential Filter Update 
Because the initialisation block of observations is rather 
short in comparison to the entire observation length, it 
is unlikely that the produced initialisation filters are 
sufficient for successful decompositions of pulses 
discharged in single MUs.  Therefore, sequential filters 
have to be updated and improved after every new 
observation sample vector. 

Sequential filter update relies on running average: 
 

1
)( 1,

1, +
+⋅

= +
+ g

tg ggj
gj

yf
f ,         (16) 

 
where g is the number of observations deployed in the 
filter  before the update with the new observation jf

)1( +gty .  

 
3.4 Sequential Removal of Multiple Pulse Train 

Recognitions 
Assume that  and  that produce trains 

0j
f

1j
f )(

0
n

jfν  and 

)(
1

n
jfν  are improved in such way that from certain 

observation  onward, their pulses belong to the same 

pulse train: 
0m

f )()(
10

mm
jjf νν = ;  ,       (17) K1, 00 += mmm

whereas a different notation is used here for the pulse 
trains with subscripts identifying the premultiplying 
decomposition filter instead of a referential sample 
number. 

Suppose that two pulse trains )(
0

m
jfν  and )(

1
m

jfν  

are equal for Dmmm += 00K , where D is a 

preselected threshold. In this case, the trains are 
considered produced by the same source, so that one of 
them can be discarded. 

 

4. Computational Complexity 
To evaluate the decomposition speed, we estimated 
computational complexity analytically and also 
measured on a standard PC with 3000 MHz CPU and 2 
GB of memory, as described in the sequel. In 
Subsection 4.1, analytical calculations for the sCKC 
time complexity is presented, while in Subsection 4.2 
the results of its measurements follow. 

4.1 Analytical Estimate of Computational 
Complexity 

The aim of sCKC is to be a real-time decomposition 
method. The most complex and most frequent operation 
is the update of the correlation matrix inverse, in 
particular when it is computed sample by sample. The 
complexity of optimized calculations of single-sample 
correlation matrix inverse using Sherman-Morrison 
formula is shown in Tables 1 and 2. Table 1 counts the 
number of multiplications, while Table 2 shows the 
number of additions. As already proven in [4], 
Sherman-Morrison formula has quadratic time 
complexity. 

In the Tables 3 and 4, the operations and their time 
complexity using Sherman-Morrison-Woodbury 
formula for block-sample updates of the correlation 
matrix inverse are depicted. Again, Table 3 counts the 
number of multiplications, while Table 4 shows the 
number of additions. As we can see, the time 
complexity of Sherman-Morrison-Woodbury formula is 
in general cubic. 
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The times measured during our experimental runs of 
sCKC are gathered in the next section, and they comply 
with the analytical predictions. 
 
Table 1: Number of multiplications in the application of 
Sherman-Morrison formula. KM stands for the size of 
correlation matrix inverse, n is the number of 
observations that contributed to the correlation matrix. 
Vector a and matrix B mean auxiliary variables used in 
the analytical derivation. 

 
 
Table 2: Number of additions in the application of 
Sherman-Morrison formula. KM stands for the size of 
correlation matrix inverse, n is the number of 
observations that contributed to the correlation matrix. 
Vector a and matrix B mean auxiliary variables used in 
the analytical derivation. 

 
Table 3: Number of multiplications in the application of 
Sherman-Morrison-Woodbury formula. P stands for the 
length of input blocks of observations, KM for the size 
of correlation matrix inverse, I is the identity, and A, 
A1, B, and D designate auxiliary matrices introduced for 
the sake of derivation. 

 
Table 4: Number of additions in the application of 
Sherman-Morrison-Woodbury formula. P stands for the 
length input blocks of observations, KM for the size of 
correlation matrix inverse, I is the identity, and A, A1, 
B, and D designate auxiliary matrices introduced for the 
sake of derivation. 

 
4.2 Measured Time Complexity 
Three different experiments of computational 
complexity were performed on synthetic observations. 
In the first experiment, we measured the processing 
time needed to invert the correlation matrix when using 
different number of samples in the block inputs. In the 
second experiment, we investigated the impact of the 
size of correlation matrix on the processing time needed 
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for its inversion. The third experiment focused on the 
overall processing times of bsCKC and sCKC methods, 
when decomposing random mixtures of synthetic pulse 
trains. 

Generated observations used in the experiments 
were produced from 10 different pulse trains, 10.000 
samples long. The distance between pulses was 
normally distributed with a mean of 100 samples and 
variance of 30 samples. Channel responses were 8 
samples long and the extension factor for CKC was set 
to 10 in all experiments. 

The first experiment was conducted on a set of 10 
and 50 observations. The number of samples P in the 
input block ( )P nY  ranged from 200 to 1000 in steps of 
100 samples. Forty Monte-Carlo runs were conducted 
with different input pulse trains and channel responses 
generated randomly for each simulated value of P, 
whereas the size of correlation matrix was set to 
100×100 and 500×500, respectively. Results, averaged 
over all simulation runs, are depicted in Fig. 2. In all the 
cases, standard deviations were negligibly small and are 
not reported. 

 
Fig. 2: Average computation time of matrix inverse 
with block inputs of size from 200 to 1000 samples. 

Standard deviations were negligibly small and are not 
reported. Simulations were conducted on a standard PC 

with 3000 MHz CPU and 2 GB of memory. 

 
Fig. 3: Average computation time of matrix inverse for 

different input block lengths versus different matrix 
dimension. Standard deviations were negligibly small 
and are not reported. Simulations were conducted on a 

standard PC with 3000 MHz CPU and 2 GB of 
memory. 

 
In the second experiment, length of input blocks 
( )P nY  was set equal to 1, 100, 300, 400 and 500 

samples, respectively. Different sizes of correlation 
matrix were simulated, ranging from 100×100 to 
1000×1000. Twenty Monte-Carlo runs were conducted 
with different observations, as described for the first 
experiment, per each matrix size and each length of 
input block ( )P nY . The results are shown in Fig. 3. 

Now take the analytical expression for the number 
of multiplications in Sherman-Morrison-Woodbury 
formula from Table 3. When KM is significantly 
smaller than P, time complexity of Sherman-Morrison-
Woodbury formula is cubic, but when KM surpasses P 
significantly, the formula becomes quadratic, which can 
be best seen in Fig. 3 for P=500 samples. 

In the last experiment, 10, 30 and 50 simulated 
observations were used. The initial window was 500 
samples long. Twenty Monte-Carlo runs were 
conducted for three matrix dimensions versus different 
input block lengths. The results are depicted in Fig. 4. 
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Fig. 4: Average decomposition time when using the 
bsCKC method versus the input block size. Standard 
deviations were negligibly small and are not reported. 

Assume also we have observations with Q samples 
and S samples are used for the initialization and P 
samples for every input block. Then the number of 
required updates of correlation matrix inverse can be 
calculated as 

P
SQR )( −

= .          (19) 

The number of required updates R decreases with P, 
whereas the time needed for calculation of each update 
of correlation matrix inverse increases with P, as shown 
in previous experiments. For small values of P, the 
number of required updates R has a dominant effect on 
the total CKC processing time. Eventually, negative 
effect of increased block size P overrides the positive 
effect of smaller number of inverse updates R, causing 
the entire bsCKC processing time to increase with P. 
The optimal performance of bsCKC is achieved when   

23
KMPKM

<<                       (20) 

 

5. Decomposition Performance 
SCKC decomposition performance was measured on 
synthetic sEMGs [6] generated by a sEMG simulator 
[6] developed in the LISiN Laboratory in Turin, Italy. 

In the pulse train decomposition three situations can 
arise. Firstly, suppose 1)( 00

=ns j  and 
00 0( )

j jn Tν <f  

where 
0

( )
j

nν
f

 is the decomposition of pulse train . 

All such pulses are termed missed pulses (false 
negative). Secondly, when 

0j
s

0)( 00
=ns j  and 

00( ) jn T
0j

ν >f , we have misplaced pulses (false 

positive). And thirdly, when 1)( 00
=ns j  and 

00( ) jn T
0j

ν >f  this means a correct pulse recognition 

(true positive). 
We verified our decomposition method on synthetic 

sEMGs and studied the influence of noise corruption on 
the decomposition performance. Recognition rates and 
rates of missed and misplaced pulses are presented in 
subsequent sections.  

5.1 Synthetic sEMG 
A sEMG model [6] from the LISiN Laboratory in 
Torino was used to generate synthetic signals. Constant 
contraction forces, planar volume conductor muscle 
model [7], and double differential uptake electrodes 
were simulated. Innervation firing patterns were 
sampled by 4096 Hz, while the sEMG signal sample 
frequency was 1024 Hz. Firing patterns were 122880 
samples long, producing sEMGs with 30720 samples. 

Three different sets of sEMGs were generated, with 
5, 10 and 20 simulated active MUs. Each set comprise 5 
different sEMGs. 
 
5.2 The Influence of the Number of Active MUs 
In the first simulation, the influence of different number 
of active MUs on the decomposition was studied. 
Synthetic sEMG signals used were corrupted by  zero-
mean additive white Gaussian noise with 30 dB signal-
to-noise ratio (SNR) [8].  
 

 
Fig. 5: Average rate and standard deviation of missed 

pulses versus the number of active MUs. 
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If the number of active MUs rises, so does the 
probability of MUAPs overlapping, which causes the 
decomposed pulse trains of several MUs superimpose. 
Consequently, the average rate of misplaced pulses 
grows with more active MUs, which can be seen in Fig. 
6. Due to the decomposition filters that are improved 
iteratively, according to (16),  some pulse trains are 
decomposed correctly only after some time delay, 
which means they may appear with misplaced pulses 
before.  

 

 
Fig. 6: Average rate and standard deviation of 

misplaced pulses versus the number of active MUs. 
 

 
Fig. 7: Average rate and standard deviation of properly 

estimated pulses versus the number of active MUs. 
 

Fig. 7 shows the average pulse recognition rate and 
standard deviation. Although the average recognition 
rate decreases with higher number of active MUs, 

sCKC still produces some decompositions with more 
than 90 % of properly placed pulses. 

 
5.3 The Influence of Noise 
We also ran simulations to study the influence of 
noise corruption on the average rate of missed, 
misplaced and recognised pulses. The batch CKC 
has proven to be very robust and noise resistant [1]. 
To estimate the robustness of sCKC, we 
experimented with zero-mean white Gaussian 
noise at three different SNRs, i.e. 30, 20 and 10 dB 
[8]. The number of active MUs was set to 5, 
whereas other properties of sEMG were the same 
as in the simulations described in previous 
subsections. 

Fig. 8 depicts the average rate and standard 
deviation of missed pulses versus the different 
SNRs. It is evident the noise corruption does not 
have significant influence in this case. 

 

 
Fig. 8: Average rate and standard deviation of missed 

pulses versus different SNRs of 30, 20 and 10 dB. Zero-
mean random white Gaussian noise was used. 

 
Average rate and standard deviation of misplaced 

pulses is shown in Fig. 9. The rate increases 
considerably with higher noise corruption. This is due 
to the noise influence on activity index )(nγ  which is 
the main source for a selection of decomposition filters 
(7) and, therefore, recognition success. 
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Fig. 9: Average rate and standard deviation of 

misplaced pulses versus the different SNRs of 30, 20 
and 10 dB. Zero-mean random white Gaussian noise 

was used. 
 

 
Fig. 10: Average rate and standard deviation of 

recognised pulses versus different SNR of 30, 20 and 
10 dB. Zero-mean random white Gaussian noise was 

used. 
 

Fig. 10 shows the average rate and standard 
deviation of properly placed pulses versus SNR do not 
aggravate significantly because of noise. 
Decompositions at 20 dB still have more than 90 % of 
properly placed pulses. Indeed, recognition rate 
decreases with the increased SNR, nevertheless the 
sCKC decomposition approach proves to be very 
robust. 

 
 

6. Conclusion 
In this paper, sequential and block-sequential CKC 
methods were introduced Both methods begin with a 
block of observations in order to initialise  the 
correlation matrix inverse of observations and calculate 
the starting decomposition filters. After the 
initialisation, the sequential part comes into action, 
where two iterative operations play the main role: the 
update of correlation matrix inverse and the 
improvement of starting filters. 

It was proven in previous work [5] that the best 
solution for updating the correlation matrix inverse is 
Sherman-Morrison formula when sample-by-sample 
updating is considered, and Sherman-Morrison-
Woodbury formula when block updating is considered. 
The analysis of computational complexity in Subsection 
4.1 reveals quadratic and/or cubic relationships, and the 
experiments in Subsection 4.2 back up the analytical 
findings. The relationship between correlation matrix 
size and input block size for the fastest sCKC is 
described by (20), proving that the block-sequential 
method is more computationally efficient than sample-
by-sample approach. 

We verified the sCKC decomposition performance 
on synthetic sEMG signals and also analysed its noise 
resistance.  The experimental results show the average 
rate of the missed pulses is independent of the number 
of active MUs and the level of additive noise. 
Unfortunately, the same can not be said for the 
misplaced pulses; their average rate increases with the 
number of active MUs and the level of noise. The main 
reason for this can be attributed to less successful 
selection and improvement of decomposition filters.  
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