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Abstract: - The paper discusses the connection between pattern formation and nonlinear dynamics, focusing on 
the similarity between discrete patterns and fractal structures, and then describes different solutions to model 
reaction-diffusion systems as representative processes in morphogenesis. The option for a discrete model and 
the steps to design it as a fractal structure is argued. Construction of appropriate generic model is an important 
step towards understanding the bacteria. It is shown how a pattern with arbitrary complexity like a fractal 
pattern can be realized by a reaction-diffusion system. A specific example is the diffusion limited aggregation 
growth process, illustrated by the simulation of the evolution of a bacterial colony that shows the roles of 
instability and sensitivity in nonequilibrium pattern formation.  
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1 Introduction 
Bacterial colonies grown on agar plates assume a 
variety of sizes and shapes of often amazing beauty 
[1]. On harder plates, growth is limited by the 
diffusion of nutrients; colonies have fractal-like 
boundaries [2] and essentially expand by mass 
increase. 
Such phenomena, in which microscopic organisms 
give rise to collective macroscopic behaviors, are 
interesting because of their multi-scale nature, but 
also because they involve live cells. They raise the 
intriguing question of universality [3] in the 
description of physical and biological [4, 5] pattern-
forming systems and growth mechanisms. For 
instance, it was recently pointed out that constructal 
theory may be used to describe, in a unified fashion, 
the scaling properties of all forms of locomotion, 
biological as well as mechanical. 
Understanding the growth and dynamics of bacterial 
colonies may also give clues on how multicellular 
structures could have arisen from unicellular 
organisms. At a more general level, bacterial 
systems provide examples of collective behaviors in 
ensembles of live beings. Such cooperative effects 
are observed at all scales in nature [6], from 
bacterial patterns to fruiting bodies made by 
myxobacteria, vortices in zooplankton, locust 
swarms, fish schools, bird flocks and animal herds. 
Regardless of their size, these phenomena may be 
modeled in terms of interacting, often self-driven, 
particles, which move freely in space or are 
constrained to the nodes of a lattice [7]. Ideas from 
classical physics are naturally transported to these 

models: the appearance of ordered, large-scale 
structures in an initially disordered system is 
analogous to a phase transition; macroscopic 
parameters such as density and local velocity field 
may be defined and their evolution described in 
terms of continuous models. Many models for the 
growth and dynamics of bacterial colonies, written 
at different scales, can be found in the published 
literature.  
Our approach deals essentially with pattern 
formation in biological systems far from equilibrium 
state, trying to underline a connection between the 
general principles of morphogenesis, the dynamics 
of the reaction-diffusion systems and the fractal 
analysis as a tool for modeling such processes.  
 
2 Pattern formation  
 
2.1 Definitions and classifications   
In recent times, reaction–diffusion systems have 
attracted much interest as a prototype model for 
pattern formation. The above-mentioned patterns 
(fronts, spirals, targets, hexagons, stripes and 
dissipative solitons) can be found in various types of 
reaction-diffusion systems in spite of large 
discrepancies e.g. in the local reaction terms. It has 
also been argued that reaction-diffusion processes 
are an essential basis for processes connected to 
morphogenesis in biology [8]. 
The variety of natural patterns makes it difficult to 
analyze and compare them in a systematic manner. 
We address this problem by focusing on the 
computational aspects of pattern formation 
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processes. They are characterized in terms of the 
number of morphogenetic agents, the computing 
capability of each agent, and the forms of 
information transfer between the agents and their 
environment. This computational analysis can be 
applied to a wide range of patterns, but in this paper 
are considered only discrete patterns, which are 
structures, based on repetitive occurrences of 
predefined figures called motifs. A pattern is 
assumed to be invariant with respect to some 
isometries in the plane, called its symmetries. The 
set of all symmetries forms a group under 
composition. Fractal structures can be assimilated as 
discrete patterns.  
Stevens distinguished four prototypical classes of 
patterns (see Fig.1: a) spirals, b) meanders, c) 
explosions, d) branching patterns) by considering 
different methods for connecting a set of regularly 
arranged points into a graph without cycles [9]. 
 

 
Fig. 1. Typical patterns proposed by Stevens 
 
Patterns in each class were characterized by 
geometric attributes: uniformity, space filling, 
overall length of lines, and directness of lines. This 
characterization proved useful when analyzing 
natural patterns from the viewpoint of their 
optimality. Unfortunately, the optimality of the 
result does not offer a direct insight into the 
mechanisms that govern pattern formation. A 
classification that addressed this limitation was 
suggested by Bell, who distinguished the following 
three categories of branching patterns [10]:  
− Blind patterns, in which branch initiation is 

controlled solely by the imposed program rules; 
− Sighted patterns, in which the initiation of a 

new branch is influenced by factors detected by 
it in the immediate neighborhood; 

− Self-regulatory patterns, in which branch 
initiation is controlled by the developing 
simulation itself, using communication via 
components of the existing framework, whether 
or not affected by environmental factors. 

Focusing on the fundamental, algorithmic properties 
of pattern formation, the above classification makes 
possible to recognize and analyze similarities 
between apparently different realizations of similar 
patterns, and does not presuppose any 
computational framework for model construction. 
However, one of these models seems most suitable 

to simulate pattern formation. It is the model of a 
reaction-diffusion systems, which is in the same 
time the most appropriate to describe the 
construction of a fractal structure [11].  
 
2.2 Bifurcations in pattern formation  
After instability has produced a growing disturbance 
in a spatially uniform system, the crucial next step 
in the pattern-forming process must be some 
intrinsically nonlinear mechanism by which the 
system moves toward a new state. That state may 
resemble the unstable deformation of the original 
state. The system evolves in entirely new directions 
as determined by nonlinear dynamics. We now 
understand that it is here, in the nonlinearphase of 
the process, that the greatest scientific challenges 
arise. The inherent difficulty of the pattern-selection 
problem is a direct consequence of the underlying 
(linear or nonlinear) instabilities of the systems in 
which these phenomena occur. A system that is 
linearly unstable is one for which some response 
function diverges. This means that pattern-forming 
behavior is likely to be extremely sensitive to small 
perturbations or small changes in system 
parameters. Some important questions, therefore, 
are: Which perturbations and parameters are the 
sensitively controlling ones? What are the 
mechanisms by which those small effects govern the 
dynamics of pattern formation? What are the 
interrelations between physics at different length 
scales in pattern-forming systems?  
Let now present a possible strategy for answering 
these questions. In dynamical systems theory, the 
stable steady solutions of the equations of motion 
are known as “stable fixed points” or “attractors”, 
and the set of points in the phase space from which 
trajectories flow to a given fixed point is its “basin 
of attraction”. As the control parameters are varied, 
the system typically passes through “bifurcations” in 
which a fixed point loses its stability and, at the 
same time, one or more new stable attractors appear. 
An especially simple example is the “pitchfork” 
bifurcation at which a stable fixed point 
representing a steady fluid flow, for example, gives 
rise to two symmetry-related fixed points describing 
cellular flows with opposite polarity. Many other 
types of bifurcation have been identified in simple 
models and also have been seen in experiments. 
The theory of bifurcations in dynamical systems 
helps us understand why it is sometimes reasonable 
to describe a system with infinitely many degrees of 
freedom using only a finite (or even relatively 
small) number of dynamical variables. An important 
mathematical result known as the “center manifold 
theorem” [12] indicates that, when a bifurcation 
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occurs, the associated unstable trajectories typically 
move away from the originally stable fixed point 
only within a low-dimensional subspace of the full 
phase space. The subspace is “attracting” in the 
sense that trajectories starting elsewhere converge to 
it, so that the degrees of freedom outside the 
attracting subspace are effectively irrelevant. It is 
for this reason that we may need only a low-
dimensional space of dynamical variables to 
describe some pattern-formation problems near their 
thresholds of instability — a remarkable physical 
result. 
 
 
3 Classes of models for biological 
colonies  
In the study of 2D patterns generated by propagating 
fronts in non-living systems, several modeling 
approaches to handle global morphology have been 
proposed. Stefan-like models [13] include an 
explicit boundary separating two regimes of 
diffusive fields. Phase-field-like models (Landau-
Ginzburg models) [14] use only continuous fields to 
describe the system. The front in such models 
connects a stable phase to a meta-stable one, i.e. the 
growth term is bi-stable. In the limit of vanishing 
front width, the front can be replaced by an explicit 
boundary, and the model is reduced to a Stefan-like 
one [14]. Atomistic models, such as DLA [15], use 
particles moving stochastically (random walk) to 
describe molecules in a solution. In this approach 
solid matter is represented by stationary particles. 
DLA stands for diffusion limited aggregation, as 
particles from the solution aggregate to form the 
solid. 
Preliminary attempts to model bacterial colonies 
were done by Ben-Jacob et al. [16] and Matsushita 
et al. [17]. While Matsushita et al. [17] attempted to 
measure growth parameters using Fisher-
Kolmogorov equations, Ben-Jacob et al. [16] 
showed the limitation of this model. All the terms in 
this equation (diffusion term and a growth term 
which is unstable at zero density) agree with the 
microscopic bacterial details, but such models 
cannot produce the macroscopic branching patterns. 
Matsushita and Fujikawa [17] suggested a DLA 
model to describe the colony. This model can 
reproduce the global structure of the colony. 
However, the model has moving particles outside 
the aggregate, unlike the colony where the moving 
bacteria are inside the colony. Ben-Jacob et al [16] 
suggested that a phase-field-like model, with bi-
stable growth term, can reproduce the global 
branching pattern. Bi-stable growth term does not 

agree with the details of the bacterial reproduction 
process, nor does it agree with the experiments (the 
growth process should be unstable near zero 
density).  
It is well worth emphasizing the beneficial aspects 
of having a connection between a discrete model 
and a related continuum model. It is usually difficult 
to do much beyond simulation for a discrete model; 
so, having a continuum analog allows for analysis 
that helps guide the simulations and vice versa. For 
the DLA class of models, the relationship between 
these automata and the continuous approach to 
crystal growth as captured in the phase field model 
(and the free surface reduction thereof) has proven 
invaluable. Once the basics are understood, of 
course, one can modify the simulation to encompass 
more details of the actual system and thereby obtain 
more reliable results.  
There is also a literature on using discrete models 
for other, more complex reaction diffusion 
processes; see for example the work by Kapral et al. 
[18] on simulations of 3D knotted labyrinths. In real 
reaction-diffusion processes, it is almost always the 
case that one is using the discrete model as a simpler 
stand-in for the true continuum dynamics; after all, 
one cannot hope to match the actual number of 
molecules (in the order of Avogadro number, 1023) 
by discrete simulation entities, and the number of 
particles is enough such that a continuum 
description is valid (recall, though, the cutoff effect 
for type I systems). Using a small number of 
particles in the simulation as a stand-in introduces 
extra noise into the simulation, and this is the price 
one pays for a more flexible and more efficiently-
coded numerical scheme. Similar remarks hold for 
lattice-gas automata [19], in which one uses discrete 
objects to model systems with fluid flow. 
In biological multicellular systems, computational 
convenience is not the only reason why one can 
make good use of discrete entities. First, the 
numbers match more closely. The number of 
bacteria in a typical experiment is 109; one can 
almost approach these numbers computationally and 
therefore one is not plagued by the extra noise issue. 
Perhaps more importantly, cells contain large 
numbers of internal degrees of freedom which 
modulate their response to external signals form 
other cells. Hence, describing a population of cells 
with something as non-informative as a density field 
is usually insufficient. At the very least, one would 
have to introduce either new variables (which 
advect with the cell velocity as these are tied to the 
cells, and the Mean Orientation Field model) or 
even new coordinates [20], where the cell’s age is 
taken as a relevant coordinate for the density field, 
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or the Orientation Dimension model where the cells’ 
orientation is taken as a relevant coordinate for the 
density field); this makes for “ugly” continuum 
equations.  
Tracking cells as individual objects makes it easy to 
add internal degrees of freedom; one just attach 
extra labels to the cell and postulate transition rules 
as to how these labels change in time. This 
flexibility is quite useful and hence many of the 
models to be discussed keep cells discrete. At the 
same time, though, continuum analysis is used to 
shed light on the simulations, and it forms an 
indispensable part of an integrated effort to 
understand microbiological pattern formation.  
 
 
4 Modeling  of reaction - diffusion 
systems 
 
4.1 Basic paradigms 
Qualitative studies of reaction diffusion systems of 
equations have probably begun from 1952. The first 
was shown by a mathematician, A. Turing, who is 
well known as a great pioneer in the field of 
computer science. He suggested by using a simple 
reaction-diffusion (RD) system a paradox that 
diffusion enhances spatial in-homogeneity, although 
we know, as common sense, that diffusion does 
enhance homogeneity in space (Turing, 1952) [21]. 
Turing’s analysis simulated considerable theoretical 
research on mathematical models of pattern 
formation in chemical and biological systems, but 
Turing-type patterns were not observed in controlled 
laboratory experiments until 1990. He also claimed 
that such “diffusion-induced instability” gave the 
possibility to play a role in the mechanism of cell 
differentiation and morphogenesis arising in the 
field of developmental biology. The second was 
contributed by two neurophysiologists, A. L. 
Hodgkin and A. F. Huxley, who investigated the 
mechanism of impulses propagating along nerve 
fiber [22]. In the same year as Turing’ paradox was 
stated, they proposed a model of nonlinear partial 
differential equations which is given by the coupling 
of a single RD equation with three ODEs in order to 
describe the propagation of impulses along the fiber. 
Their model could be numerically solved by using 
computer calculation. It is surprising that this model 
generates a traveling pulse wave with constant 
shape as well as velocity, in spite that it is described 
by diffusion equations. This indicates another 
paradoxical evidence of diffusion, that is, suitable 
RD systems possibly generate a localized wave. 
 

Since 1952, RD systems of the form: 
 

)(uFuDut +Δ=                          (1) 
 
have been intensively investigated in the fields of 
not only applied science such as biology, chemistry, 
physics but also in mathematics. In a general case, 
equation (1) models the diffusion through a domain 

kℜ⊂Ω of m interacting species or chemicals, 
where the i-th component ui of u = (u1,…, um) 
represents the density or concentration of the i-th 
reactants and D = (d1, …, dm) is the matrix of the 
diffusion constants di > 0 [23]. One hard 
mathematical task for the practical use of these 
models is to find appropriate vector supply terms F 
in such a way that the pattern formation process 
governed by the corresponding reaction-diffusion 
system coincides with the phenomenon observed in 
the laboratory experiments or in nature. Famous 
examples in this direction include the Kolmogorov-
Fischer equations modeling the two-species 
interactions [24], the Field-Noyes equations 
modeling the Belousov-Zhabotinsky reactions in 
chemical kinetics [25], the Hodgkin-Huxley 
equations or the FitzHugh-Nagumo equations 
modeling the nerve impulse transmission [26].  
Because the pattern formation process is the main 
subject in question, we can ask if the complexity of 
patterns modeled by the reaction-diffusion systems 
can be allowed to be arbitrary. A pattern is the 
eventual result of a time evolution of a biological or 
chemical or physical process and thus has the 
following two main features: a) Long-time effect 
and b) Great randomness of the initial conditions. 
Based on this observation, we see that a pattern is a 
kind of attractor. Here, by an attractor for a reaction-
diffusion system we mean the mathematical object 
which attracts an open set of initial data in such a 
way that the trajectories starting from this initial 
data set eventually end up on the attractor in 
question (this is just the long-time effect of an 
attractor). The openness of the set of initial data 
guarantees the required great randomness of initial 
data which lead to the same pattern (attractor). 
Moreover, this openness corresponds to the practical 
need (e.g., for the computer simulation) that there is 
a positive probability that computed trajectories will 
tend to the attractor.  
In the following we will give a method of 
constructing the vector supply term F for the 
purpose that the corresponding reaction-diffusion 
system has an attractor whose complexity is allowed 
to be arbitrary in some sense.  
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4.2 Steps in model construction  
Let ℵ∈n and nK ℜ∈  a given connected compact 
subset of arbitrary complexity. Then there exists a 
vector supply term FK of the form: 
 

))()((),( φφφ fvAvFK +=     (2) 
 
for ℜ∈φ  and nv ℜ∈ , where A is a smooth 
function on ℜ  and f a smooth map on nℜ , such 
that the corresponding reaction-diffusion system: 
 

0,),( >Ω∈+Δ= txuFuDu kt     (3) 
 
of n+1 components u=(φ,v), accompanying with the 
zero flux boundary condition, generates a dynamical 
system in the state space C(Ω)1+n with the following 
properties: 
(i) For each initial value u0 ∈C(Ω)1+n the reaction-
diffusion system (3) has a global unique solution u, 
u(0) = u0, such that u is continuous in Ωx[0,∞ ), and 
ut, Δu as well as all partial derivatives are 
continuous in Ωx(0,∞ ). 
(ii) Each solution u of the reaction-diffusion system 
(3) starting from an initial value u0=(φ0,v0) 
∈C(Ω)1+n such that either φ0>0 or φ0<0 is 
asymptotically stable and converges to the set 

KK ×= }0{  in the sense that ω(u,C) = K . As result, 
the connected compact set K  is an attractor for the 
reaction-diffusion system (3) settled in the state 
space C(Ω)1+n. 
Here we choose the zero flux boundary condition 
(i.e., the homogeneous Neumann boundary 
condition) and the positive initial condition, since 
they are probably the most interested boundary and 
initial conditions in the biological or chemical 
situation. Namely, the zero flux boundary condition 
reflects the self-organization mechanism of pattern 
while the positive initial condition restricts the 
pattern formation process to such a beginning 
circumstance that each of the reactants has a 
positive distribution all over the reaction domain. 
Thus, our statements should be considered as a 
partial but affirmative answer to the universality 
problem stated above and implies that any pattern 
(here K ) which is isomorphic to a connected 
compact subset (here K) of the Euclidean space 

nℜ can be seen as the final result of the pattern 
formation process governed by some appropriate 
reaction-diffusion system of n + 1 components. 
Moreover, it implies the following assertion: The 
make-up of a pattern nKK ℜ⊂≅ with arbitrary 
complexity (e.g., a fractal pattern) [27] can be 

realized by a reaction-diffusion system of the form 
(3) once the vector supply term FK has been 
previously properly constructed. 
Although the above construction is the product of 
theoretic thoughts, we were also interested in 
whether it is possible to derive such reaction-
diffusion systems from any sequence of reasonable 
biochemical or physical situations, where one can 
consider that the first component φ of the vector 
u=(φ,v) works as the activator and the rest 
components v as the inhibitor of the system). This 
mechanism simplicity throws light on the possibility 
of deriving reaction-diffusion systems of the form 
(3) from real world situations.  
 
 
5 A dendritic growth pattern 
 
5.1 General issues  
The formation of patterns in the growth of bacterial 
colonies has extensively been studied 
experimentally. Resulting morphologies appear to 
depend on the growth conditions. They include well 
known morphologies such as Dense branched 
morphology (DBM) or Diffusion-limited 
aggregation (DLA), bunch much complex patterns 
and temporal behavior can be found. 
One of these particular real world examples is the 
process of diffusion limited aggregation 
encountered in dendritic pattern formation [28]. The 
dendritic pattern formation process can be observed 
in different areas of nonequilibrium pattern 
formation: metallurgy (dendritic solidification), 
medicine (tumor growth), biology (bacterial colony 
development) and so on. In the most common 
situations, dendritic growth is controlled by 
diffusion—either the diffusion of latent heat away 
from the growing solidification front or the 
diffusion of chemical constituents toward and away 
from that front. These diffusion effects very often 
lead to shape instabilities; small bumps grow out 
into fingers because, like lightning rods, they 
concentrate the diffusive fluxes ahead of them and 
therefore grow out more rapidly than a flat surface. 
Similar situations occur in fluid dynamics, for 
example, in the “viscous fingering” problem [29]. 
The theory has been checked in numerical studies 
that have probed its nontrivial mathematical aspects 
[30]. The degree to which we can develop 
quantitative, predictive models of these phenomena 
will determine the degree to which we can control 
them and perhaps develop entirely new 
technologies.  
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5.2 Simulation of bacterial colonies growth  
In 1989, a Japanese group [31] reported for the first 
time that bacterial colonies can grow elaborate 
branching patterns of the type familiar from the 
study of fractal formation in the process of diffusion 
limited aggregation (DLA). They showed explicitly 
that nutrient diffusion was the relevant dynamics 
responsible for the instability and can lead to 
different morphotypes [32].  
So far, we have tested the models for they ability to 
reproduce microscopic dynamics of the bacterial 
colonies. All succeeded equally well, reproducing 
some aspects of the microscopic dynamics and the 
patterns in some range of nutrient level and agar 
concentration. 
Each of the morphotypes exhibits its own profusion 
of patterns as the growth conditions are varied. The 
beautiful complex shapes obtained by simulation 
reflect sophisticated strategies employed by the 
bacteria for cooperative self-organization as they 
cope with unfavorable growth conditions. 
The simulation model try to reflect the real behavior 
of cells observed through microscopy.  Looking 
through the microscope at colonies of a certain T 
morphotype [33], one can see cells performing a 
random-walk-like movement in a fluid. We assume 
that this lubrication fluid is excreted by the cells 
and/or drawn by the cells from the agar culture 
medium. The cellular movement is confined to this 
fluid; isolated cells spotted on the agar surface do 
not move. A closer look at an individual branch (fig. 
2) reveals a phenomenon of density variations 
within the branches. These 3-dimensional structures 
arise from accumulation of cells in layers. The 
aggregates can form spots and ridges which are 
scattered randomly, ordered in rows, or organized in 
a leaf-veins-like structure. The aggregates are not 
frozen; the cells in them are motile and the 
aggregates are dynamically maintained. The picture 
shows variation in the height of the branches. The 
more bacteria are in a unit area, the more layers the 
bacteria are in, and the higher the area seems. The 
boundary of the fluid thus defines a local boundary 
for the branch. Whenever the cells are active, the 
boundary propagates slowly as a result of the 
cellular movement pushing the envelope forward 
and production of additional wetting fluid. Electron 
microscope observations reveal that these bacteria 
have flagella for swimming.  
The observations reveal also that the cells are active 
at the outer parts of the colony, while closer to the 
center the cells are stationary and some of them 
sporulate. Such spores are metabolically inert and 
exhibit a marked resistance to the lethal effects of 

heat, drying, freezing, deleterious chemicals, and 
radiation. 
 

 
 
Fig. 2. Structure of ordered aggregates within 
branches. 
 
 
6 Model implementation and results 
of simulation  

 
6.1 Model design  
We can gain much insight into instability 
mechanisms and nonlinear states from the 
continuous models of biological processes. Let us 
start with systems exhibiting diffusive instabilities. 
Initially, the simplest discrete analogue was 
afforded by diffusion-limited-aggregation (DLA). 
Here, discrete walkers move diffusively in space 
and attach to a growing cluster. In the limit of taking 
one walker at a time (i.e. of extremely slow growth) 
and purely irreversible attachment at any nearest-
neighbor site, one obtains the classic DLA fractal 
[34]. It is well worth emphasizing the beneficial 
aspects of having a connection between a discrete 
simulation and a related continuum model. It is 
usually difficult to do much beyond simulation for a 
discrete model; so, having a continuum analogue 
allows for analysis that helps guide the simulations 
and vice versa.  
The Discrete Walkers (DW) model describes the 
growth of colonies of T morphotype. The model was 
inspired by the diffusion-transition scheme proposed 
by Cohen in his Ph.D. thesis [33]. This scheme is a 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Radu Dobrescu, Loretta Ichim, Stefan Mocanu, Stefan Popa

ISSN: 1109-9518 Issue 6, Volume 5, June 2008112



hybridization of the “continuous” and “discrete” 
approaches used in the study of non-living systems. 
In the DW model, the bacterial cells are represented 
by discrete walkers that obey dynamic rules. The 
DW model also consists of at least one chemical 
field, namely nutrient concentration field, and 
additional element such as a free boundary of the 
colony. A walker in the DW model does not 
represent a single bacterium.  
Each of the walkers will usually be taken to 
represent about one hundred cells. Each of the 
walkers has a position ri and a metabolic state Hi. 
The lubrication fluid is not incorporated as such into 
the model, only its effects on the bacterial 
movement. The area occupied by the colony (wetted 
by the lubrication fluid) is defined by an on-lattice 
boundary representing the boundaries of the layer of 
lubrication fluid. To incorporate the swimming of 
the bacteria into the model, the walkers perform an 
off-lattice random walk within the area already 
occupied by the colony.  
At each time-step each of the active walkers 
attempts to move from its location a step of size d at 
a random angle θ (θ chosen from [0;2π] with 
uniform distribution), to a new location r’ given by: 
 

( )θθ sin;cos' drr +=      (4) 
 
Although d is used in this equation as if it has length 
units, it’s units are actually the square root of the 
units of a diffusion coefficient. These units 
compensate for fact that the number of steps of a 
walker per time unit is sensitive to the time-step of 
the model’s simulation. If the units of d would have 
been length units, then the effective diffusion 
coefficient of the walkers in the bulk of the colony 
would have had been sensitive to the time-step of 
the model’s simulation.  
If the new location r’ is outside the boundary, the 
walker does not perform that step, and a counter on 
the segment of the boundary which would have been 
crossed by the movement from r to r’ is increased 
by one. When the segment counter reaches a pre-
specified number of hits Nc, the boundary 
propagates one lattice step and an additional lattice 
cell is added to the area occupied by the colony. Nc 
is measured in units of length to the power of - D 
(where D is the spatial dimension of the simulation: 
2 or 3) .The requirement of Nc hits represents the 
colony propagation through collective production of 
lubrication fluid and wetting of unoccupied areas. Nc 
is directly related to the food concentration, as more 
lubrication fluid has to be produced to push the 
boundary on a drier substrate. 

We represent the metabolic state of the i-th walker 
by an “internal energy” Hi. The dynamics of this 
energy is given by:  
 

r

m
c

i E
cn

dt
dH

τ
−=      (5) 

 
where c is a conversion factor from nutrient to 
internal energy and Em represents the total energy 
loss for all processes (excluding reproduction) over 
the minimal time of reproduction τr. The nutrient 
consumption rate nc is: 
 

),min( '
nncn ΩΩ=      (6) 

 
where Ωn is the maximal rate of nutrient 
consumption of a walker, and Ω’n is the rate of 
nutrient consumption as limited by the local 
availability of nutrient. The maximal rate of nutrient 
consumption of a walker equals the consumption 
rate per cell times the number of cells represented 
by a single walker. 
When sufficient nutrient is available, Hi increases 
until it reaches a threshold energy Ed and the walker 
divides into two. When the walker is “starved” for a 
long interval of time, Hi drops to zero and the 
walker “freezes”. This “freezing” represents the 
transition into pre-spore state. For simplicity we 
have assumed in our experiments that the cellular 
density is suitable for sporulation, so that the 
limiting factor is the supply of nutrients. 
The nutrients are represented by a field denoted n(r; 
t), and its dynamics is given by the diffusion 
equation: 
 

cann nD
t
n σ−∇=
∂
∂ 2      (7) 

 
where Dn is a diffusion coefficient and the last term 
on the RHS includes the consumption of nutrient by 
the active walkers whose density is denoted by σa,  
 

( )
( )
∑

∈

−≡
walkersactivei

rxa δσ       (8) 

 
where δ(x) is the delta distribution function whose 
integral is the step function. The diffusion equation 
has zero-flux boundary conditions and uniform 
distribution of concentration n0 as initial conditions. 

 
6.2 Experimental results  
The diffusion equation is solved on a triangular 
lattice with a lattice constant Δx, the same lattice on 
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which the boundary is outlined. For numerical 
stability the walkers’ step length, td Δ  (where Δt 
is the simulation’s time-step), must be smaller than 
the lattice constant. All the simulations are stopped 
when the colony reaches a given radius.  
 

 
Fig. 3. A branch in a simulation of the DW model 
 
The equation is solved on the tridiagonal lattice. The 
simulations are started with inoculum of walkers at 
the center and a uniform distribution of the nutrient. 
Results of numerical simulations of the model are 
shown in fig. 3 (microscopic view: the hexagons are 
those lattice cells that were occupied by walkers and 
became part of the colony; the reaction-diffusion 
equations are solved on the whole lattice, weather 
part of the colony or not) and fig. 4 (colonial 
patterns, with Nc = 20 and the conversion factor c is 
6, 8, 10 and 30 from left to right respectively).  
 

 
Fig. 4. Colonial patterns of the DW model 
 
As in real bacterial colonies, the simulated patterns 
are compact at high nutrient concentration levels 
and become fractal with decreasing nutrient level. 
For a given nutrient level, the patterns are more 
ramified as the food concentration increases.  
The results shown in figure 4 do capture some 
features of the experimentally observed patterns. 
However, at this stage the model does not account 
for some critical features, such as the ability of the 
bacteria to develop organized patterns at very low 
nutrient levels. 

Fig. 5 shows the qualitative dependencies of the 
fractal dimension and the growth velocity of the 
nutrient concentration levels. As in the real bacterial 
colonies, in all the simulated colonies the growth 
velocity doesn’t change significantly throughout the 
growth. The data are for typical runs of the DW 
model. The growth velocity is presented in arbitrary 
units.  

 
Fig. 5. Growth velocity (left) and Fractal dimension 
(right) as a function of initial food concentrations. 
 
Clearly, the results are encouraging and do capture 
some features of the experimentally observed 
patterns. The branching patterns and the constant 
growth velocity are a manifestation of the diffusion 
field instability. From this perspective, it is quite 
reasonable that the effect of the instability is 
enhanced as the food concentration is raised and the 
motion of the bacteria is suppressed. This is 
analogous to lowering the diffusion coefficient of a 
bacterial density field (in a continuum description), 
which leads further into the diffusively unstable 
region of the parameter space. 
 
 
7 Conclusions  
We have considered morphogenesis as an inherently 
multilevel process, involving processes on different 
time and space scales and focused on the reciprocal 
influence between these levels. Thus, in our model 
morphogenesis is no longer a slave process, but 
unfolds by the interactions between pattern 
formation, the collective behavior of the cells, and 
its feedback to the pattern formation process.  
We show here a pattern forming system, bacterial 
colony, whose discrete elements, the bacteria, are 
big enough to raise the question of modeling 
discrete systems. The DW model has explicit 
discrete units to represent the bacteria. The ratio 
between the walkers’ size and the pattern’s size is 
even bigger than the ratio in the bacterial colony. 
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Reaction-diffusion (RD) theory for pattern 
formation was considered in relation to processes of 
biological development. We have shown that RD-
systems provide a strong framework for the 
modeling of growth processes and in particular, in 
biological systems. The RD-system model also 
permits the interaction of such systems in more 
complicated ways to provide emergent behaviors. 
This is particularly common in the development of 
multicellular organisms that served as models for 
simulation, because in addition to the feedbacks in 
the chemical dynamics, there is then another loop 
linking size and shape changes with the reaction-
diffusion patterning of growth controllers in the 
growing region. We have found that regulation of 
shape change in particular ways (e.g. to make 
narrow-angle branching) demands new features in 
our chemical mechanisms. 
The research presented here can be extended in 
several directions. One type of possible extension to 
the study presented here is to understand better the 
behavior of the biological systems, in order to 
choose the most adequate mathematical model.  
Another type of extension is to apply the approach 
of “generic modeling” to other types of biological 
systems. Yet another type of possible extension is 
the use of the same models (or closely related) in 
order to study various phenomena (not only 
biological) that are expressed in colonial pattern, 
and we have already started studies regarding the 
tumor growth. 
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