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Abstract: - In binary classification problem, data of feature vectors with binary labels are prepared in general. 

However, today it is well known that using all the features for discrimination does not always the best way to 

achieve the highest accuracy in prediction. Feature selection is a technique to find a subset of features with the 

highest accuracy by eliminating features harmful in prediction. Among various methods proposed, in this study we 

used a method which can be divided in two steps. Firstly, along the ranked features f1,…,fn based on Gini index, the 

feature subsets {f1},{f1,f2},...,{f1,…,fn} are tested by SVM with RBF kernel. Secondary, variants of the best feature 

subset found in the first step are tested in the same way. In the application to the prediction of nucleosome 

occupancy and modification from genome subsequence, the method achieved a small but assured improvement 

from the previous study. In addition, observed ranking of features revealed some relationships between features 

and categories of nucleosome datasets. Finally, the method was compared with other promising methods and 

outperformed them.  
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1   Introduction 
Genes and their expressions are important concepts for 

understanding how an organism lives. Due to the 

success of various genome projects including the 

Human Genome Project, today it is well-understood 

that an organism has thousands or tens of thousands of 

genes in its genome sequence. Gene expression 

(transcription and translation resulting in protein 

biosynthesis) is essential for life; however it is not 

constant. For instance, even within the same species, 

gene expression can differ from each individual, tissue, 

or physicochemical situation including starvation, 

cold shock, etc. More importantly, gene expression is 

regulated by various factors. As summarized by O. 

Hobert [1], transcription factors (TFs) and 

microRNAs (miRNAs) regulate genes separately, 

collaboratively, or oppositely, and they form a 

complicated network of gene regulation. In addition, 

nucleosomes are a factor of gene regulation in 

eukaryotic genomes and they have gotten a lot of 

attention recently.  

     A relatively long genome sequence in eukaryote is 

packaged using a unit called nucleosome which 

consists of 4 pairs of proteins called histones (H2A, 

H2B, H3, H4) and 145-147 base pairs of DNA 

wrapped around the histone octamer (Fig.1). Among 

the various roles of nucleosomes including the 

compaction of DNA into chromosomes, gene 

regulation is essential, since gene transcription is 

prevented in regions in which the DNA is tightly 

packed by nucleosomes. In this sense, gene regulation 
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by nucleosomes is on higher level than that by TF and 

miRNA, and occupancy of nucleosomes on DNA is an 

important clue to understanding the expression 

patterns of each gene. Additionally, chemical 

modification of DNA and/or histones is also related to 

chromatin formation (tight or loose packing) and gene 

regulation.  

     Pokholok et al. [2] reported the results of 

comprehensive experiment on genome-wide mapping 

of histone occupancy and modification (acetylation 

and methylation) in a yeast genome. They conducted 

systematic analysis and revealed a relationship 

between histone profiles and gene expression. It 

implies that if we can predict histone profiles from 

sequence information with a certain level of accuracy, 

it might be a useful hint to understanding the 

expression patterns of genes. Using 10 out of 14 

datasets published by Pokholok et al. [2], Pham et al. 

attempted to predict the occupancy and modification 

of a DNA sequence fragment [3]. Using a Support 

Vector Machine (SVM) with RBF kernel and k-gram 

features of the sequence in various window sizes 

(k=3,4,5,6,etc.), they achieved a high accuracy of 

prediction. They also conducted feature ranking using 

SVM with linear kernel to identify informative 

features for positive or negative classes. Instead of 

SVM, Tran et al. used Conditional Random Field 

(CRF) and obtained similar results regarding accuracy 

and the ranking of features [4]. However, neither of 

them made use of the ranking of features to improve 

prediction accuracy.  

     Coupled with feature ranking, in this study we 

applied a technique called feature selection to this 

problem. Since noisy or misleading features decrease 

prediction accuracy, eliminating such features is a 

better way than simply using all the features, and 

frequently brings improved accuracy in practice. 

Using feature ranking by the Gini index and feature 

selection along the ranking, we achieved a small but 

assured improvement of prediction accuracy. 

Moreover, we achieved further improvement by 

searching variants of the feature subset with the best 

accuracy. Besides accuracy improvement, the results 

provided some insights about selection of features 

around the feature set with the best accuracy. In 

addition to accuracy improvement, the results of 

feature ranking revealed some relationships between 

features and groups of datasets.  

     The rest of this paper is organized as follows. In 

section 2, after the datasets, problem formulation, and 

prediction algorithm are briefly described, our method 

of feature selection is illustrated. In section 3, 

experimental results are shown with some analysis and 

interpretation. Finally, section 4 concludes this paper. 

 

 
  Fig.1. Histone and nucleosome  

 

 

2   Materials and Methods 
 

2.1 Preparation of positive and negative 

examples 
Table 1 lists 10 datasets about nucleosome occupancy 

and modification. They are a subset of the datasets 

published by Pokholok et al. and have been used in 

this and previous studies [3,4].  

     In a dataset name in Table 1, “H3” or “H4” 

indicates the histone type, “K” and a succeeding 

number indicate a modified amino acid (e.g. “K9” 

denotes lysine as the 9th amino acid in the histone), 

and “ac” or “me” indicate the type of modification 

(acetylation or methylation). A number after “me” 

indicates times of methylation. A dataset is a set of 

pairs (position, value) where position and value 

indicate a specific point of genomic DNA sequence 

and relative occupancy or modification at this point. 

Similar to previous studies [3,4], we generated 

positive and negative examples as follows: 

 

1. For a position with a value greater than 1.2, 

generate a positive example by extracting a 

subsequence of 500 base pairs which centers on 

the position.  

2. Similarly, generate a negative example from a 

position with a value less than 0.8.  

3. Others are not used.  
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The numbers of positive and negative examples are 

shown in Table 2. Generated subsequences were then 

converted into vectors by counting k-grams in each 

subsequence. For instance, if we adopt a window size 

k=3, frequencies for “AAA”, “AAT”, “AAC”, “AAG”, 

“ATA”, ... are counted. Though various window sizes 

were explored in the previous studies [3,4], here we 

assume k=3 for simplicity. An example is represented 

as a vector with 64 dimensions of features 

corresponding to possible tri-nucleotide sequences.  

 

Table 1. Nucleosome datasets.  

Dataset Brief description

H3 H3 occupancy

H4 H4 occupancy

H3K9ac H3K9 acetylation relative to H3

H3K14ac H3K14 acetylation relative to H3

H4ac H4 acetylation relative to H3

H3K4me1 H3K4 monomethylation relative to H3

H3K4me2 H3K4 dimethylation relative to H3

H3K4me3 H3K4 trimethylation relative to H3

H3K36me3 H3K36 trimethylation relative to H3

H3K79me3 H3K79 trimethylation relative to H3  
 

Table 2. The numbers of examples.  

Dataset Positive Negative

H3 7,667 7,298

H4 6,480 8,121

H3K9ac 15,415 12,367

H3K14ac 18,771 14,277

H4ac 18,410 15,685

H3K4me1 17,266 14,411

H3K4me2 18,143 12,540

H3K4me3 19,604 17,195

H3K36me3 18,892 15,988

H3K79me3 15,337 13,500  
 

2.2 Prediction algorithm and implementation  
Support vector machine is a promising algorithm of 

supervised learning [5] applicable to a huge variety of 

problems in classification and regression. Also in 

bioinformatics, SVM has been frequently applied to 

structure analysis [6,7], gene expression analysis [8], 

and protein interaction analysis [9]. We adopted SVM 

with RBF kernel, which was used in [3]. We used a 

different parameter   = 0.05 for better accuracy of 

prediction. About implementation, Pham et al. used 

their own implementation of SVM. For reproducibility, 

we used the ksvm function included in the kernlab 

package [10] for R [11].  

 

2.3 Feature selection and feature ranking 

In the field of pattern recognition, feature selection has 

been actively studied. Wide variety of its application 

includes text classification [12], protein classification 

[13], intrusion detection [14], and so on. The problem 

can be defined as follows: given a whole set of N 

features, how can we find a subset which achieves the 

best discrimination performance in prediction? Since 

the size of search space is 2
N
 (or 2

N
-1 if we exclude an 

empty feature set), an exhaustive search is not 

applicable to practical problems. To solve this 

problem, various methods were proposed. They are 

classified into three classes. A wrapper method 

executes learning and prediction and utilizes the result 

of prediction to decide a feature (or a feature set) that 

can remain as a candidate or should be discarded. In 

contrast, a filter method statistically estimates the 

relevance of features as a preprocessing step without 

learning and prediction. The third class is an 

embedded method. Specific to a given learning 

machine, it performs feature selection within the 

process of learning. Besides this classification, the 

choice of a search algorithm is an important factor to 

characterize a method of feature selection. In addition 

to heuristics like forward selection and backward 

elimination, many search algorithms were proposed 

for feature selection: best-first search, floating search, 

random search including Relief algorithm, genetic 

algorithm search, and so on. Traditional algorithms are 

summarized by Jain et al. [15] and Molina et al. [16]. 

Newer algorithms and research trends are summarized 

by Liu et al. [17].  

     In this study, our algorithm of feature selection was 

divided into the following two steps:  

 

Step 1) Along a pre-computed ranking of features like 

f1,…,fn, where f1 and fn are  the features at the 

top and bottom of the ranking respectively, all 

the subsets {f1},{f1,f2},…,{f1,…,fn} are tested 

by executing learning and prediction by SVM 

with RBF kernel.  

Step 2) Neighbors (variants) of the feature set with the 

best prediction accuracy in the previous step 

are tested.  

 

In step 1, we used random forest [18] to compute the 

Gini index, which is one of the popular measures in 

feature ranking as well as information gain, t-statistics, 

etc. Random forest is a kind of ensemble learning 

algorithm based on randomly generated decision trees. 

Though it has various advantages, we used it only for 

generating the Gini index to be used in features 

ranking. To generate the variants in step 2, we 
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considered a set of at most eight features consecutive 

in the ranking, which is centered on the feature with 

the lowest Gini index in the best feature set in step 1. 

For instance, if {f1,…,fk} is the best feature set in step 

1, union of {f1,…,fk-4} and a set FPowerset({fk-3, fk-2, 

fk-1, fk, fk+1, fk+2, fk+3, fk+4 }) is tested for every F. Since 

k n-4(=60), 2
8
 feature sets are tested. Otherwise, 2

4
 ~ 

2
7
 feature sets were tested.  

 

 

3   Experimental Results 
 

3.1 Feature ranking by random forest 
In addition to the result of learning and prediction, 

randomForest function [19] for R can generate a value 

called MeanDecreaseGini for each feature. Using this, 

we can rank features in the order of importance 

(discriminative power). Fig.2 illustrates the 

relationship between rank and MeanDecreaseGini 

normalized into the interval [0,1] in each dataset.  
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Fig.2. MeanDecreaseGini along feature ranking  

 

     Common to all the datasets, the importance of 

features rapidly decreases in the regions of top 2~11, 

then slowly in the rests. It means that the majority of 

features in a dataset have only a small importance. 

Important features, detected through visual inspection 

of Fig.2, are listed in Table 3. In this table, it is shown 

that many datasets have features which mainly consist 

of “T” (thymine) and “A” (adenine). In two datasets 

(H3K9ac and H3K36me3), the ratio of “G” (guanine) 

and “C” (cytosine) are relatively higher. Additional 

observations are as follows:  

 TTT and AAA are important in both of H3 and 

H4 occupancies. It is also important in most of H3 

methylations, but not in acetylations.  

 AAT and ATT are important in H3 occupancy 

(not in H4 occupancy). They are commonly 

important in all acetylations including H4ac.  

 ATA and TAT are important in both of H3 and 

H4 occupancies, but in contrast to AAT and ATT, 

they are selectively important in most of H3 

methylations.  

 H3K79me3 is special in the sense that TTT, 

AAA, AAT, and ATT are not so important in it.  

Note that it is not clear whether an important feature is 

preferred in positive or negative examples.  

 

  Table 3. List of important features  

Dataset
Range

of rank

Features with high importance

listed in descending order of rank

H3 1~10
TTT, AAA, TAA, TTA, ATA,

TAT, AAT, CCA, ATT, TGG

H4 1~8
TTT, ATA, AAA, TAT, CCA,

ATC, TAA, TGG

H3K9ac 1~5 ATT, AAT, CGC, GCG, TTA

H3K14ac 1~2 AAT, ATT

H4ac 1~2 AAT, ATT

H3K4me1 1~5 TTT, TAT, CCA, ATA, AAA

H3K4me2 1~8
ATT, AAT, TTA, TTT, TAT,

ATA, TAA, AAA

H3K4me3 1~5 ATT, AAT, AAA, TTT, TAT

H3K36me3 1~11

CCA, ATA, TGG, TAT, CAA,

TTT, AAA, TCA, TTG, ATC,

TGA

H3K79me3 1~3 ATA, TAT, ATC

 

3.2 Prediction accuracy of feature subsets 

selected along the ranking 
In step 1 described in subsection 2.3, 64 different 

feature subsets {f1},{f1,f2},…,{f1,…,fn} along the 

ranking were tested  for each dataset using SVM with 

RBF kernel. The results of the prediction are 

summarized in Fig.3. Subsets with the best prediction 

accuracy are listed in Table 4. 

     In Fig.3, prediction accuracy in each dataset 

moderately increases to the bottom of the feature 

ranking. It implies that even if the given feature set 

includes features with low importance, SVM could 

utilize most of features for better discrimination. 

Actually, in Table 4, the best feature sets were 
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identical to the full feature sets (size=64) in 3 datasets 

(H4ac, H3K4me2, H3K36me3). For other datasets, 

small but assured improvement of accuracy was 

observed. The accuracy was computed as follows:  

FNTNFPTP

TNTP
Accuracy




  

where ,,, TNFPTP and FN  denote true positive, 

false positive, true negative, and false negative, 

respectively. Similar to Pham et al. [3], threefold 

cross-validation was adopted for computing accuracy. 

 

3.3 Prediction accuracy of neighbors around 

the feature subset with best accuracy 
Using the best feature subset listed in Table 4, step 2 of 

our feature selection was conducted for each dataset. 

The result is also shown in Table 4. Similar to step 1, 

step 2 achieved a small but assured improvement of 

accuracy.  

     Aside from prediction accuracy, it is notable that a 

feature with high (low) rank is not always included 

(excluded) in the best feature subset in step 2. For 

instance, in the dataset H4, GGG(59) was included in 

the best set, while TAG(56), GCC(57), and AGT(58) 

were not (see Table 5). A more extreme case is 

H3K4me1 in which, among 6 features with ranks of 

59~64, only the feature with the lowest rank survived 

and the others were discarded. It implies that the 

feature selection in step 1 along feature ranking is not 

sufficient, and a limited but comprehensive search in 

step 2 could compensate for the disadvantage.  
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Fig.3. Effects of feature selection along the ranking  

 

 

Table 4. Prediction accuracies computed by Pham et al. [3], no feature selection, step 1, and step 2.  

Dataset

Accuracy

(%) in [3],

no feature

selection,

size=64

Accuracy

(%), no

feature

selection,

size=64

The best feature subset

in step 1 with features

and their ranks in ()

Accuracy

(%), the

best

feature

subset in

step 1

The best feature subset in step 2 with

features and their ranks in ()

Accuracy

(%), the

best

feature

subset in

step 2

Sum of

accuracy

improve-

ments (%)

in step 1

and 2

H3 84.93 86.19 {TTT(1),...,CTA(59)} 86.21
{TTT(1),...,TCG(55), AAC(56),

CTA(59), ACT(60), TAG(62)}
86.45 0.26

H4 85.91 86.36 {TTT(1),...,CCC(55)} 86.64
{TTT(1),...,AGC(51),ACG(52),TGC

(53),CAC(54),CCC(55),GGG(59)}
86.67 0.31

H3K9ac 71.04 72.68 {ATT(1),...,CCC(62)} 72.86
{ATT(1),...,TCC(58), AGG(59),

GTC(60), CCC(62), GGA(63)}
72.90 0.22

H3K14ac 68.64 69.98 {AAT(1),...,GCC(62)} 70.23
{AAT(1),...,GGG(58), GGC(60),

CCC(61), GCC(62)}
70.36 0.38

H4ac 67.65 69.26 {AAT(1),...,CGG(64)} 69.26
{AAT(1),...,GGA(60), GGG(61),

CCG(63), CGG(64)}
69.32 0.06

H3K4me1 66.21 67.13 {TTT(1),...,GCG(62)} 67.28 {TTT(1),...,CGT(58), CGG(64)} 67.56 0.44

H3K4me2 66.09 68.23 {ATT(1),...,CGG(64)} 68.23
{ATT(1),...,CCC(60), CCG(61),

GCG(63), CGG(64)}
68.28 0.05

H3K4me3 62.37 65.79 {ATT(1),...,CCG(63)} 65.87
{ATT(1),...,GGC(59), GCC(60),

GCG(61), CGC(62), CGG(64)}
65.92 0.14

H3K36me3 71.74 73.80 {CCA(1),...,CGG(64)} 73.80
{CCA(1),...,GGC(60), GCC(61),

CGT(62), CCG(63), CGG(64)}
73.80 0.00

H3K79me3 78.25 79.56 {ATA(1),...,CGA(61)} 79.77
{ATA(1),...,AGG(57), GCT(59),

CGA(61), TCG(63), CGT(64)}
79.94 0.38
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Table 5. Features included in the best feature subset in step 2. The rank of an underlined feature is the lowest rank 

in the best feature subset in step 1. Features with light-gray backgrounds were considered in step 2 to generate 

variants of it. Features with dark-gray backgrounds were included in all the variants (features with ranks 1~49 were 

also included, but omitted in this table). Features written in bold face were adopted in the best feature subset in step 

2. Features with white backgrounds were not used in any variants.  

Dataset \ Rank 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

H3 CGA GTG GAG TGT AGT TCG AAC GGG GTA CTA ACT TAC TAG ACG CGT

H4 CGT AGC ACG TGC CAC CCC TAG GCC AGT GGG GTG GCT CGA TCG GGC

H3K9ac TAG CAG ACT CGA AGT GGT ACC GGG TCC AGG GTC CCT CCC GGA GAC

H3K14ac TGC CTG AGG GAC GTC CGT CCT ACG GGG TCG GGC CCC GCC CGG CCG

H4ac CTA AGG TCG CTG GTC TCC GCC CCT CAG CCC GGA GGG GAC CCG CGG

H3K4me1 GAC GTC AGG CCC CGA ACG TCG GGG CGT CGC GGC GCC GCG CCG CGG

H3K4me2 GAC CAG AGC TCC TCG GCC CCT GGG ACG CGT CCC CCG CGC GCG CGG

H3K4me3 GTC CGA GGG CCT CGT GAC TCG CCC ACG GGC GCC GCG CGC CCG CGG

H3K36me3 CAG CTG CCT GAC CCC CGA AGG GTC ACG TCG GGC GCC CGT CCG CGG

H3K79me3 CTA GGG GAG CGG GAC CTC AGC AGG ACG GCT GTC CGA CCT TCG CGT  
 

3.4 Comparison with other feature selection 

methods in wrapper approach 
To compare our method with popular methods in 

wrapper approach, we conducted comprehensive 

experiment of feature selection using Weka [20]. In 

this experiment, we tested all the combinations of the 

six classifiers (BayesNet, NaiveBayes, SMO, J48, 

AdaBoostM1, RandomForest) and five search 

methods (BestFirst, GeneticSearch, GreedyStepwise, 

LinearForwardSelection, RankSearch). After that, 

prediction accuracy of each feature subset was 

calculated in the same way as subsections 3.2 and 3.3. 

The results are shown in Tables 6~11. In these tables, 

prediction accuracy of each feature subset is shown 

with the size of the feature subset in (). Though some 

combinations were not successfully generated feature 

subsets (indicated as „-„ in these tables), most of the 

feature subsets generated by the above classifiers and 

search methods achieved lower prediction accuracies 

in comparison with Table 4 by our methods.  

 

Table 6. Prediction accuracies of feature subsets obtained by BayesNet classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.7899(6) 0.8507(29) 0.7899(6) 0.8258(20) 0.8607(56)

H4 0.8453(20) 0.8475(34) 0.8453(20) 0.8399(19) 0.8463(24)

H3K9ac 0.6984(23) 0.7141(41) 0.6984(23) 0.6919(21) 0.7163(51)

H3K14ac 0.6767(20) 0.6921(44) 0.6767(20) 0.6680(18) 0.6794(26)

H4ac 0.6511(17) 0.6716(34) 0.6511(17) 0.6576(20) 0.6892(53)

H3K4me1 0.6448(19) 0.6556(33) 0.6448(19) 0.6425(15) 0.6657(42)

H3K4me2 0.6475(7) 0.6600(30) 0.6475(7) 0.6464(5) 0.6491(7)

H3K4me3 0.5997(10) 0.6354(35) 0.5997(10) 0.6013(10) 0.6090(17)

H3K36me30.7098(28) 0.7182(38) 0.7098(28) 0.7024(19) 0.7352(58)

H3K79me30.7653(20) 0.7846(45) 0.7653(20) 0.7768(26) 0.7913(43)

BayesNet
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Table 7. Prediction accuracies of feature subsets obtained by NaiveBayes classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.8394(26) 0.8445(28) 0.8174(14) 0.8386(21) 0.7909(8)

H4 0.8568(30) 0.8554(36) 0.8568(30) 0.8395(18) 0.8463(24)

H3K9ac 0.7002(22) 0.7100(36) 0.6945(18) 0.7018(24) 0.7151(50)

H3K14ac 0.6663(18) 0.6888(35) 0.6620(15) 0.6765(24) 0.6709(16)

H4ac 0.6655(22) 0.6774(33) 0.6655(22) 0.6628(26) 0.6926(64)

H3K4me1 0.6391(19) 0.6568(31) 0.6390(16) 0.6427(18) 0.6639(41)

H3K4me2 0.6443(6) 0.6577(23) 0.6450(6) 0.6422(4) 0.6491(7)

H3K4me3 0.6231(32) 0.6378(34) 0.6054(10) 0.6092(15) 0.6579(64)

H3K36me3 0.7123(28) 0.7151(33) 0.7123(28) 0.6992(24) 0.7126(30)

H3K79me3 0.7890(43) 0.7850(36) 0.7727(18) 0.7829(34) 0.7926(46)

NaiveBayes

 
 

Table 8. Prediction accuracies of feature subsets obtained by SMO classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.8382(24) 0.8581(41) 0.8228(12) 0.8563(41) 0.8539(44)

H4 0.8527(47) 0.8613(48) 0.8494(31) 0.8478(24) 0.8625(62)

H3K9ac 0.7072(40) - 0.6954(20) 0.6994(23) 0.7142(44)

H3K14ac 0.6786(26) 0.6892(41) - - 0.6984(58)

H4ac 0.6669(25) 0.6827(47) 0.6667(23) 0.6684(27) 0.6880(52)

H3K4me1 0.6484(32) 0.6614(39) 0.6457(19) 0.6459(29) 0.6717(61)

H3K4me2 0.6623(14) 0.6688(37) 0.6623(14) 0.6606(22) 0.6810(62)

H3K4me3 0.6271(27) 0.6460(43) 0.6134(16) 0.6042(13) 0.6573(59)

H3K36me3 0.7058(26) 0.7208(44) 0.7036(23) 0.7238(45) 0.7368(63)

H3K79me3 0.7825(35) 0.7953(44) 0.7816(29) 0.7880(45) 0.7961(61)

SMO

 
 

Table 9. Prediction accuracies of feature subsets obtained by J48 classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.8072(8) 0.8505(36) 0.8016(6) 0.8072(8) 0.7909(8)

H4 0.8231(10) 0.8482(26) 0.8231(10) 0.8132(9) 0.8373(21)

H3K9ac 0.6698(4) - 0.6698(4) 0.6698(4) 0.6659(4)

H3K14ac 0.6373(5) - 0.6373(5) 0.6275(4) 0.6424(10)

H4ac 0.6190(4) 0.6368(12) 0.6190(4) 0.6190(4) 0.6210(3)

H3K4me1 0.6205(7) - 0.6111(5) 0.6137(6) 0.5993(4)

H3K4me2 0.6475(5) - 0.6418(3) 0.6475(5) 0.6491(7)

H3K4me3 0.5858(4) - 0.5858(4) 0.5858(4) 0.5804(4)

H3K36me3 - - 0.6549(5) 0.6549(5) 0.6788(10)

H3K79me3 - - 0.7302(7) - 0.7226(7)

J48
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Table 10. Prediction accuracies of feature subsets obtained by AdaBoostM1 classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.7873(5) 0.8204(21) 0.7873(5) 0.7873(5) 0.7909(8)

H4 0.8110(10) 0.8527(32) 0.8110(10) 0.8134(9) 0.8286(16)

H3K9ac 0.6784(8) 0.6909(27) 0.6784(8) 0.6784(8) 0.6709(5)

H3K14ac 0.6569(10) 0.6726(29) 0.6569(10) 0.6569(10) 0.6737(21)

H4ac 0.6289(6) 0.6666(29) 0.6289(6) 0.6289(6) 0.6709(39)

H3K4me1 0.6308(10) 0.6485(30) 0.6308(10) 0.6259(9) 0.6590(29)

H3K4me2 0.6471(5) 0.6611(21) 0.6471(5) 0.6471(5) 0.6526(10)

H3K4me3 0.5918(6) 0.6188(29) 0.5918(6) 0.5918(6) 0.6169(26)

H3K36me3 0.6765(8) 0.7016(33) 0.6765(8) 0.6614(6) 0.7118(27)

H3K79me3 0.7500(11) 0.7706(32) 0.7500(11) 0.7500(11) 0.7642(19)

AdaBoostM1

 
 

Table 11. Prediction accuracies of feature subsets obtained by RandomForest classifier. 

BestFirst GeneticSearch GreedyStepwise LinearForwardSelection RankSearch

H3 0.7296(2) 0.8501(33) 0.7296(2) 0.7296(2) 0.8553(48)

H4 0.8434(21) 0.8508(32) 0.6967(2) 0.8492(21) 0.8551(32)

H3K9ac 0.6544(2) - 0.6544(2) 0.6544(2) 0.7058(35)

H3K14ac 0.5993(2) - 0.5993(2) 0.5993(2) 0.6950(49)

H4ac 0.6148(2) - 0.6148(2) 0.6148(2) 0.6926(63)

H3K4me1 0.5878(2) - 0.5878(2) 0.5878(2) 0.6674(47)

H3K4me2 0.6390(2) - 0.6390(2) 0.6390(2) 0.6742(47)

H3K4me3 0.5785(2) - 0.5785(2) 0.5785(2) 0.6577(60)

H3K36me3 0.6187(2) - 0.6187(2) 0.6187(2) 0.7218(37)

H3K79me3 0.6659(2) - 0.6659(2) 0.6659(2) 0.7903(41)

RandomForest

 
 

3.5 Effect of longer window size (k=4) 
In the above experiments, we basically adopted only 

one window size, that is, k=3. It is convenient to save 

the number of features and possible space of feature 

subsets. To demonstrate that our method is also useful 

for larger number of features, we conducted the same 

experiments with k=4. Though the number of features 

increased to 256, Table 12 shows that our method is 

still effective. 
 

4   Conclusion 
In this study, we attempted to improve the accuracy of 

predicting occupancy, acetylation, and methylation of 

nucleosomes. First, the importance of features was 

computed through learning and prediction by random 

forest. Features were ranked using the computed value 

MeanDecreaseGini. The results of feature ranking 

implied that some features are selectively important in 

some groups of datasets, e.g. 3 datasets about 

acetylation. Then, we conducted feature selection in 

two steps. Step 1 searches the best feature subset along 

the ranking. Compared with full feature sets, feature 

subsets with better prediction accuracy were found by 

this feature selection. It was also revealed that the 

majority of features have only a small importance; 

however, SVM attempts to utilize them as much as 

possible. Finally in step 2, variants of the best feature 

subset in step 1 were tested. As a result, the accuracy 

was improved again. From the best feature subsets 

found in step 2, it was suggested that step 2 might 

work complementarily. Similar experiments were 

conducted also for k=4, and it was shown that our 

method is still effective for the data with 256 features.  

     To compare our method with other methods, we 

conducted comprehensive experiments of feature 

selection using Weka. All the combinations of the six 

classifiers and five search methods were tested, and 

our method outperformed them.  
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Table 12. Prediction accuracies computed by Pham et al. [3], no feature selection, step 1, and step 2 (k=4). 

Dataset

Accuracy

(%) in [3],

no feature

selection,

size=256

Accuracy

(%), no

feature

selection,

size=256

The best feature subset in

step 1 with features and

their ranks in ()

Accuracy

(%), the

best

feature

subset in

step 1

The best feature subset in step 2 with

features and their ranks in ()

Accuracy

(%), the

best

feature

subset in

step 2

Sum of

accuracy

improve-

ments (%)

in step 1

and 2

H3 85.88 86.43
{AAAA(1),...,ACGC(243

)}
86.47

{AAAA(1),...,GGGT(239),

GACG,GGGC,GCGT,ACGC}
86.47 0.04

H4 87.14 87.04
{TATA(1),...,AGGG(244

)}
87.24

{TATA(1),...,CCTA(240),CGCC,GG

CG,AGGG,GGCC}
87.32 0.29

H3K9ac 73.64 74.98
{AATT(1),...,GACG(250

)}
75.07

{AATT(1),...,ACCC(246),

CGGG,GGAC,CGGA,GACG,TCCG

,CCGA}

75.08 0.10

H3K14ac 71.28 73.28
{TATA(1),...,GGGG(256

)}
73.28

{TATA(1),...,CCGG(252),

CGGC,CGGG,GGGG}
73.28 0.00

H4ac 69.93 72.06
{AATT(1),...,CCCC(256)

}
72.06

{AATT(1),...,GCGG(252),

GCGC,CGGG,GGGG,CCCC}
72.06 0.00

H3K4me1 68.29 69.53
{TATA(1),...,CGGC(251

)}
69.64

{TATA(1),...,CGCC(247),

GCGG,CCGC,CGGC,CCGG,GGGG

}

69.71 0.18

H3K4me2 67.05 68.89
{ATTT(1),...,CGGG(255)

}
68.89

{ATTT(1),...,CCCG(251),

GGGG,GCGC,CGGG,CGCG}
68.97 0.08

H3K4me3 65.09 68.38
{AATT(1),...,GCGC(254

)}
68.46

{AATT(1),...,CCGG(250),

CCCG,CCCC,CGGG,CGCG}
68.57 0.19

H3K36me

3
73.37 75.09

{TATA(1),...,CGGG(256

)}
75.09

{TATA(1),...,CGGC(252),

CCGG,CCCC}
75.19 0.09

H3K79me

3
79.91 80.39

{TATA(1),...,CGGG(244

)}
80.53

{TATA(1),...,ACCC(240),

CGGT,CCCC,CGGG,GGCG,TCCG,

GACG}

80.58 0.19
 

 

     The method proposed in this paper is classified as a 

wrapper method since it executes learning and 

prediction, and utilizes the results of a prediction to 

find a better feature subset. In general, one execution 

of random forest and at most 
in 2  executions of 

SVM are needed in this method, where in this study, n 

and i are 64~256 and 8, respectively. However, in the 

case that n is large (e.g. ~20,000 in a gene selection 

problem on human microarray data), n times 

execution may be impractical. If we can reduce the 

search space into a few candidates using the 

importance of features, step 1 becomes more practical. 

On the other hand, step 2 currently tests all the 
i2  

feature subsets. Application of a more efficient feature 

selection method to this limited search space will be 

considered as one subject of future work.  
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