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Abstract: - The actual protocols used in diagnosis and management of the diabetes mellitus include the classical 
clinical trials and the physicians’ experience, but they do not account by the dynamics of the blood glucose and 
insulin. So, it is natural to have many diabetes patients with poor control of blood glucose values. The 
introduction in the medical practice of the blood glucose continuous monitoring systems has made possible the 
automated analyse of blood glucose dynamics. Along this paper the authors present algorithms for automatic 
diagnosis in the diabetic patients monitoring with applications, especially in the intensive care units and 
telemedicine. We have focused on the statistical analysis methods in order to detect the reliable characteristics, 
useful in the identification of standard aspects or stable patterns for each type and stage of the complex and 
long-term evolution of the disease that is diabetes mellitus. Examples of the frequency range of blood glucose 
dynamics of normal subjects and subjects with diabetes are presented with the help of Wigner-Ville 
distribution. The spectral analysis reveals the frequency band edge and offers the basic information to correct 
determination of Nyquist sample period. These findings may have significant clinical implication in diagnosis 
of the diabetes mellitus, in blood glucose monitoring and the management of the diabetes therapy. 
 
Key-Words: - Statistical analysis, Diabetes mellitus, Continuous glucose monitoring, Probability distribution 
function, Periodogram, Correlation 
 
1  Introduction 
The World Health Organization has estimated a 
rapid increase in the number of people affected by 
mellitus diabetes from 173 million in 1973 to 300 
million in 2025. Studies regarding the increase of 
morbidity through diabetes, especially at children or 
youngsters and grave complications, permanently 
affective, of this disease have allowed the 
anticipation of high costs at the society level. 

As an answer to all of these findings important 
programs and projects for the study of the diabetes 
and particularly for curing it have been financed in 
the last 5 years. From these, we mention: 

 ADICO (Advanced Insulin Infusion Using a 
Control Loop)-European Union co financed 
project for the study of insulin treatment 

belonging to an automated pancreas system. 
 CLINICIP – European project, consortium–

type, co financed by the European Union 
through IST Programme FP6 for the study of 
the automated (closed loop) insulin treatment 
for patients in a critical state [1]. 

 DIRECNET – Diabetes research in children 
network. 

 JDRF – Juvenile Diabetes Research 
Foundation International in collaboration to 
the Department of Defence of the USA and 
the American Space Agency (NASA). 

Research in this area will have in the nearby future a 
major impact in the medical environment. They 
belong to the modern tendency to automate and to 
introduce the informatics in the human medicine [2]. 
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The realisation of the artificial pancreas is 
presently a fundamental high priority research area 
with a strong interdisciplinary character 
(physiology, diabetology, automated systems 
engineering). The objective consisted in the building 
of a mathematical model of the blood glucose 
control system as correctly as possible and the 
development on its base of evolved control 
algorithms in an automated state, adapted to the 
real-life situations encountered in medical practice 
[3]. 
 
 
2  Problem Formulation 
Our team’s purpose was to develop new, 
competitive algorithms for automatic diagnosis in 
the diabetic patients monitoring with applications, 
especially in the intensive care units and 
telemedicine.  

Automatic diagnosis in such a medical field 
requires the introducing of a proper method or a 
group of mathematical methods capable to achieve 
moment to moment the following objectives: 

- to identify the type of diabetes 

- to detect the pathological component in the 
early stages of the disease 

- to quantify the risk level of the metabolic 
disorders 

- to reveal the trend in the pathological state 
evolution 

- to estimate the response to the treatments 

In the beginning, we have focused on the statistical 
analysis methods in order to detect the reliable 
characteristics, useful in the identification of 
standard aspects or stable patterns for each type and 
stage of the complex and long-term evolution of the 
disease that is diabetes mellitus.  
 
 
3  Experimental Lot 
For this study we have selected 18 adult subjects (10 
female and 8 male), patients with insulin dependent 
mellitus diabetes and 3 healthy humans. 16 patients 
underwent treatment with rapid and semi-lent types 
of insulin, at different times of the day, according to 
the classic method of treatment and clinically 
supervised. Patients maintain a satisfactory or 
poorly control of the blood glucose concentration 
for a long period of time. Two patients have 
received a proper dosage of insulin by a new device 
called “insulin pump”. This offers a continuous 
basal rate of insulin and facilitates the 

administration of bolus insulin related to meals, 
exercise or other particular states. These patients 
maintain a very good control over the blood glucose 
concentration for a long period of time.  

The blood glucose was recorded to each patient 
at five minute intervals, continuously for three days, 
using the Real-Time Guardian Continuous Glucose 
Monitoring System (CGMS) [4] in unrestrained 
conditions. Each patient had a normal life, with 
usual meals and activities at work and at home. The 
continuous blood glucose records represent for this 
study time-series of the blood glucose 
concentration. The following figures present the 
blood glucose representation for 24 hours. For 
exemplification we choose the following individual 
cases: 

 Patients (P1, P2, P3) with insulin dependent 
diabetes (type I) under intermittent 
treatment with insulin injections. The 
CGMS displays high variability of the 
glucose values as an expression of an 
insufficient control of diabetes (Fig. 1, Fig.2 
and Fig. 3).  

 Patient (P4) with insulin dependent diabetes 
under insulin treatment administrated by 
insulin pump. The CGMS displays a less 
variability of glucose values, expression for 
an improved control of diabetes (Fig. 4). 

 Healthy subject (P5) with normal food 
administration and activity. The CGMS 
displays a low variability of the glucose 
values, expression of an efficiently blood 
glucose control (Fig. 5). 

 
 
4  Mathematical Methods 
The following statistical methods have been utilised 
for recordings from the experimental lot: normal 
distribution, histogram, probability density function, 
periodogram and correlation function [5], [6] and 
[7]. The normal distribution, also called the 
Gaussian distribution, is an important family of 
continuous probability distributions, applicable in 
many fields. Each member of the family may be 
defined by two parameters: the mean μ and the 
standard deviation σ.  
 
4.1  Statistical parameters 
For the time series presented in Fig. 1, 2, 3, 4 and 5 
have been calculated the mean and the standard 
deviation (Table 1). Also, using statistical 
prediction, it was possible to calculate the 
confidence intervals for 95% and 99% of blood 
glucose values.  
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Table 1. 
 
Statistical 
parameters P1 P4 P5 

Mean of blood glucose  
values  -  μ (mg/dl) 199.31 101.28 86.56

Standard deviation - σ 81.02 17.29 6.14 
Minimum 189.91 99.27 85.85Confidence 

interval for 95% Maximum 208.71 103.28 87.27
Minimum 186.93 98.63 85.62Confidence 

interval for 99% Maximum 211.69 103.92 87.50
 
The statistical findings reveal a very large 
distribution for diabetes patient P1, comparatively 
with P4 patient (with insulin pump) and P5 patient 
(normal subject).  
 
4.2  Histogram 
In statistics, a histogram is a graphical display of a 
table that shows what proportion of cases fall into 
each of several or many specified categories. In a 
mathematical sense, a histogram is a mapping that 
counts the number of observations that fall into 
various disjoint categories (known as bins). There is 
no "best" number of bins, and different bin sizes can 
reveal different features of the data. In the present 
paper the authors propose the usage of histograms in 
order characterise the time-series coming from the 
continuous glucose monitoring system.  

Also, due the fact that we are dealing with 
measurements that can be corrupted by errors, we 
have calculated a Gaussian distribution for these 
data. The Gaussian distribution, also called the 
normal distribution, is an important family of 
continuous probability distributions, applicable in 
many fields. The importance of the normal 
distribution as a model of quantitative phenomena in 
the natural science is due to the central limit 
theorem. Many physiological measurements can be 
approximated well by the normal distribution. In 
addition, the normal distribution maximizes 
information entropy among all distributions with 
known mean and variance, which makes it the 
natural choice of underlying distribution for data 
summarized in terms of sample mean and variance. 

 For the diabetes patients under intermittent 
treatment with insulin injections (P1, P2 and 
P3), the CGMS displays high variability of 
the glucose values as an expression of an 
insufficient control of diabetes (Fig. 1, Fig. 
2 and Fig. 3). This aspect is revealed in a 
statistical manner by the corresponding 
histograms (Fig. 6, Fig. 7 and Fig. 8). 

 For the patient with insulin dependent 
diabetes under insulin treatment 
administrated by insulin pump (P4), the 
CGMS displays a less variability of glucose 
values, expression for an improved control 
of diabetes (Fig. 4). This aspect is revealed 
in a statistical manner by the corresponding 
histogram (Fig. 9). 

 For the healthy human (P5) with normal 
food administration and activity, the CGMS 
displays a low variability of the glucose 
values, expression of an efficiently blood 
glucose control (Fig. 5). This aspect is 
revealed in a statistical manner by the 
corresponding histogram (Fig. 10). 
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Fig. 1. Time evolution of the glucose concentration 

for the P1 patient. 
INS – insulin treatment, M – meal. 
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Fig. 2. Time evolution of the glucose concentration 
for the P2 patient. 

INS – insulin treatment, M – meal. 
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Fig. 3. Time evolution of the glucose concentration 

for the P3 patient. 
INS – insulin treatment, M – meal. 

0 2 4 6 8 10 12 14 16 18 20 22 2450

100

150

200

250

300

350

400

Time (hours)

B
lo

od
 g

lu
co

se
 c

on
ce

nt
ra

tio
n 

(m
g/

dl
)

INS

INS

INS
INS

M 

M 

M 
M 

M 
INS M 

INS

 
Fig. 4. Time evolution of the glucose concentration 

for the P4 patient. 
INS – insulin treatment, M – meal. 
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Fig. 5. Time evolution of the glucose concentration 

for the P5 patient. 
M – meal. 

 

 
 

Fig. 6. Histogram of the glucose concentration for 
the P1 patient. 

 

 
Fig. 7. Histogram of the glucose concentration for 

the P2 patient. 
 

 
 

Fig. 8. Histogram of the glucose concentration for 
the P3 patient. 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Eugen Iancu, Ionela Iancu, Maria Moţa

ISSN: 1109-9518 Issue 4, Volume 5, April 200878



 
 

Fig. 9. Histogram of the glucose concentration for 
the P4 patient (insulin pump) 

 

 
 
Fig. 10. Histogram of the glucose concentration for 

the P5 subject. 
 
4.3  Probability distribution 
The probability distribution functions (PDF) for the 
time series of the blood glucose are represented for 
selected patients in Fig. 11, 12 and 13. These 
graphics display clearly the differences between P1, 
P4 and P5. 

 For P1 patient the curve show a very large 
distribution with reduced amplitude for the 
PDF.  

 For P4 patient the curve show a mean 
distribution as a consequence of the 
protocol of the insulin administration by the 
insulin pump.  

 For P5 patient the PDF is much more 
concentrated and reveal the high quality of 
the physiological blood glucose control 
system. 
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Fig.11. Probability distribution function (PDF) for 
the patient P1. 
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Fig.12. Probability distribution function (PDF) for 

the patient P4 (insulin pump). 
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Fig.13. Probability distribution function (PDF) for a 
normal subject P5. 
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4.4  Periodogram 
The periodogram method [5], [6], [8], used in signal 
processing, was applied in our study to the 
probability distribution function to display the 
estimated spectral power density. 
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Fig.14. Periodogram estimated for probability 

distribution function for the P1 patient. 
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Fig.15. Periodogram estimated for probability 

distribution function for the P4 patient. 
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Fig. 16. Periodogram estimated for probability 

distribution function for the P5 patient. 

For P1 patient (Fig. 14) the magnitude start around 0 
(dB/Hz), for P4 patient (Fig. 15) the magnitude start 
around 14 (dB/Hz) and for P5 patient (Fig. 16) the 
magnitude start around 24 (dB/Hz). All graphics 
reveal the same frequency range, but the greater 
attenuation at P1 and a less attenuation to the 
healthy subject P5. 
 
4.5  Correlation function 
In Fig. 17, it is represented the correlation functions 
calculated for the time series of blood glucose 
concentration and for lags which vary from 0 to 24 
hours. The graphics express the influence of the 
“history” over the present. We can notice the long 
periods during which these influences exist. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 17. Correlation functions for the analysed 
patients during 24 hours. 

 
These statistical findings permit the clear 

discrimination between the patients type P1, P4 and 
P5 and their classification in accordance to the risk 
levels. Also, these methods can be used to 
determinate the thresholds for the risk levels and to 
calculate a match between the parameters of the 
mathematical model and the parameters from each 
patients. 
 
4.6  Time-frequency Analysis 
Many times, we are interested in details of the 
temporal process represented through signal ( )tx  in 
certain time intervals as well as details such as the 
spectral density in certain frequency bands. In these 
cases, the analysis needs to be done very 
specifically, in time intervals or in the frequency 
bands that we are interested in. Such situations can 
occur, for example, in the analysis of the vocal 
signal, in recordings of electrocardiogram signals, 
heart sounds, seismic signals and so on.  
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The need for a combined time-frequency 
representation stemmed from the inadequacy of 
either time domain or frequency domain analysis to 
fully describe the nature of non-stationary signals.  

A time frequency distribution of a signal 
provides information about how the spectral content 
of the signal evolves with time, thus providing an 
ideal tool to dissect, analyse and interpret non-
stationary signals. This is performed by mapping a 
one dimensional signal in the time domain, into a 
two dimensional time-frequency representation of 
the signal. A variety of methods for obtaining the 
energy density of a function, simultaneously in the 
time and frequency have been devised, most notably 
the short time Fourier transform, the wavelet 
transform and the Wigner-Ville distribution [6].  

Obviously, for the extraction of a window from a 
( )tx  signal we can use the “windowing” process 

with a function ( )tw . The “windowed” signal: 
 

( ) ( ) ( )twtxtxw =          (1) 
 
is defined on a desired time interval [9], [10]. The 
Wigner-Ville Distribution (WVD) has the 
mathematical expression: 

   ∫
+∞

∞−

τπ− τ
τ

−
τ

+
π

= detxtxftWVD fj
ww

2* )
2

()
2

(
2
1),(  

      (2) 
 
For a time-series x(n), the expression of the 
discrete-time Wigner-Ville Distribution, WD(n,f) is:  
 

  ∑
∞

−∞=

π−⋅−⋅+=
k

fkj
N eknxknxkhfnWD 4*2 )()()(2),(  

(3) 
 
where hN(k) is a data-window, which performs a 
frequency smoothing. While Fourier spectra are 
periodic with period equal to the sampling rate, 
WD(n,f) is periodic in frequency with period equal 
to half the sampling rate. This may cause aliasing, 
which can be removed either by oversampling, or by 
using the corresponding analytic signal. The 
distribution is negatively affected by important 
cross-terms, which limit its practical use. Cross-
terms may be adequately reduced smoothing the 
distribution over time. The resulting smoothed 
Wigner-Ville, SWD(n,f) is: 
 

   
fkj

k
N

m

emknxmknxkh

mwfnSWD

π−
∞

−∞=

∞

−∞=

∑

∑

+−⋅++⋅

⋅=

4*2 )()()(

)(),(
   (4) 

The continuous blood glucose records represent 
for this study time-series of the blood glucose 
concentration. The following figures present the 
Wigner-Ville distribution of the glucose 
concentration, during 24 hours, for three patients 
with insulin dependent diabetes (P1, P2 and P3 with 
insulin injections), one diabetes patient under 
treatment administrated by insulin pump (P4) and 
one healthy subject (P5). 

The time is indicated, indirectly through the 
number of the samples, between 12:00 am and 
12:00 pm. 

The colours show the amplitudes of the spectral 
components according to the following pattern: the 
amplitude decreases from red to blue. 
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Fig. 18. Wigner-Ville distribution of the glucose 
concentration for the P1 patient. The maximum 

frequency: 0.018 Hz. 
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Fig. 19. Wigner-Ville distribution of the glucose 
concentration for the P2 patient.  The maximum 

frequency: 0.026 Hz. 
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Fig. 20. Wigner-Ville distribution of the glucose 
concentration for the P3 patient. The maximum 

frequency: 0.026 Hz. 
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Fig. 21. Wigner-Ville distribution of the glucose 

concentration for the P4 patient (insulin pump). The 
maximum frequency: 0.0125 Hz. 
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Fig. 22. Wigner-Ville distribution of the glucose 
concentration for the P5 (healthy subject). The 

maximum frequency: 0.01 Hz. 
 

The patients display extremely diverse blood 
glucose dynamics and their characteristics are time 
varying in our methods. The Wigner-Ville 
distribution (WVD) reveal the next frequency 
bands:  

 Low frequency band (0 - 0.003 Hz) is 
common for all the individual cases. These 
oscillations are continuous over 24 hours 
with a high amplitude around the middle of 
the day and reduced amplitude in the night. 

 High frequency oscillations (0.003 – 0.01 
Hz) with a reduced amplitude seem to be 
specifically in the interval 8 pm to 4 am 
(during the night). 

 High frequency oscillations (0.003 – 0.025 
Hz) were displayed only at diabetes patients 
during 6 am at 6 pm (during the day) in an 
irregular manner. These oscillations look 
like islets in Wigner-Ville distributions and 
tend to group around the middle of the day.  

In this moment the experimental studies have not 
investigated yet the correlation between these 
frequency bands and the physiological parameters of 
the blood glucose control system.  

The Wigner-Ville Distribution (WVD) reveal the 
frequency band edge and offer the possibility to 
estimate the correct Nyquist sample period (Table 
2).  

The histograms and the WVD diagrams show a 
great variability of the glucose values at diabetics 
patients with classical insulin treatment. 
Consequently, the frequency spectrum indicates the 
maximum frequency towards 0.026 Hz.  

At diabetes patients with treatment by insulin 
pump, the maximum frequency is less than 0.0125 
Hz. The ideal blood glucose control, corresponding 
to healthy human, generates a maximum frequency 
of 0.01 Hz.  

By the Nyquist criteria, the sample period for the 
glucose time-series study, in this case, must be less 
or equal to 50 seconds. In the medical practice, the 
diabetes patients are frequently in the state of blood 
glucose control failures. Similarly, by the Nyquist 
criteria, the sample period for the glucose time-
series study, in this case, must be less or equal to 20 
seconds. These values are considerably shorter than 
the sample rate which are utilised in medical 
practice. 

David Gough and collaborators [8] have found 
by the power spectrum estimated method a Nyquist 
sample period value of about 9 minutes for diabetic 
subjects and 7 minutes for non diabetic, 
corresponding to a frequency continuous band edge 
around 10-3 Hz. Paolo Magni and collaborators [11] 
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using Bayesian estimation have found a necessary 
sampling value of 10 minutes for blood glucose 
signal. 

Table 2 
 

  
P1 

 
P4 P5 

Maximum frequency 
[Hz] 0.026 0.0125 0.01 

Sample period 
proposed 
[Seconds] 

20 40 50 

Sample period 
recommended by 
other authors 
[Seconds] 

420 - 600 

 
We consider that the use of these new sample 

periods assure the accuracy of the data acquisition 
and reveal the all significant components. These 
findings may have significant clinical implications 
in diagnosis of the diabetes mellitus, in blood 
glucose monitoring and the management of the 
diabetes therapy.  
 
 
5  Conclusion 
The diabetes mellitus is a disease with serious social 
implications through the large number of people 
affected, complications and high costs that it 
involves. The World Health Organization has 
estimated a rapid increase in the number of people 
affected by mellitus diabetes from 173 million in 
1973 to 300 million in 2025.  

The complex and highly non-stationary nature 
[12], [13], [14], [15] of the blood glucose time 
series, especially in diabetic patients and the 
permanent influence of the external perturbations 
(meal, sleep, exercise, other treatments etc.) require 
a complex series of mathematical study methods. 

The patients display extremely diverse blood 
glucose dynamics and their characteristics are time 
varying in our methods. This aspect corresponds to 
large variability of blood glucose observed 
frequently in diabetes patient’s records. We suggest 
that this situation is the consequence of poor 
efficiency of the physiological blood glucose control 
system and/or insufficient management of the 
diabetes.  

However, statistical methods have the advantage 
to be accurate and robust, simple enough to be 
implemented with low costs. We have proven that 
these methods offer an indispensable foundation for 

our investigation and represent a reliable support for 
diagnosis.  

Our findings present the time-frequency 
characterisation of blood glucose dynamics for 
insulin-dependent diabetes patients and healthy 
human subjects and suggest the patterns of diabetes 
patients under classical insulin treatment, insulin 
pump treatment and non-diabetes subjects. 

These method offer essential information about 
the diabetes stage at unconscious patients (coma, 
critical stages, etc.), uncooperant patients (psychical 
disease, early children, old patients), negligent 
patients that cannot hold a trust diary for meal, 
activities and treatment or cannot respect the 
alimentation and treatment imposed. 

These methods, also, makes possible the 
automated diagnosis and monitoring of patients in 
intensive care units and in telemedicine. 
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