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Abstract: The classical model by Tanksy on a two-level food web with a predator feeding on two kinds of prey
is revisited and extended. The ecosystem with intraspecific and interspecific competition for resources among the
prey is analized. Two equilibria are found: a segment of conditionally (neutrally) stable equilibrium points and
the interior coexistence equilibrium, which is proven to be inconditionally stable. The predator population settles
to a lower level than the one arising in the original Tansky’s model. In addition, there is inverse proportionality
between the predators’ mortality and the equilibrium value. Predators’ recovery and the settling of the system
toward coexistence are also allowed by a large prey carrying capacity.
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1 Introduction

In mathematical biology population theory plays a
fundamental role. Historically indeed, the first model
was formulated by the economist Malthus [23], and
later on corrected for logistic, i.e. more realistic, be-
havior by Verhulst [28, 30, 29]. It is well known that
modern biomathematics originated from the works of
Volterra and Lotka at the beginning of the past cen-
tury, [22, 33]. The researches were prompted by the
unexpected results of fish catches in the Adriatic Sea
in the years immediately after World War I, [6]. Since
then the subject has grown and nowadays several in-
ternational Journals are entirely devoted to this topic.

In the original works of Volterra and Lotka, an
environment is considered in which two populations
interact, and the former, the prey, is the sole food re-
source for the latter. Such an environment is not so
highly unrealistic, as sharks in the ocean feed only on
smaller fish, in the absence of which they certainly
would starve. For terrestrial and avian populations,
the model could be suitably modified to take into ac-
count other food sources. Later developments of the
theory account for food webs, in which several trophic
levels exist and each population is a predator of the
one in the lower trophic level and a source of food for
the one in the upper one. A top predator dominates the
chain, [7, 10]. For recent results on this topic, see for
instance [4, 5, 11, 16, 19, 20, 27], were even chaotic�
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behavior and bifurcations can be accounted for in such
models. From the ecological viewpoint, food chains
may even be related to eutrophycation of marine envi-
ronments, [2, 3, 21]. Predator-prey models have also
been analyzed when their parameters are functions of
time, see [8] or the environmental fluctuations are ac-
couted for by allowing stochasticiy to play a role, [9].
More complex models involve the description of the
populations by accounting of cohorts, i.e. describing
the evolution of subsets of the population in which
the individuals share the same birthdate range, mod-
eled via age-dependent densities, or the same range of
body size or form, in such case giving more general
systems known as stage-dependent model, [35]. Such
description has also been extended to the more recent
ecoepidemic models, [31], in which an underlying de-
mographic model with interacting species is affected
by a disease spreading at least in one of the two pop-
ulations.

Further elaborations of the basic model involve
competition for food among species. A current such
example of the former is given by the American grey
squirrel which has been imported and released in the
European environment. The unwanted consequence is
that the former is gradually replacing the autoctonous
species. But to biologists and environmentalists many
other similar examples in which the exotic species al-
ways outperforms the local one are currently known.
Also of interest are systems describing symbiotic in-
teractions or commensalism, in which both popula-
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tions benefit from the presence of the other one. Clas-
sical examples are the anemone and the damsel fish,
the bees pollinating the flowers, but for more recent
findings, see [12, 34].

In real ecosystems, where several species are
present, predators in general have the possibility of
feeding on different prey. This situation has also been
analyzed by mathematical models. More refined for-
mulations thus allow for the predators the active se-
lection of the food source. This choice in the classi-
cal Tanksy model [26] is based essentially on the rel-
ative abundance of the two populations. Further work
on this topic has been carried out in the past years,
[13, 14, 15]. Tansky’s model has been recently mod-
ified, [24, 32] to take into account a logistic term. In
the context of trophic systems, such an idea has been
considered for instance in [17]. Here we introduce
a further modification, in which the two prey live on
shared resources.

The paper is organized as follows. In the next two
Sections we briefly review Tansky’s model, [26] and
outline some earlier generalizations. In Section 4 we
formulate the new model, and establish its equilibria
in the following Section. Section 6 contains their sta-
bility analysis. The results are discussed in Section
7, providing also some biological and environmental
consequences as well as ecological interpretations of
the mathematical analysis. A further extension is out-
lined in the final Section.
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Figure 1: Tanksy’s model: stable coexistence equilib-
rium

2 The Background Model

The classical model for a two-prey and one-predator
system in which the latter hunts the type of preferred
prey is given by the following system of equations,
[26]�������� �
	��� ����������� � � ��	��� � � �� ��� � ��� (1)� ���� � � 	 �! "#��$� �� � � � � 	%�& " � �� ��� � � �� ��'�(� �)*	%+ � � � �� ��� � " � �� ��� � � �
where respectively

�
and

�
are the populations of the

two kinds of prey and
�

denotes the predator species.
As for the parameters appearing in the equations,

	,�
,	%�

and

	%+
represent the Malthus’ net growth rates of

each prey population, and the mortality of the preda-
tors respectively. The parameters

�
and

"
instead rep-

resent the predator’s successful hunting rates. All
the above parameters are assumed to be nonnegative.
The model is constructed essentially from the Lotka-
Volterra model, in which the functional response for
feeding is assumed to possess a Holling type II, or
Michaelis-Menten, form. Such type of modification
is due to the assumption that a too abundant type of
prey is ignored by the predators, after a successful
hunt. For an example of this sort in the literature see
[1]. However, the Michaelis-Menten term is modi-
fied, to include in the denominator the ratio of the two
prey populations, so that depending on which one pre-
vails, the predators will consequently hunt preferably
the more abundant species. When one of the prey pop-
ulations becomes small, the predator switches the pre-
dation mainly to the other species. At the same time,
the reduced hunting rate on the smaller population al-
lows its individuals to better find hiding places and
thus more easily escape from fatal interactions with
predators. This fact leads to a possible recovery from
the low population values in spite of the predators’
hunting efforts.

Specific feature of this model is the possibility of
Hopf bifurcations of the interior system’s equilibrium,
originating limit cycles for the populations involved.
We show our simulations for two sets of parameters,
one leading to the stable coexistence equilibrium, Fig-
ure 1. It is obtained for the parameter values

	)� �.-0/ ,	 � �1-02 , 	 + � �
,
� � �

,
" � �

. The second one in-
stead shows sustained oscillations around it, Figure 2.
for the following parameter values

	3� �4-05 , 	%� ��-05 ,	%+ � �
,
� � �

,
" � �

. Clearly the change in the
prey reproductive rates and mortality of the predators
induces the bifurcation.
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Figure 2: Tanksy’s model: limit cycles around the co-
existence equilibrium

3 Some Earlier Generalizations

The above model has been reconsidered in [24, 32],
by allowing logistic terms in the prey equations with
different carrying capacities, 6 � and 6 � say, thus pre-
venting the unbounded growth of these populations in
the absence of predation. Namely, to better render the
real life situation, intraspecific population pressures
terms of the type �6 � � �6 �
have been respectively subtracted from the first two
equations of (1). These terms contain different car-
rying capacities because the two prey species are as-
sumed to live on different environments, both accessi-
ble by the common predator, but the two prey popula-
tions do not exhibit any kind of interaction with each
other. We note also that [24] contains another simi-
lar model, in which more general response functions7!8�9 � � �:� �<;

, = � � �?>
are introduced, here

� 8
repre-

senting the two prey species. But the assumptions on
them remain the same, the two prey species live in
different habitats never interacting with each other.

4 The New Model

In this study, we will further modify the corrected
model to make it even more realistic, by observing
that in general the predator is a carnivorous species
which usually feeds on herbivores. The latter thus
share the same pasture, and therefore compete for this

resource. Thus there must be a common carrying ca-
pacity 6 for the environment to support both prey
species, and they feel the total population pressure
not only of their similar but also of the second species
present in the environment. Thus the modification of
(1) contains in both prey evolution equations the same
cumulative logistic term of the form� ���6 �
accounting for both intraspecific and interspecific
prey interactions.

In view of the above discussion, the system (1)
becomes������ � @ 	�� � �  � ���6 �  �A���� ��CB �D� (2)� ��'� � @ 	 �E� �  � ���6 �  "F���� �� B � �� ��'� � @ *	%+ � � ���� �� � " ���� �� B � �
where 6 denotes the environment’s carrying capac-
ity for the two prey species and the other parameters
retain their meaning as in (1). Again here the param-
eters of the model are to be taken as nonnegative real
numbers.

5 Equilibrium Points

Observe that all trajectories of (2) are bounded. For
this, it suffices to define G � � �H�I� �

,

	 �J)KMLON 	�� � 	 �MP , Q � J)RTSUN 	�� � 	%�MP and to take a con-
stant VXW1YZW 	%+

. Summing the equations (2), we
have the estimates� G�'� � Y
G�[ 9 � ��� ;&\ 9 	 � Y ;  Q6 9 � ��� ;^] � 9 	 +  Y ; [ 6 9 	 � Y ; �_ Q [ 6 9 	 � 	%+ ; �_ Q `ba
having taken the maximum of the parabola in

� �c�
.

It follows that � G�'� [  Y�G �Xd
implies then G 9 � ; [ d Ye`ba (3)

for every
�&f V , from which the claim. It makes sense

at this point to concentrate the analysis to the g -limit
set, which must be contained in the compact positively
invariant set just found, i.e. the portion in the feasible
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phase space of the ball of radius a centered at the ori-
gin, h%i 9kj ; .

The equilibria of system (2) are the origin lnm , the
following two boundary pointslpo � � V � 	 +" � 	 � 9 " 6 *	 +<;" � 6 � �lDq � � 	%+� � V � 	�� 9 � 6 *	%+ ;� � 6 � �
and letting r be an arbitrary nonnegative real parame-
ter, the additional boundary segment of equilibria ex-
pressed by lCs � 9 6  r � r � V ; and finally the interior
coexistence equilibrium l�t � 9vu�p� u� � u� ;

with compo-
nentsu� � 	��:	%+ " 	�� � � 	%�9 	 � � " � � 	 �� ; � � (4)u� � 	%�F	%+ " 	 � � � 	 �9 	 � � " � � 	 �� ; " �u� � �6 " � � � 9 	 � � " � � 	 �� ;xw 6 	 + � �y" + *	 + � 	 + " +� 6 	%� � � " � 	 � � � 6 	 +� � + " � 6 	�� � � " � 	 �� / �y" � 	 � � 	%+z	%�& / � � " 	��?	%+F	 ��  � + 	 +� 	%+z{ -
The feasibility conditions for the boundary equilibria
are as follows: for lCo we need

" 6 f 	E+
, lDq is ac-

ceptable if
� 6 f 	E+

and lps needs the restriction on
the otherwise free r parameter, so that V)[cr|[c6 .l t instead is feasible if and only if6~} 	 + 9 	%� � � 	�� " ; ��y" 9 	 �� � � 	 � � " ; - (5)

6 Stability

We need to address the question whether the equilibria
are approached as time flows or system trajectories are
instead ultimately repelled away from them. To this
end, it is necessary to investigate their stability, which
essentially relies on the sign of the eigenvalues of the
system’s Jacobian at such points. The Jacobian � of
(2) is given by�������� � �:� m �<���� �<� �F� � ���� ��  m �<��<� �o � ���� �<� �F� �  � � �� � �:�  o � ��<� �m � � � � m � �<� o � �� �<� �F� � � o � � � � o � �<� m � �� �<� �F� � � � +:+

�v������� (6)

with� �:� � 	�� 9 �  >M� ���6 ;  � � � 9 � � > � ;9 � ��� ; � �� �:� � 	%� 9 �  � � > �6 ;  " � � 9 ��� >M� ;9 � ��� ; � �
� +:+ � �	 + � � � � � " � �� ��� -

The eigenvalues of (6) at the origin are

	3� }�V ,	%� }�V , �	%+ W�V , from which its instability follows.
Similarly at lCo we find the eigenvalues� � o �� � 	�� 9 " 6 *	%+ ;" 6 � � � o �� � �	%�z	%+��c� � o> " 6 -

with � o � 	 �� 	 �+  _ " � 6 � 	 � 	 + � _ " 6 	 � 	 �+ �
and in view of the feasibility condition it is immediate
to infer that

� � o �� }�V , i.e. lpo is also unstable.
For lpq the situation is very similar, as we find the

eigenvalues� � q �� � 	%� 9 � 6 �	%+ ;� 6 � � � q �� � �	��?	%+�� � � q> � 6 -
with � q � 	 � � 	 �+  _ � � 6 � 	���	 + � _ � 6 	���	 �+ -
Once again the feasibility condition implies

� � q �� }�V ,
i.e. lpq is also unstable.

For lps the eigenvalues are
� � s �� � V with corre-

sponding eigenvector   � s �� � 9 � �  � � V ;^¡ and� � s �� � 	�� r ¢	�� 6 *	%� r6 �� � s �+ � � 6 �  > � 6Ir �	%+ 6 � 9 � � " ; r �6 �
with eigenvectors   � s �+ � 9 V � V � � ; ¡ and  � s �� �¤£ 	�� £ �  r6Z¥ � 	%� r6 � V ¥ ¡ -
Now

� � s �� � V gives a kind of neutral stability along
the

� � �
direction, i.e. along the line of equilibrialps ; moreover the feasibility condition V¦[§rZ[§6

implies that
� � s �� W1V . Stability is then governed by

the last eigenvalue, namely l�s is (neutrally) stable if� 6 � � 9 � � " ; r � W 	 + 6 � > � 6Ir � (7)
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the trajectories in this case approaching the
� �

phase
plane along the vertical

�
direction.

In order to study the stability of the point l�t we
examine the characteristic equation:� + � a � � � � a � � � a + � V � (8)

where, letting7 � u�u� � u� � h � u�u� � u� �¨ � � 	 � u�6 � ¨ � � 	 � u�6 �
the coefficients are given bya � � " 7 h u� � ¨ � � � 7 h u� � ¨ �v©a � � � 7 h u� ¨ � � > u��� � 7 � h u� � > " � h � u� u� 7 u� u" h � � u� 7 � " ¨ � 7 h u�  " h u� u�'� 7 �� u�'� � 7 + u� � " � h + u� u� � " h � u� ¨ � � ¨ � � 7 � u� ©a + � u� � u� �y" 7 h�ª h + " � � 7 + � � 7 � h � 7 h � "?«� > u� u� ª  � 7 h � " ¨ �� ¨ � " h � 7 � � ¨ � " � h +� ¨ � " � h � 7 « � u� � u� ��" 7 h¬ª " h + � " h � 7� h � 7 � � � 7 + « � u� u� ª  > ¨ � � 7 " h � > ¨ � � 7 � " h � > � � 7 � h ¨ � � > ¨ � � � 7 + « -

Using the Routh-Hurwitz conditions, all eigenval-
ues have negative real parts if and only ifa � }�V � a + }�V � a � a �& a + }�V -

In view of its definition, clearly a � }�V .Upon substitution of the values of
7

, h ,
u�
,
u�
,
¨ �

and
¨ �

, we find that a � can be rewritten as a product
as follows a + �  �  �  + D®
where the quantities on the right are given by � � u�9zu� � u� ; � }�V © � � 	%+ 9 " 	�� � � 	%� ;� � " � 6 9 " 	 � � � � 	 �� ; }�V © + � 	 � 	 � 	 + 9 " 	 � � � 	 �¯;9 " 	 � � � � 	 �� ; }�V © ® � 	 �� � � " 6 u� � �y" � 6 u� 	 � � }�V -
As a consequence it then follows that a + }�V .To study the sign of the last quantity, a � a �� a + ,let us define° � � � � " � � 	 � 6 	 � 9 ° � m � ° � o ; ©° � � 	%+ 9 	�� " � � 	 � ; + 9 ° � m � ° � o ; ©

and° � m � / � � 	 �� 	 + � " � � / � 	 �� 	 + � " + � � ® 	��?	 ®�� � 	 � 	 ® � " + � � + 	 ®� 	 � " � / � + 	 +� 	 � � "� 	%�v	 ® � " ® � / � � 	 +� 	 � � " � ©° � o � � � " � 6 9 	���¢	 � ; � 9 	 � � " � > 	�� " 	%�� > � 	%�v	�� � � 	 �� ; ©° � m � / 	 � � � � 	 +� " � 	 � � + 	 ®� � 	 ® � " + 	 �� / 	 + � " � 	 �� � ©° � o � "#� 6 w > "F� 	 + � 	%� � > "#� 	 +� 	��� 9 	 � � "  � 	 �� ; � { ©
so that it followsa � a �& a + � 	 + � 9 ° � � ° � ;��" 6 � 9 	�� " � � 	%� ; ® 9 	 � � " � � 	 �� ; -
Now since

° � m }±V , ° � o*}±V , ° � m }²V , ° � o³}²V ,
we have also

° � } V and

° � } V , from whicha � a �  a + }´V and thus whenever feasible l t is in-
conditionally stable. Notice also that the vanishing
of a � a �  a + would be necessary for getting purely
imaginary eigenvalues, so that our result prevents the
occurrence of a Hopf bifurcation.

7 Discussion

We have found that among the possible feasible equi-
libria of the proposed model, only two can be stable,
the segment of equilibria l�s , at every point of which
the system shows a kind of conditional neutral stabil-
ity, and the interior coexistence equilibrium l t . In
the former, the predators vanish, and the prey settle to
values respectively of 6  r and r , with V([cr)[Z6 .
This can be interpreted as a positive feature in case
the predators represent a nuisance for the ecosystem,
or instead as a flaw in terms of biodiversity, as the en-
vironment with their disappearance becomes poorer.
Moreover the proportions of the two prey populations
at equilibrium are left essentially undetermined by the
model, as the free parameter r does not really set ei-
ther of them at a specific value. In addition observe
that for instance a large carrying capacity 6 combined
with a value of r near V , and a low predators’ mortal-
ity rate

	%+
make condition (7) not satisfied, so that the

only possible equilibrium in such case would be the
coexistence one lCt . Since in such case lCt is the only
existing locally asymptotically stable equilibrium of
the system, and all system’s trajectories must enter the
positively invariant set hµi 9kj ; , lpt attracts thus all tra-
jectories originating in the positive phase space, mak-
ing it a global attractor for the dynamical system. This
result is somewhat intuitive, since one would expect
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that the low mortality rate would enhance the preda-
tors survival. In this environment instead the presence
of the two prey species helps the predators to recover,
even if their birth rates fall to very low levels.

Notice also that in the original Tansky model the
internal equilibrium point is l ¡ � 9 � ¡ � � ¡ � �<¶ ;

with
equilibrium population values given by� ¡ � 	��?	%+ 9 	�� " � 	%� � ;� 9 	 � � " � 	 �� � ; �

(9)� ¡ � 	 � 	 + 9 	 � " � 	 � � ;" 9 	 � � " � 	 �� � ; �� ¡ � 	%�" � 	��� -
and in the proposed model it is given by (4). Thus
the two prey populations at equilibrium are at the very
same level in both models. This in spite of the fact
that apparently, in the model formulation, they are
made to compete with each other for living resources.
The necessary disappearance of one of the competi-
tors, namely the principle of exclusion, is in this case
violated, due to the presence of the predators in the en-
vironment. On the other hand, the predators’ level in-
stead is different in the two formulations, specifically
it settles to a lower level in our formulation, namelyu� � 	 �" � 	���  	%+ 9 	�� " � � 	%� ; +6 " � � � 9 	 � � " � � 	 �� ; -
The introduction of logistic growth and interspecific
competition for the prey has thus the effect of lower-
ing the equilibrium level of the predators.

From the value of
u�
, notice further that the

amount by which the predators’ level
� ¡

in (4) is de-
creased depends on the carrying capacity 6 of the
prey species. More specifically, the larger prey popu-
lation the environment is able to to support, the closer
to
u�

the predators level will result. On the other hand,
the higher the predators’ mortality is, the farther the
predators’ equilibrium value

u�
in the proposed model

will be from the original reference value
� ¡

, as ex-
pected. Again this is a kind of intuitive result.

Finally, observe that the interior equilibrium l�t is
inconditionally stable. This is a similar result as ob-
tained in [24, 32], where in fact, it is shown that the
switching feeding behavior makes limit cycles present
in the model without the diet disappear. For that pur-
pose, the latter are modeled via a Michaelis-Menten
type feeding responses, a more general function than
the quadratic one considered here. In spite of this, the
stability of the coexistence population levels appears
then to be independent of the particular functional re-
sponse chosen to model the predation process. In the

context of food webs, stabilization due to external fac-
tors can occur, [18]. The predators’ level in the co-
existence equilibrium l�t is driven to zero by higher
intrinsic mortality rates

	µ+
or lower prey carrying ca-

pacities 6 , along the vertical direction,   + . When
predators vanish, lCt hits the

� �
coordinate plane, and

there it moves along the eigendirections   � , until they
hit a point on the line

� � � , thus toward one of the
only possible equilibria l�s .
8 The Extended Model

We allow here the system to encompass a more gen-
eral situation, namely when the prey have different
habitats that overlap in part. In such case thus they
would share for instance only a common pasture, but
have available other food resources somewhere else,
inaccessible by the other prey species. Competition in
this case must be weighted, meaning that the prey may
overlap their feeding territories only partially. Letting
the parameters attain once again only nonnegative val-
ues, we have�'��'� � @ 	�� � � ¸· � ��¹��6 �  ������ �� B ���� ���� � @ 	 �µ� �  · � ��¹��6 �  "F���� �� B � �� ���� � @ *	%+ � � ���� �� � " ���� �� B � � (10)

We expect the former equilibria to be particular
cases of the ones of this system. In fact we find among
the equilibria again the origin º m ` l m , and the neu-
trally stable line º s ` 9:9 6  ¹ r ;:» · � r � V ; , and the
two boundary pointsº m ` � V � �" 	%+ � 	 �" � 6 9 " 6  ¹ 	%+ ; � �º¼o ` � �� 	%+ � V � 	��� � 6 9 � 6  · 	%+ ; � -
Further, the interior coexistence equilibrium is given
in this case by the point º t ` 9¾½��� ½� � ½ � ; with½� ` �� 	 � 	 + 	�� " � � 	%�	 � � " � � 	 �� � ½� ` �" 	 + 	 � 	�� " � � 	%�	 � � " � � 	 �� �½ � � �6 " � � � 9 	 � � " � � 	 �� ; 9 6 	 + � ��" + � 6 	�� � � " � 	 ��� 6 	%� � � " � 	 � � � 6 	 +� � + " *	 + � · 	%+ " + > 	 � � · 	 + " � � 	 � *	 � · 	 + "F� � 	 �� � 	%� ¹ 	%+v	 � � " �  > � � 	 �� ¹ 	%+v	�� "  � + 	 +� ¹ 	%+
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Note that the boundedness result of Section 5 still
holds for the trajectories of this system, as we need
only to define	 � J,KML�¿ 	�� � 	%+· � 	 � � 	%+¹ À
and Q � J,RTS|¿ 	��· � 	%�¹ À
to find for V,[XY�[ 	%+ the estimate� G�'� � Y�G�[ 	�� � 	%+· · � � 	%� � 	%+¹ ¹Á� �6 9 · � ��¹Á� ; 9 	 �· · � � 	 �¹ ¹�� ;[ 	 9 · � ��¹Á� ;  Q6 9 · � ��¹Á� ; � [ 6 	 �_ Q ` ½a
having taken the maximum of the parabola in

· � �¹Á�
in this context. The conclusion of the proof is as

before.
The Jacobian

½� of (10) is given by�������� ½� �:� m � � �� �<� �F� � ¦Â �Á� ��  m � ��<� �o � ���� �<� �F� �  Â � � �� ½� �:�  o � ��<� �m �<�:� � m � �¯� o � �� �<� �z� � � o � �:� � o � �¯� m �<�� �<� �z� � � ½� +:+
�v������� (11)

with ½� �:� � 	�� � � ¸· � ��¹Á�6 � ´· 	�� �6 > � � �� ��� � � � � �9 � ��� ; � �½� �:� � 	%� � �  · � �³¹Á�6 �  ¹ 	 � �6 > " � �� ��� � " � � �9 � ��� ; � �½� +:+ � �	 + � � � � � " � �� ��� -
Rather than proceeding with the extension of the

previous analysis to this generalized system and as a
validation of the theoretical results formerly obtained,
we turn to simulations of the solutions behavior. We
consider even a further generalization where the com-
petition terms are different for each species, namely
we distinguish the intraspecific competition rate Ã for
the prey

�
, the corresponding one Ä for the prey

�
, the

interspecific ocmpetition rate of prey
�

onto prey
�

, Å ,

and the corresponding one for the prey
�

onto prey
�

,Æ
. The new equations then read�'��'� � @ 	�� � �  Ã � � Å �6 �  ������ �� B ���� ���� � @ 	 �E� �  Æ � � Ä �6 �  "F���� �� B � �� ���� � @ *	%+ � � ���� �� � " ���� � � B � � (12)

In Figure 3 we compare the three populations as
functions of time obtained integrating the Tansky’s
model on the left and the generalized extended model
on the right. The parameter values of the former as in
Figure 1, namely

	x� �H-0/ , 	%� �H-02 , 	%+ � �
,
� � �

," � �
. The right column instead contains for the

same parameter values the integration of model (12),
with the remaining parameters given by 6 � � VÇV ,Ã � V - _�È , Ä � V - È > , Å � V -0/'É , Æ � V - _ > . Evidently
in this case both (1) and (12) behave similarly.
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Figure 3: Comparison of time series solutions of
Tanksy’s model (left) with generalized extended
model (right): stable coexistence equilibrium in both
cases

Figure 4 instead shows the analogous of Figure
2 for the same parameter values of Tansky’s model,
namely

	 � �Ê-05 , 	 � �e-05 , 	 + � �
,
� � �

,
" � �

,
with the corresponding behavior of (12), for the extra
parameter values given as above, 6 � � VÇV , Ã � V - _�È ,Ä � V - È > , Å � V -0/'É , Æ � V - _ > .

In this case there are also oscillations in the more
general model, but it is not clear whether they are sus-
tained or not. To investigate this point, we increased
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Figure 4: Comparison of time series solutions of
Tanksy’s model (left) with generalized extended
model (right): limit cycle for the former, apparent
limit cycles for the latter

the length of the integration interval, thereby obtain-
ing the results reported in Figure 5. It is apparent that
the oscillations are not sustained. This result supports
the theoretical claim that the interior equilibrium of
the generalized model is unconditonally stable, as we
have been shown for (2).

To analyze the behavior of unstable equilibria, we
integrate the system giving one set of initial condi-
tions lying on the equilibrium and other ones at nearby
points, and plot the resulting solutions. We have cho-
sen parameter values so that the equilibria of (2) can
be investigated, since for the latter the initial condi-
tions can be analytically given on the system’s equi-
libria. Specifically, we take

	x� � V -05 , 	%� � V -05 ,	%+ � � - V , � � � - V , " � V -0ËÇË , 6 � � VÇV , · � V - _�È ,¹ � V - È > , Ã � · , Ä � ¹ , Å � ¹ ,
Æ � · , r � V -0/ . The

starred solutions are those with such initial conditions.
The perturbed solutions, continuous lines, have initial
conditions perturbed by an additional positive amountÌ � � V - VÇV � in all Figures 6-8. Note that in Figure 6
the the solution at the equilibrium has the

�
popula-

tion which remains at zero level, while the perturbed
solution, with an extremely small initial

�
population,

diverges from the equilibrium, so that it seems a con-
tradiction, but it is only an apparent one, since in the
second case the

�
population seems to rise from zero.

Figure 7 shows the behavior of trajectories nearº m , which tend toward the interior coexistence equi-
librium.

In Figure 8 a similar behavior occurs, namely the
perturbed trajectories near ºEo tend again toward the
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Figure 5: Comparison of time series solutions of
Tanksy’s model (left) with generalized extended
model (right), for longer simulation time: limit cycle
for the former, stable coexistence equilibrium for the
latter
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Figure 6: Solution behavior near equilibrium ºEs . No-
tice that the solution at the equilibrium has the
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popu-

lation which remains at zero level, while the perturbed
solution, with an extremely small
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population, di-

verges from the equilibrium
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interior coexistence equilibrium.
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