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Abstract: Obesity is growing at an important rate in developed and developing countries and it is becoming a
serious disease not only from the individual health point of view but also from the public socioeconomic one. In
this paper it is studied the effect of uncertainty in the dynamics behavior of the overweight and obesity childhood
populations. Since initial conditions and parameters appearing in a deterministic mathematical model of obesity
population are subject to some degree of uncertainty, randomness in the differential equations are introduced in
the initial conditions and in the most relevant parameter of the deterministic model. Additionally, in this work
stochastic and random ordinary differential equations were used to study the randomness effect in the deterministic
mathematical model of obesity population. Monte Carlo simulations are performed assuming different distributions
for the initial conditions and parameters of the model. Furthermore, confidence intervals and expected solutions
of the random models are also obtained. To verify the consistence of the method, results are compared against
numerical solutions of the deterministic mathematical model.

Key–Words: Random differential equation, Population dynamics, Numerical simulation, Stochastic differential
equation, Monte Carlo method.

1 Introduction

Mathematical models dealing with uncertainty in dif-
ferential equations have been considered in the re-
cent decades in a wide variety of applied areas, such
as physics, chemistry, biology, economics, sociol-
ogy and medicine. Uncertainty can be considered in
differential equations in different forms. The sim-
plest class is one where only the initial conditions
are random. This class has its origin in statistical
physics and kinetic theory, [37]. A second class of
differential equations with uncertainty is character-
ized by the presence of a random input term or source
term. Langevin’s investigation in 1908 of the mo-
tion of a particle executing Brownian motion per-
haps started the study of differential equations of this
kind, [28, 37]. Finally a third class is when the un-
certainty enters into the differential equation through
its coefficients. In this paper uncertainty of first and
third class are considered in the differential equations.
The study of equations of this type has become a
subject of intensive research. Problems that can be
modeled by these kinds of equations are wave prop-
agations in homogeneous media, systems and struc-
tures with parametric excitations, dynamics of imper-
fectly known systems in physics, medicine, biology,
[35, 27, 17, 38].

In the available literature there are two research
fields for studying differential equations involving un-

certainty, [28]. The first one, namely stochastic dif-
ferential equations, considers uncertainty that enters
into equations through the differential of Brownian
motion, also known as white noise. These forms re-
quired the Itô calculus and particulary the notion of
the Itô integral [28, 33]. On the other hand, differen-
tial equations involving another kind of randomness
which is studied by mean of mean square Rieman-
Stieltjes integration are denominated random differ-
ential equations. Mean square calculus is the main
tool for dealing with random differential equations
[21, 38, 37]. These kinds of equations allow consider-
ation of a wide variety of uncertainty on the differen-
tial models. For instance in [36] a work to study the
dynamic behavior of tree diameter using a stochastic
differential equation has been presented. In our work
both fields for studying differential equations involv-
ing uncertainty are considered.

During the last two decades there has been inten-
sive research in the development of analytical and nu-
merical solutions for stochastic differential equations,
[19, 7, 28, 15, 33]. Analytical treatment of random
differential equations has been done by [38, 37]. Nu-
merical methods to solve numerically first order ran-
dom differential equations and sufficient conditions
for the mean square convergence of such methods
with its order of convergence have been presented in
[12, 13, 14].

There are several works that study the impact
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of parameter distributions on the disease populations
models. For instance in [29] the effects of includ-
ing more realistic distributions of the infectious period
within SIR (susceptible/infectious/recovered) models
are studied. One work where a epidemic model
is studied using Monte Carlo method is [1], they
use Monte Carlo results and compared against exact
steady-state solutions. Additionally, in [27] a interest-
ing simple SI (susceptible-infected) epidemic model
with random initial conditions and a distribution that
describes the proportion of susceptibles at any time
during an epidemic has been presented. Neverthe-
less, since in our work the epidemic model is more
complex and several distributions are introduced, the-
oretical distributions for different subpopulations can
not be obtained. Other complex numerical meth-
ods that can be applied to this kind of problems are
[12, 13, 14], where the obtention of numerical solu-
tions may be computationally expensive.

A classical technique for modeling the behavior
of infectious diseases in the population is by means
of systems of ordinary differential equations, where
the variables represent different classes or subpopula-
tions. These models are also known as compartment
models and have been applied in different areas such
as pharmacokinetics, epidemic models, social sys-
tems and others [4, 32, 3]. Recently, epidemiologists
have tried to refine the use of computer simulations
to help public policy decision-makers understand the
real world dynamics of epidemic transmission and to
assess the potential efficacy of various public health
policies. One of the epidemiologist’s most basic tasks
is estimation of disease occurrence and compartmen-
tal modeling is an excellent tool to achieve this task.
However lately other methods such Cellular Automata
models have been used to study epidemic models, so-
cial systems and pharmacokinetics [23].

In this work randomness is introduced in the com-
partmental deterministic mathematical model pre-
sented in [25], which was used to study qualitative
and quantitative behavior of overweight and obesity in
childhood population. In this compartmental mathe-
matical model obesity is considered like a health con-
cern of social environment transmission [18, 11]. It
is important to remark that obesity is growing at an
important rate in developed and developing countries
and it is becoming a serious disease not only from the
individual health point of view but also from the pub-
lic socioeconomic one [24]. Moreover several studies
correlate infant and adult obesity at the point that in-
fant obesity is a powerful predictor of adult age obe-
sity [16]. Additionally, several studies also find as-
sociation between obesity and fatal diseases such as
diabetes, heart attacks, blindness, renal failures and
nonfatal related diseases such as respiratory difficul-

ties, arthritis, infertility and psychological disorders.
Therefore based on all the aforementioned facts is of
paramount importance to construct models to study
and prevent obesity from children,s early years. It is
important to remark that a huge amount of studies re-
lated to obesity have been presented, but very few use
mathematical models to study dynamics behaviors of
obesity populations.

The introduction of randomness in the aforemen-
tioned deterministic model is justified by the fact that
it is realistic to assume that some of the parameters
and initial conditions have some degree of uncertainty.
Therefore random ordinary differential equation mod-
els are constructed in order to obtain different possible
dynamics of the populations. In this way one aim of
this work is to model and to obtain future behavior of
the childhood obesity. However the model also helps
to understand the mechanisms of the worldwide obe-
sity epidemic. These mathematical models, simpler
than the reality, allow to understand the global dy-
namical behavior of the obesity in the population and
to establish sustainable public health programs for the
prevention of the childhood obesity.

The real world is much more complex than any-
thing that can be created with arithmetic and logical
operations [31, p.341]. Therefore it is necessary to use
methods that include some real world complexity. The
versatility of Monte Carlo simulation modeling allows
us to include more complexity to the deterministic
mathematical model, and thus study the impact of ran-
domness in the dependent variables. Following this
way Monte Carlo method is a powerful method for
assess the impact of uncertainties due to the model in-
puts [30]. Random effects can be studied using Monte
Carlo simulations and different distributions can be in-
corporated in ordinary differential equations models.
Several works have been used Monte Carlo method in
different areas [34].

Monte Carlo method is used here with the aim
of obtain qualitative and quantitative behavior of the
numerical solutions of the random differential equa-
tion models. Monte Carlo simulation differs from tra-
ditional simulation in that the model parameters are
treated as random variables, rather than as fixed val-
ues. Therefore, confidence intervals and expectation
for the different populations dynamics can be obtained
through Monte Carlo simulations. Based on the confi-
dence intervals the possible dynamics of obesity pop-
ulation can be observed for the next few years. It is
worth here to point out the difficulties to obtain confi-
dent data and the importance of introducing random-
ness in the uncertain parameters of the model. For
instance, in the Spanish region of Valencia, a health
survey is done every 5 years and data should be pre-
pared, processed and stored in databases before their
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availability. Moreover surveys are exposed to human
errors and their costs are very high.

The paper is organized as follows. In Section 2
the deterministic mathematical model of obesity pop-
ulation is presented. Section 3 is devoted to present
the random modeling approaches. Section 4 is ad-
dressed to Monte Carlo numerical simulation results.
Finally, Section 5 is devoted to a short discussion and
conclusions.

2 The mathematical model

In [25] a compartmental deterministic mathematical
model to study the dynamics of overweight and obe-
sity in childhood population was introduced. In this
model childhood population was divided in six classes
or subpopulations, children with normal weight, latent
children (children with unhealthy habits but who are
still normal weight), overweight children, obese chil-
dren, overweight children on diet and obese children
on diet. The model was normalized for the sake of
clarity and since qualitative behavior of the different
classes are more easily observed using proportions. In
this model the following proportions are defined:

• N (t) denotes the proportion of normal weight
children.

• L (t) the proportion of latent individuals.

• S (t) the proportion of children with overweight.

• O (t) the proportion of obese children.

• DS (t) the proportion of overweight children on
diet(through their parents).

• DO (t) the proportion of obese children on
diet(through their parents).

Therefore one gets,

N(t) + L(t) + S(t) + O(t) + DS(t) + DO(t) = 1.

The compartmental deterministic mathematical model
can be represented analytically by the following non-
linear system of ordinary differential equations,

Ṅ (t) = µ + εDS(t)− µN(t)− βN(t)[L(t) + S(t) + O(t)],

L̇ (t) = βN(t)[L(t) + S(t) + O(t)]− [µ + γL]L(t),

Ṡ (t) = γLL(t) + ϕDS(t)− [µ + γS + α]S(t), (1)

Ȯ (t) = γSS(t) + δDO(t)− [µ + σ]O(t),

ḊS (t) = γDDO(t) + αS(t)− [µ + ε + ϕ]DS(t),

ḊO (t) = σO(t)− [µ + γD + δ]DO(t).

Table 1: Description of the parameters used in the
compartmental mathematical model (1)

Rate description
µ Inflow rate to the system population.
β Transmission rate to unhealthy habits.
γS Overweight children becomes an obese.
ε Overweight children on diet becomes a normal weight.
α Overweight children transit to healthy habits(diet).
ϕ Overweight children on diet relapse to unhealthy habits.
σ Obese children transit to healthy habits(diet).
δ Obese children on diet relapse to unhealthy habits.

γD Obese on diet becomes an overweight on diet.

where the description of the time-invariant parame-
ters of the model (1) are presented in Table 1.

The values of the parameters of the model (1) are
presented in Table 2 and the initial conditions in Table
3. The model (1)is represented graphically in Fig. 1.

Figure 1: Diagram of the mathematical model for obe-
sity population dynamics as defined in system (1).
The boxes represent the subpopulations and the ar-
rows represent the transitions between the subpopu-
lations, labeled by the parameters of the model.

Value Value
µ 0.0064 γL 0.0089
γS 0.003085 ε 2.776 8× 10−3

α 4.068× 10−3 ϕ 0.12735
σ 4.4379× 10−3 δ 0.15974
γD 4.5045× 10−4 β 0.0222949

Table 2: Parameters of the model (1).

A linear stability analysis of system (1) is de-
veloped here in order to check numerically dynamic
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Subpopulation Initial condition
N(t) 0.462
L(t) 0.194
S(t) 0.2176
O(t) 0.09
DS(t) 0.0249
DO(t) 0.0115

Table 3: Initial conditions for t = 0(1999 yr.) correspond-
ing to proportions of the subpopulations respect to the total
population.

consistency between the deterministic mathematical
model and the random models, this analysis is per-
formed using the parameter values showed in Table
2.

It is well known that an equilibrium point is a lo-
cally asymptotically stable node if and only if the real
part of the eigenvalues of the Jacobian associated sys-
tem evaluated at the equilibrium points are negative.
The system (1) has two steady states; a trivial steady
state called obesity free equilibrium (OFE) and a non-
trivial steady state called obesity endemic equilibrium
(OEE). For the particular set of parameters values pre-
sented in Table 2 for system (1), the obtained equilib-
rium points are showed in Table 4.

Equilibrium Numerical value
OFE (1, 0, 0, 0, 0, 0)

OEE (0.293, 0.2971, 0.270, 0.126, 0.008, 0.003)

Table 4: The equilibrium points for the deterministic
mathematical model (1).

The eigenvalues of the Jacobian evaluated at the
OFE point and at the positive OEE point are showed
in Table 5. The OFE point is unstable, since the eigen-
value λ4 is positive. On the other hand the OEE point
is locally asymptotically stable, due to the fact that
all real parts of the eigenvalues of the Jacobian of
system (1) evaluated at the OEE point are negative.
The graphical behavior of normal weight, overweight
and obese subpopulations using the parameter values
showed in Table 2 are depicted in Figure 2. It can
be seen an increasing trend of obese and overweight
populations.

3 Random modeling

A random modeling approach can be used to include
the possibility that the initial conditions and param-
eters are not fixed as assumed in the deterministic
model. The introduction of randomness in the deter-
ministic model (1) is justified by the fact that it is more

Eigenvalue At OFE point At the OEE point
λ1 -0.170976 -0.170977
λ2 -0.140644 -0.140622
λ3 -0.0151898 -0.0143034 + 0.00134272i
λ4 0.0134083 -0.0143034-0.00134272i
λ5 -0.00921949 -0.00909934
λ6 -0.00641026 -0.00641026

Table 5: The eigenvalues of the Jacobian of system (1)
evaluated at the OFE point and at the OEE point.
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Figure 2: Evolution of the normal weight, overweight
and obese subpopulations of 3 − 5 years old children
in the region of Valencia, Spain for the period 1999−
2010.
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realistic to assume that some of the parameters and
initial conditions have some degree of uncertainty. In
fact the initial condition for the latent class rely on the
results of a health survey about style of life of individ-
uals. Therefore, since the initial condition for the la-
tent class is expected to have some uncertainty a prob-
ability distribution function for the initial latent sub-
population is assumed in this work. Hence, a random
ordinary differential equation model arise to study the
dynamics of the subpopulations when probability dis-
tribution function is used for an initial condition. No-
tice that this approach can be applied to a very wide
class of differential equations models in other areas.

On the other hand, in [25] a sensitivity analysis of
the deterministic mathematical model (1) reveals that
the transmission rate parameter β affects clearly its
dynamics. Since, this parameter may be affected by
complex relationships between survey data and model
fitting, a probability distribution function for the pa-
rameter β is also assumed. Therefore, a random dif-
ferential equation related to the transmission rate pa-
rameter β arise.

The social environment has fluctuations over the
time due to factors as advertising, educative cam-
paigns and this affects the social pressure to acquire
unhealthy habits. Therefore, a stochastic model is in-
troduced adding Gaussian white noise to the transmis-
sion parameter β. The aim of the introduction of this
model is to analyze the effects of random fluctuations
over the time in the parameter β and how this affect
the dynamics of the overweight and obese children
population. The constructed model is a stochastic or-
dinary differential equation system (SODEs). Since
an explicit solution is not known for this SODEs, in
this paper the Euler-Maruyama method is used to ob-
tain pathwise approximations of the stochastic process
[28].

With these models, it is aimed to obtain future be-
havior of the childhood obesity and to help to under-
stand the mechanisms of the worldwide obesity epi-
demic. It is important to remark that in order to ob-
tain numerical solutions of the random and stochas-
tic models, the Monte Carlo method is used. Next
subsections present in more details the random and
stochastic differential equation models.

3.1 Random differential equation

It is expected that the initial condition have some
amount of uncertainty. Therefore, initial condition
for the latent class or subpopulation in the model (1)
may take different values around the fixed value as-
sumed in the deterministic mathematical model. Sev-
eral probability distribution functions can be used for
the initial condition in the latent class. Based in statis-

tical analysis of the data, in this work it is assumed an
uniform and a normal distribution. However since a
random number generated form a normal distribution
function takes a wide range of negative and positive
values, careful attention must be paid in order to avoid
unreal negative and positive values for the latent and
normal weight classes initial condition.

In this paper two particular distribution are as-
sumed for the parameter β in order to study the dy-
namics of the random model. This approach allows
to analyze the impact of uncertainties in the transmis-
sion rate parameter β on the dynamics of the subpop-
ulations. As in the random initial condition case, an
uniform and a normal distribution are assumed.

Since in our work the random model is composed
by a nonlinear system of six differential equations,
the theoretical distribution of the time varying solu-
tion can not obtained as in [27]. Additionally, other
complex numerical methods that can be applied to
this kind of problems are [12, 13], but the obtention
these numerical solutions are computationally expen-
sive. Therefore, numerical solutions are obtained us-
ing Monte Carlo method in conjunction with Runge-
Kutta type methods. These numerical results are pre-
sented in Section 4.

3.2 Stochastic differential equation

In this model it is assumed that the parameter β is time
varying. In real life is difficult to estimate the trans-
mission rate to unhealthy habits (β) since this param-
eter is affected by many complicated events. There-
fore, in this model small time varying random pertur-
bations of the transmission rate parameter β are in-
cluded. Here it is assumed that this random fluctua-
tions can be modeled adding Gaussian white noise to
the parameter β. This time varying random pertur-
bations could be a major driving force for dynamical
transitions of the mathematical model.

Stochasticity in the model is introduced when the
transmission rate parameter β is perturbated. Pa-
rameter perturbation is a well known standard tech-
nique in stochastic modeling. The constructed model
is a stochastic ordinary differential equation system
(SODEs) and since an explicit solution is not known
for this SODEs, the Euler-Maruyama method is used
to obtain pathwise approximations of the stochastic
process [8, 28]. Confidence intervals for the discrete
solution are constructed through Monte Carlo simula-
tions. Based on the confidence intervals the possible
dynamics of obesity population can be observed for
the next few years.

When the Gaussian white noise is introduced the
following stochastic differential system of Itô type
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form is obtained,

dX(t) = f(t,X(t))dt + g(t,X(t))dW (t),

X(t0) = X0, t ∈ [t0, tf ], (2)

where X(t) = (N(t), L(t), S(t), O(t), DS(t), DO(t))T

and the solution {X(t), t ∈ [t0, tf ]} is an Itô pro-
cess, f is the continuous deterministic component
or drift coefficient, g is the continuous random
component or diffusion coefficient [28], which
are defined on f : Rd × [0, +∞) −→ Rd and
g : Rd × [0, +∞) −→ Rd×m. Thus f is an d-vector
valued function, g is an d×m matrix-valued function
and W (t) is a m-dimensional stochastic process
having scalar Wiener process components with incre-
ments4Wj(t) = Wj(t +4t)−Wj(t), j = 1, ..., m,
which are independent Gaussian random variables
N(0,4t) [8]. For our particular case, m = 1 and
d = 6.

Thus, if we consider the deterministic model (1)
with random perturbation on the parameter β of the
form

β = β + θdW (t),
where θ ∈ R and W (t) is a standard Wiener process.
Thus, the following stochastic differential system is
obtained

dN(t) =
(
µ + εDS(t)− µN(t)− βN(t)[L(t) + S(t) + O(t)]

)
dt

− θN(t)[L(t) + S(t) + O(t)]dWt,

dL(t) =
(
βN(t)[L(t) + S(t) + O(t)]− [µ + γL]L(t)

)
dt

+ θN(t)[L(t) + S(t) + O(t)]dW (t),

dS(t) = γLL(t) + ϕDS(t)− [µ + γS + α]S(t), (3)

dO(t) = γSS(t) + δDO(t)− [µ + σ]O(t),

dDS(t) = γDDO(t) + αS(t)− [µ + ε + ϕ]DS(t),

dDO(t) = σO(t)− [µ + γD + δ]DO(t).

with initial data
(N(0), L(0), S(0), O(0), DS(0), DO(0)) ∈{
(x1, x2, x3, x4, x5, x6) ∈ R6

+
such that,
x1 + x2 + x3 + x4 + x5 + x6 = 1

}
.

Now, it is showed how to solve numerically
SODEs (3).

Stochastic numerical scheme

Lets consider the Euler-Maruyama stochastic
numerical scheme [28, 22] applied to the stochastic
differential system (3).

Considering the Itô SODEs (3) on [t0, T ], for a
given discretization 0 ≤ t0 < t1 < · · · < tn <
· · · < tN = T the kth (k = 1, 2, 3, 4, 5, 6) component
of the multidimensional Euler-Maruyama scheme is
given by
Xk

n+1 = Xk
n + fk(tn, Xn)4 tn + gk(tn, Xn)4Wn,

(X1
0 , X2

0 , X3
0 , X4

0 , X5
0 , X6

0 )T = (N0, L0, S0, O0, D0
S , D0

O)T ,

where Xn = (X1
n, X2

n, X3
n, X4

n, X5
n, X6

n)T =
(Nn, Ln, Sn, On, Dn

S , Dn
O)T is the numerical solu-

tion of system (3) at time tn, 4tn = tn+1 −
tn and 4Wn=Wn+1 − Wn=W (tn+1) − W (tn),
n = 0, 1, 2, ..., N. The noise increments 4Wn

are N(0,4tn) distributed independent random vari-
ables which can be generated numerically by pseudo-
random number generators. The Euler-Maruyama
method has strong order of accuracy γ = 0.5, is nu-
merically stable and converges to the Itô solution of
system (3), [28].

For the system (3), the function f(tn, Xn) is

f(tn, Xn) =




f1(tn, Xn)
f2(tn, Xn)
f3(tn, Xn)
f4(tn, Xn)
f5(tn, Xn)
f6(tn, Xn)




=




µ + εDn
S − µNn − βNn[Ln + Sn + On]

βNn[Ln + Sn + On]− [µ + γL]Ln

γLLn + ϕDn
S − [µ + γS + α]Sn

γSSn + δDn
O − [µ + σ]On

γDDn
O + αSn − [µ + ε + ϕ]Dn

S

σOn − [µ + γD + δ]Dn
O




and the function g(tn, Xn) for the system (3) is given
by

g(tn, Xn) =




−θNn[Ln + Sn + On]4Wn

θNn[Ln + Sn + On]4Wn

0
0
0
0




,

where Nn, Ln, Sn, On, Dn
S , Dn

O are approximations
of N(n 4 tn), L(n 4 tn), S(n 4 tn), O(n 4 tn),
DS(n 4 tn), DO(n 4 tn) for n = 0, 1, 2, ..., and
4Wn =

√4tnηn, with ηn the nth realization of the
Gaussian random variable N(0, 1) [9]. Numerical so-
lutions for the stochastic differential equation system
(3) are computed using the Euler-Maruyama stochas-
tic numerical scheme presented here.

4 Monte Carlo simulations and nu-
merical results

In this section Monte Carlo simulations are performed
using four type of models:

• Randomness in the initial condition of the latent
class.

• Randomness in the transmission parameter β.
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• Randomness in the initial condition and the
transmission rate parameter β together.

• Random perturbations in the transmission pa-
rameter β using Gaussian white noise.

In all the numerical experiments 200 runs were
performed in order to obtain significative values for
the expected behaviors of the subpopulations. It is im-
portant to remark that in all cases Monte Carlo method
is applied to construct confidence intervals for differ-
ent classes or subpopulations over the whole simu-
lation time. The models are simulated in the period
1999 − 2010 (572 weeks) and 95% confidence inter-
val are obtained. Next subsections show the numerical
results for the four aforementioned models.

4.1 Random initial condition

Graphical results of Monte Carlo simulations for
model (1) using a uniform distribution for the initial
conditions of the latent subpopulation are showed in
Fig. 3. It is important to remark that since the in
this the total population model has been normalized
to unity, one gets

N(t) + L(t) + S(t) + O(t) + DS(t) + DO(t) = 1,

and since the following equation is assumed certain,

N(0) + L(0) = 0.656

, the initial value of the latent subpopulation fix im-
plicitly the value of the normal weight subpopulation.
The graphical dynamics of the subpopulations, when a
normal distribution for the initial conditions of the la-
tent subpopulation is used is depicted in Fig. 4. Notice
that despite of using different distributions for the ini-
tial condition of the latent subpopulation, asymptotic
behavior do not differ from the deterministic model. It
is important to remark that dealing with distributions
like the normal for instance, careful attention must be
paid in order to avoid unreal negative values for the
latent and normal initial subpopulations.

4.2 Randomness on the transmission rate β

Graphical results of Monte Carlo simulations of
model (1) using a uniform distribution for the trans-
mission rate parameter β are showed in Figs. 5 and
6. As it can be observed the increasing trend of over-
weight and obese population is maintained, neverthe-
less when the dispersion of the uniform distribution is
increased the predictions lost accuracy. This last fact
is of paramount importance since can be translated in
that asymptotic behavior of model (1) is strongly re-
lying on the value of the transmission parameter β.
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Figure 3: Expected value and 95% confidence in-
terval for the different subpopulations when the ini-
tial conditions for the latent individuals in the model
(1) take different values from a uniform distribution
U(0.1, 0.3).
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Figure 4: Expected value and 95% confidence interval
for the different subpopulations when the initial con-
ditions for the latent individuals in the model (1) take
different values from a normal distribution with mean
0.194 and standard deviation 0.01.
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Figure 5: Expected value and 95% confidence inter-
val for the different subpopulations when the trans-
mission parameter β in the model (1) take different
values from a uniform distribution (0.0210, 0.0234).

Asymptotic behavior using a normal distribution for
the transmission rate parameter β are similar to the
uniform cases as it can be observed in Fig. 7. How-
ever, as it can be observed in Fig. 8, when the standard
deviation is increased immediately the confidence in-
tervals for the subpopulations dynamics increase, giv-
ing more uncertainty to the future predictions.

4.3 Random effects in the initial conditions
and social transmission rate β mixed

In this subsection some Monte Carlo simulations are
performed in order to observe the impact of uncertain-
ties in the initial condition for the latent subpopula-
tion and in the social transmission rate β. Since in
the previous sections these effects have been studied
separately, our aim here is to observe the dynamics
changes putting together random effects in two rele-
vant inputs of the model. In Fig. 9 it can be seen that
dynamics using uniform distributions maintain simi-
lar behavior to the deterministic model. On the other
hand, when normal distributions are employed 95%
confidence intervals becomes more wider and predic-
tions need to be taken carefully, as it can be observed
in Fig. 10.

4.4 Stochastic numerical simulation through
Monte Carlo method

Numerical stochastic solutions of model (3) are ob-
tained using the Euler-Maruyama stochastic scheme.
In addition, confidence intervals for the stochastic
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Figure 6: Expected value and 95% confidence inter-
val for the different subpopulations when the trans-
mission parameter β in the model (1) take different
values from a uniform distribution (0.0200, 0.0244).
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Figure 7: Expected value and 95% confidence interval
for the different subpopulations when the transmis-
sion parameter β in the model (1) take different values
from a normal distribution with mean 0.0222949 and
standard deviation 0.000001.
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Figure 8: Expected value and 95% confidence interval
for the different subpopulations when the transmis-
sion parameter β in the model (1) take different values
from a normal distribution with mean 0.0222949 and
standard deviation 0.00001.
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Figure 9: Expected value and 95% confidence in-
terval for the different subpopulations when the ini-
tial conditions for the latent individuals in the model
(1) take different values from a uniform distribution
(0.1, 0.3) and the transmission parameter β in the
model (1) take different values from a uniform dis-
tribution (0.0200, 0.0244).
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Figure 10: Expected value and 95% confidence in-
terval for the different subpopulations when the ini-
tial conditions for the latent individuals in the model
(1) take different values from a normal distribution
with mean 0.194 and standard deviation 0.01, and the
transmission parameter β in the model (1) take dif-
ferent values from a normal distribution with mean
0.0222949 and standard deviation 0.00001.

solution at the end of the time interval are com-
puted using the Monte Carlo simulations in conjunc-
tion with the Euler-Maruyama stochastic numerical
scheme. Moreover Monte Carlo method is also ap-
plied to construct confidence intervals over the whole
simulation time using statistics percentiles. Figure 11
shows the evolution of the 95% confidence interval
and the expected overweight and obese populations
considering random perturbations of 50% (θ = 0.01)
of the transmission rate parameter β value, using the
Monte Carlo method for period 1999 − 2010 (572
weeks). In Figure 12 it can be seen the evolution of the
95% confidence interval and the expected overweight
and obese populations considering random perturba-
tions of 100% (θ = 0.02) of the estimated value of the
transmission rate parameter β. Notice that the confi-
dence interval tends to stabilize near the overweight
and obesity component of the endemic equilibrium
point OEE as expected (see Section 2).

In Tables 6 and 7, the mean value, standard de-
viation and 95% confidence interval for overweight
and obese population for year 2010 using Monte Carlo
method are showed. The mean values are almost equal
for different ranges of perturbation, but the standard
deviation has increases when the variability of the pa-
rameter β is increased. Additionally, confidence in-
tervals for both overweight and obese populations are
larger when the transmission rate β is perturbated ran-
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Figure 11: Confidence interval and expected value
with a time step ∆t = 0.1 when the transmission rate
β is perturbated randomly in a range of 50%.
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Figure 12: Confidence interval and expected value
with a time step ∆t = 0.1 when the parameter β is
perturbated randomly in a range of 100%.

domly in a large range as was expected.

Table 6: Mean, standard deviation and 95% confi-
dence intervals with θ = 0.01.

Population Mean and Std. Monte Carlo C.I.
Overweight (0,2714, 0,0035) (0.2645,0.2782)

Obese (0,1259, 0,0011) (0.1236,0.1282)

Table 7: Mean, standard deviation and 95% confi-
dence intervals with θ = 0.02.

Population Mean and Std. Monte Carlo C.I.
Overweight (0,2715, 0,0070) (0.2584, 0.2846)

Obese (0,1260, 0,0023) (0.1210, 0.1299)

5 Conclusions

In modeling, analyzing, and predicting behaviors of
physical and natural phenomena, greater and greater
emphasis has been placed upon probabilistic meth-
ods, [27, 6, 5, 10, 37]. This is due to the combination
of complexity, uncertainty and ignorance which are
present in the formulation of a great number of these
problems. For example, geostatics aims at providing
quantitative descriptions of natural variables such as
pressure, temperature, a wind velocity in the atmo-
sphere, concentrations of pollution in a contaminated
site, and so forth. The variables exhibit an immense
complexity of detail that precludes a description by
a simplistic models, [10]. These facts make dealing
with mathematical models where the uncertainty is
considered more appropriate.
The effect of introducing randomness in a determin-
istic mathematical model dynamics of obesity popu-
lation has been observed by means of the well known
Monte Carlo method. Furthermore, confidence inter-
vals and expected solutions for the random models
were obtained. The simulations carried out with these
random models indicated that the increasing trend in
the 3 − 5 years old overweight and obese popula-
tions showed by the deterministic model is still main-
tained despite the initial condition of normal weight
and latent classes or subpopulations are random val-
ues taken from an uniform and normal distributions.
This means that the long time behavior model predic-
tions are still accurate if the initial conditions for the
latent and normal subpopulations have discrepancies
with the reality.

The situation when the value of the transmission
parameter β is a random variable taken from a uni-
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form or normal distribution is quite different, since for
this case dispersion in the assumed distributions can
modify drastically the dynamics of the model. How-
ever, for small standard deviations of the distribution,
the confidence intervals give meaningful information
in regard to the dynamics of the subpopulations. Ad-
ditionally, expected solutions of the random models
are quite similar to the numerical solutions of the de-
terministic model, conserving in this way the same in-
creasing trend in the overweight and obesity subpop-
ulations. It is important to mention that Monte Carlo
simulations give realistic values which are consistent
with the results obtained for the deterministic math-
ematical model, specially in regard to the asymptotic
behavior.

On the other hand, when the transmission param-
eter β is perturbated the stochastic model indicate an
increasing trend in the overweight and obese popula-
tions in the next few years as the corresponding de-
terministic model predicted. This increasing trend in
obesity is still observed even when the transmission
rate is perturbed in a range of 100%. As expected
the length of the confidence intervals are proportional
to the amplitude of the fluctuations of the transmis-
sion rate. Therefore, the variability of forecasts for
the incidence of infant obesity in the next few years
depends on the effect that social environment has over
the parameter β. This fact is important since educa-
tive plans, advertising programs, and health programs
can be designed to affect positively the social environ-
ment.

Finally, the approaches applied in this paper can
be applied in to a very wide class of differential equa-
tions models. These include mathematical models
dealing with uncertainty in a wide variety of applied
areas, such as physics, chemistry, biology, economics,
sociology and medicine.

Future directions of research in this area is to
compare numerical results of Monte Carlo simula-
tions and the results provided by numerical methods
applied directly to the random differential equations.
In this way, computational costs can be evaluated in
order to see the convenience of applying one method
or other to other real world applications where it is
clear the necessity of using random differential equa-
tions.
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