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Abstract: Anti-angiogenic therapy is a novel treatment approach for cancer that aims at preventing a tumor from
developing its own network of blood vessels that it needs for its supply of nutrients and thus indirectly inhibits
the growth of the tumor. In this paper a mathematical model for anti-angiogenic treatment is analyzed as a 3-
dimensional optimal control problem with the aim of minimizing a convex combination of tumor volume and
endothelial support. The latter represents a measure for the size of the tumor’s vasculature. The results are com-
pared with the solutions for the problem when only the tumor volume is minimized.
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1 Introduction

Anti-angiogenic therapy is a novel treatment approach
for cancer that aims at preventing a tumor from devel-
oping its own network of blood vessels [12, 19]. Af-
ter going through a state of avascular growth, at the
size of about2 mm in diameter a primary solid tumor
starts the process ofangiogenesisto recruit surround-
ing, mature, host blood vessels in order to develop
capillaries needed for its own supply of nutrients. The
lining of these newly developing blood vessels con-
sist of endothelial cells and the tumor produces vas-
cular endothelial growth factor (VEGF) to stimulate
their growth [20] as well as inhibitors to suppress it
[13]. Overall this process is based on a bi-directional
signaling that can be viewed as a complex balance
of tightly regulated stimulatory and inhibitory mech-
anisms [14, 8]. Anti-angiogenic treatments rely on
these mechanisms by bringing in external angiogenic
inhibitors (e.g., endostatin) targeting the endothelial
cells and thus blocking their growth. This indirectly
effects the tumor which, ideally, deprived of necessary
nutrition, would regress. Since the treatment does not
target cancer cells, but healthy cells instead, no occur-
rence of drug resistance has been reported in lab stud-
ies [4]. For this reason tumor anti-angiogenesis has
been called a therapy “resistant to resistance” that pro-
vides a new hope for the treatment of tumor type can-
cers [18]. Naturally, as such it became an active area
of research in the last ten years not only in medicine
but also in modeling and mathematical biology.

In mathematical modeling several models de-

scribing the dynamics of angiogenesis have been pro-
posed. Some of these aim at fully reflecting the com-
plexity of the biological processes, (e.g., [1, 2]), and
allow for large scale simulations while other mod-
els emphasize the spatial aspects of the problem [22].
However, because of the dimensionality of these sys-
tems a theoretical analysis often is difficult. On the
other hand, if the dimensions are small analytical tech-
niques from such fields as dynamical systems or opti-
mal control theory can be applied to study the prob-
lem. Applications of optimal control to mathemat-
ical models arising in biomedical problems have a
long history going back to Eisen’s monograph [9] and
some of the classical papers by Swan [34, 35]. The
early focus was on models in connection with can-
cer chemotherapy and these efforts have continued to
the present day (e.g., [36, 11, 23, 24]). The problem
of optimal dosages of drugs has also been addressed
using some alternative numerical techniques like, for
example, genetic algorithms (e.g., [3]).

In this paper we consider the question how to
schedule an a priori given amount of angiogenic in-
hibitors as an optimal control problem. The underly-
ing model was formulated and biologically validated
by Hahnfeldt, Panigrahy, Folkman and Hlatky (then at
Harvard Medical School) in [16]. Mathematically it
is described by a two-dimensional dynamical system
with the volume of primary tumor cells,p, and the car-
rying capacity of the endothelial cells,q, as variables.
The latter is defined as the maximum tumor volume
sustainable by the vascular network and henceforth
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we also refer to this as the endothelial support of the
tumor for short. Based on this model and the under-
lying spatial analysis carried out in the research by
Hahnfeldt et al. [16] two modifications of the original
model have been formulated since, one by d’Onofrio
(at the European Institute of Oncology in Milan) and
Gandolfi (at the National Research Council in Rome,
Italy) [7], the other by Ergun, Camphausen and Wein
(at the Cancer Research Institute at NIH) [10]. In each
formulation a Gompertzian model with variable carry-
ing capacityq is chosen to model tumor growth, but
the dynamics for the endothelial support differ in their
inhibition and stimulation terms.

In earlier research we have analyzed the prob-
lem how to schedule given amounts of angiogenic in-
hibitors in order to minimize the cancer volume (see
[27, 28, 29] for the original model of Hahnfeldt et al.,
[25] for the modification by Ergun et al., and [30] for
the modification by d’Onofrio and Gandolfi). Sub-
optimal controls were explored in [31] with an empha-
sis on medically realizable protocols. In this paper we
modify the objective to include the level of endothelial
support. More precisely, here we consider the prob-
lem of how to schedule an a priori given amount of
anti-angiogenic inhibitors in order to minimize a con-
vex combination

θp(T ) + (1 − θ)q(T ), 0 ≤ θ ≤ 1 (1)

while our earlier results were for the special case
θ = 1. Several aspects of the overall solution remain
unaltered under this modification. For example, in ei-
ther case the synthesis of optimal solutions is largely
determined by an optimal singular arcΓ whose equa-
tion naturally is not effected by this change in the ob-
jective. But the value ofθ determines the behavior
near the optimal terminal timeT . We shall show that
there is an interval(θ∗, 1], generally small for bio-
logically realistically parameter values, such that for
θ ∈ (θ∗, 1] the typical optimal control is a concate-
nation of the typeas0, that is, consists of an initial
segment where inhibitors are given at maximum dose
u = a until the optimal singular arcΓ is reached, then
follow the optimal singular arc until all inhibitors are
exhausted, but then still have another short time inter-
val along which the optimal control isu = 0 and on
which the value of the objective still decreases due to
after effects. However, forθ < θ∗, it is no longer opti-
mal to stay on the singular arc until all inhibitors have
been exhausted and in these cases optimal controls are
concatenations of the formbsa where, depending on
the initial conditionb denotes an interval either with
u = 0 or u = a.

2 A Mathematical Model for Tumor
Anti-Angiogenesis [16]

The mathematical model considered here was devel-
oped and biologically validated by Hahnfeldt, Pani-
grahy, Folkman and Hlatky in [16]. Its principal vari-
ables are the primary tumor volume,p, and the carry-
ing capacity or the endothelial support of the vascula-
ture,q, that is the maximum tumor volume sustainable
by the vasculature. The dynamics describes the time
evolution of these quantities. Tumor growth is mod-
elled by a Gompertzian growth function with variable
carrying capacity represented byq, that is the rate of
change in the volume of primary tumor cells is given
by

ṗ = −ξp ln

(

p

q

)

(2)

where ξ denotesa tumor growth parameter. Other
growth models, like for example logistic growth con-
sidered in [7] or general growth functions considered
in [15] are equally plausible, but lead to different com-
putations and the corresponding optimal control prob-
lems would need to be analyzed separately. Here we
retain the original modeling. The dynamics of the en-
dothelial support consists of a balance between stim-
ulatory and inhibitory effects and is taken of the fol-
lowing form in [16]

q̇ = bp −
(

µ + dp
2

3

)

q − Guq. (3)

In this equationbp represents the stimulation term
which is taken proportional to the tumor volume. The
termsµq andGuq, respectively, model loss to the en-
dothelial cells through natural causes (death etc.) and
loss of endothelial cells due to additional outside inhi-
bition. The variableu denotes the control in the sys-
tem and corresponds to the angiogenic dose rate while
G is a constant that represents the anti-angiogenic
killing parameter. Generallyµ is small and often this
term is negligible compared to the other factors and
thus in the literature sometimesµ is set to0 in this
equation. The other inhibition termdp

2

3 q represents
the fact that the tumor also produces inhibitors that
impact endothelial cells in a way that grows like vol-
ume of cancer cells to the power2

3
. The exponent2

3

arisesthroughthe interplay of the surface of the tumor
through which the inhibitor needs to be released with
the volume of endothelial cells [16].

The problem how to administer a given amount of
inhibitors to achieve the “best possible” effect arises
naturally and leads to optimal control problems. One
possible formulation, considered first in [10] and then
taken up by us in [25, 27, 29, 30], is to minimize the
tumor volume or, equivalently, maximize the tumor
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reduction possible with an a priori given amount of
inhibitors. In this paper, since both tumor volume and
its carrying capacity determine the overall behavior,
we modify the objective to minimize a convex combi-
nation of tumor volume and endothelial support. Thus
here we consider the following optimal control prob-
lem:

[OC] For a free terminal timeT , minimize the value

Jθ(u) = θp(T ) + (1 − θ)q(T ), 0 ≤ θ ≤ 1,

over all piecewise continuous (more generally,
Lebesgue measurable) functions

u : [0, T ] → [0, a] (4)

that satisfy a constraint on the total amount of
anti-angiogenic inhibitors to be administered,

∫ T

0

u(t)dt ≤ A, (5)

subject to the dynamics (2), (3) with initial con-
ditionsp0 andq0.

The upper limita in the definition of the control set
U = [0, a] is a previously determined maximum dose
at which inhibitors can be given. Note that in this for-
mulation the timeT does not correspond to a therapy
horizon, but instead the solution to this problem gives
the maximum reduction possible for the weighted av-
erageJθ of tumor volume and endothelial support
with an overall amountA of inhibitors available and
T is the time when this minimum is being realized.
Mathematically it is more convenient to adjoin the
constraint as third variable and define the problem in
R

3 which overall leads to the following dynamical
equations:

ṗ = −ξp ln

(

p

q

)

, p(0) = p0, (6)

q̇ = bp −
(

µ + dp
2

3

)

q − Guq, q(0) = q0, (7)

ẏ = u, y(0) = 0, (8)

Naturally, from their definition all the state variables
need to be positive. It was shown in [7] that this con-
dition is ensured by the dynamics and need not be im-
posed as a separate constraint.

Proposition 1 [7] For any admissible controlu and
arbitrary positive initial conditionsp0 andq0, the cor-
responding solution(p, q) exists for all timest ≥ 0
and bothp andq remain positive.�

Since we consider problem[OC] for arbitrary ini-
tial conditions, in this formulation degenerate cases
are included that we want to exclude for our analy-
sis. They all are related to the fact that the initial
condition may be skewed heavily in favor of the en-
dothelial support, that is,q is much larger thanp.
In this case it may simply not be possible to lower
the valueθp(t) + (1 − θ)q(t) below its initial value
θp0 + (1 − θ)q0 since for any admissible control the
function

Jθ,u(t) = θp(t) + (1 − θ)q(t) (9)

is increasing in the region where the initial condition
lies and the overall amountA of inhibitors is too small
to reach a region where this function would have a
lower value than

Jθ,u(0) = θp0 + (1 − θ)q0. (10)

In such a case the (mathematically) optimal timeT is
T = 0 since the overall available amount of inhibitors
is too small to reach a point(p(t), q(t)) that would
have a lowerJθ-value than the initial condition. It is
only possible to slow down the tumor’s growth. In-
deed, a good way of doing this is to give the full dose
u = a until all inhibitors run out - this is implied by
the structure of optimal controls to be shown later -
but mathematically this is not the “optimal” solution
for problem[OC]. This one is simply to do nothing
and takeT = 0. Clearly for these initial conditions
the mathematical formulation considered here is not
adequate and we wish to exclude these degenerate sce-
narios from our analysis. We thus make the following
definition:

Definition 1 We say an initial condition(p0, q0) is
well-posedif the optimal final timeT is positive.

Clearly whether an initial condition is well-posed
depends on the overall available amountA of in-
hibitors and the location of(p0, q0). In this paper we
only consider well-posed initial conditions.

3 The Maximum Principle
and Optimal Controls

First-order necessary conditions for optimality of a
control u for problem [OC] are given by thePon-
tryagin Maximum Principle[32, 6]: If u∗ is an op-
timal control defined over an interval[0, T ] with cor-
responding trajectory(p∗, q∗, y∗)T , then there exist a
constantλ0 ≥ 0 and an absolutely continuous co-
vector,λ : [0, T ] → (R3)∗, (which we write as row-
vector) such that
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(a) (λ0, λ(t)) 6= (0, 0) for all t ∈ [0, T ],
(b) the adjoint equations hold

λ̇1 = ξλ1

(

ln

(

p∗(t)

q∗(t)

)

+ 1

)

(11)

+ λ2





2

3
d

q∗(t)

p
1

3

∗ (t)
− b



 ,

λ̇2 = −ξλ1

p∗(t)

q∗(t)
+ λ2

(

µ + dp
2

3

∗ (t) + Gu

)

, (12)

λ̇3 = 0, (13)

with transversality conditions

λ1(T ) = λ0θ, λ2(T ) = λ0(1 − θ), (14)

and

λ3(T ) =

{

0 if y(T ) < A

free if y(T ) = A
(15)

and
(c) the optimal controlu∗ minimizes the Hamiltonian
H,

H = −λ1ξp ln

(

p

q

)

+ λ3u (16)

+λ2

(

bp −
(

µ + dp
2

3

)

q − Guq
)

,

along (λ(t), p∗(t), q∗(t)) over the control set[0, a]
with minimum value given by0. �

We call a pair ((p, q, y), u) consisting of an
admissible controlu with corresponding trajectory
(p, q, y) an extremal(pair) if there exist multipliers
(λ0, λ) such that the conditions of the Maximum Prin-
ciple are satisfied and the triple((p, q, y), u, (λ0, λ))
is an extremal lift (to the cotangent bundle). Extremals
with λ0 = 0 are calledabnormalwhile those with a
positive multiplierλ0 are callednormal. In this case
it is possible to normalizeλ0 = 1.

The following Lemmas summarize some elemen-
tary properties of optimal controls and extremals for
well-posed initial conditions.

Lemma 1 Extremals are normal. The multipliersλ1

and λ2 cannot vanish simultaneously;λ2 has only
simple zeroes. The multiplierλ3 is constant and non-
negative.

Proof. The multipliersλ1 andλ2 satisfy the homoge-
neous linear system (11) and (12) and thus they van-
ish identically if they vanish at some timet. This is
equivalent toλ0 = 0. In this case the nontriviality of
(λ0, λ(t)) then implies that the multiplierλ3, which is
constant, is not zero. The conditionH ≡ 0 on the

Hamiltonian therefore givesu ≡ 0, i.e., the initial
condition is ill-posed. Thus, without loss of gener-
ality we may assume thatλ0 = 1 and henceλ1 and
λ2 cannot vanish simultaneously. In particular, when-
everλ2(t) = 0, thenλ̇2(t) 6= 0 and thusλ2 has only
simple zeroes.

Using

Jθ,u(t) = θp(t) + (1 − θ)q(t),

the conditionH(T ) = 0 at the terminal time can be
written in the form

H(T ) = −θξp ln

(

p

q

)

+ λ3u

+ (1 − θ)
(

bp −
(

µ + dp
2

3

)

q − Gqu
)

=
dJθ

dt
(T ) + λ3u = 0. (17)

Along an optimal solution the derivativedJθ

dt
(T ) can-

not be positive. For, if dJθ

dt
(T ) > 0, then the func-

tion Jθ(t) is strictly increasing over some interval
[T−ε, T ] and it would have been better to stop already
at timeT − ε. Hence we must haveλ3u(T ) ≥ 0. For
u(T ) > 0 this already impliesλ3 ≥ 0. If u(T ) = 0,
then it follows from the minimization property (c)
that λ3 − λ2(T )Gq∗(T ) ≥ 0 and this also implies
λ3 ≥ λ2(T )Gq∗(T ) = (1 − θ)Gq∗(T ) ≥ 0. �

The function

Φ(t) = λ3 − λ2(t)Gq∗(t), (18)

determines the structure of the optimal controlu∗

through the minimization property (c) on the Hamil-
tonianH and is called theswitching functionof the
problem. Optimal controls satisfy

u∗(t) =

{

0 if Φ(t) > 0
a if Φ(t) < 0

. (19)

A priori the control is not determined by the minimum
condition at times whenΦ(t) = 0. If Φ(τ) = 0, but
Φ̇(τ) 6= 0, then the control switches betweenu = 0

andu = a depending on the sign oḟΦ(τ). On the
other hand, ifΦ(t) vanishes identically on an open in-
terval, then the minimization property in itself gives
no information about the control. However, in this
case also all derivatives ofΦ(t) must vanish and this
may and typically does determine the control. Con-
trols of this kind are calledsingular [5] while we re-
fer to the constant controls asbangcontrols. Optimal
controls then need to be synthesized from these can-
didates through an analysis of the switching function
and its derivatives. For example, we have
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Lemma 2 If λ3 = 0, then optimal controls are bang-
bang with at most one switching.

Proof. For λ3 = 0 the switching function can be re-
defined to bẽΦ(t) = λ2(t) and the optimal control
is given byu∗(t) = 0 if λ2(t) < 0 andu∗(t) = a
if λ2(t) > 0. Since we haveH ≡ 0, it follows
that wheneverλ2(t) = 0, then we must have that
p∗(t) = q∗(t), i.e., switchings are only possible when
the system state is on the diagonalp = q. The uncon-
trolled system (u = 0) has a unique globally asymp-
totically stable equilibrium(p̄, q̄) at the point

p̄ =

(

b − µ

d

) 3

2

= q̄ (20)

andthe biologically relevant region is contained in the
square domain

D = {(p, q) : 0 < p < p̄, 0 < q < q̄}. (21)

It is shown in [29] that this region is positively invari-
ant and thus without loss of generality we may assume
that our system lives inD. A direct computation ver-
ifies that on the diagonalp = q the system dynamics
points intop < q for u = 0 and intop > q for u = a.
This implies that there can be at most one switching
since trajectories cannot return to the diagonal.�

The caseλ3 = 0 also includes degenerate cases
when optimal controls end withu = a and all avail-
able inhibitors have not been exhausted, i.e.,y∗(T ) <
A. This is possible when the functionJθ,u=a(t)
reaches a local minimum along the controlu = a be-
fore all inhibitors have been exhausted. In this case
the minimal value is realized at that time. These kind
of degenerate situations no longer arise if the multi-
plier λ3 is positive.

Lemma 3 If λ3 > 0, then all available inhibitors
are exhausted along the corresponding trajectory, i.e.,
y∗(T ) = A.

Proof. Suppose inhibitors are still availabley∗(T ) <
A. If λ3u∗(T ) > 0, then it follows from (17) that
dJθ

dt
(T ) < 0. But then the value of the objective

could be lowered further by adding a small inter-
val [T, T + ε]. Similarly, if u∗(T ) = 0, then also
dJθ

dt
(T ) = 0 along the final segmentu = 0. But then

again switching to the controlu = a on a sufficiently
small interval[T, T + ε] would turn dJθ

dt
(T ) negative

and thus again a lower value could be achieved.�

We henceforth always assume thatλ3 > 0.

4 Optimal Solution for the caseθ = 1

In earlier research [29] we gave a complete solution
for the optimal control problem[OC] in form of asyn-
thesisof optimal controls for the case whenθ = 1, i.e.,
the cancer volumeJ1(u) = p(T ) was minimized. A
synthesis provides a full “road map” of how optimal
protocols look like depending on the initial condition
in the problem, both qualitatively and quantitatively.
We briefly summarize the general structure of optimal
trajectories for this case and then proceed to a precise
description of the optimal controls.

Theorem 1 [29] Given a well-posed initial condition
(p0, q0), optimal controls are at most concatenations
of the form0asa0 where0 denotes an interval along
which the optimal control is given by a constant con-
trol u = 0, that is no inhibitors are given,a denotes
an interval along which the optimal control is given by
the constant controlu = a at full dose, ands denotes
an interval along which the optimal control follows a
time-varying singular feedback control. This control
is only optimal while the system follows a particular
curveS in the (p, q)-space, the optimal singular arc.
Depending on the initial condition(p0, q0), not all of
these intervals need to be present in a specific solu-
tion. For the biologically most relevant initial con-
ditions typically optimal controls have the formbs0

whereb stands for an interval along which the opti-
mal control is given by eitheru = a or u = 0 depend-
ing on the initial condition.

Despite their name, which is related to some clas-
sical control literature from the sixties (e.g., [5, 6,
21]), singular controls and the corresponding singu-
lar curves are to be expected in a synthesis of optimal
controls for a problem of the type [OC] for nonlinear
models. The singular control and the geometry of the
singular curveSare an essential part of the design of
the optimal protocol and in order to construct a full
synthesis of solutions, the formulas for singular con-
trols and corresponding singular trajectories given be-
low are essential. A full derivation of these formulas
is given in [29].

Proposition 2 Using a blow-up of the formx = p
q

the
singularcurveS canbe parameterized in the form

µ + dp
2

3 = bx(1 − lnx) (22)

with x ∈ (x∗

1
, x∗

2
) where x∗

1
and x∗

2
are the unique

zeroes of the equation

ϕ(x) =
b

d
x(lnx − 1) +

µ

d
= 0 (23)

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Urszula Ledzewicz, Heinz Schattler

ISSN: 1109-9518 27 Issue 2, Volume 5, February 2008



and satisfy0 < x∗

1
< 1 < x∗

2
< e. The singular

control keeps the system on the singular curve and is
given as a feedback function ofx in the form

usin(x) =
1

G

[(

1

3
ξ + bx

)

ln x +
2

3
ξ
(

1 −
µ

bx

)

]

.

(24)
There exists exactly one connected arc on the singu-
lar curve S along which the singular control is ad-
missible, i.e., satisfies the bounds0 ≤ usin(x) ≤ a.
This arc is defined over an interval[x∗

` , x
∗

u] where
x∗

` and x∗

u are the unique solutions to the equations
usin(x

∗

` ) = 0 andusin(x
∗

u) = a and these values sat-
isfyx∗

1
< x∗

` < 1 < x∗

u < x∗

2
.

The two graphs given in Fig. 1 and in Fig. 2 illus-
trate the proposition for the following parameter val-
ues taken from [16]: The variablesp andq are vol-
umes measured inmm3; ξ = 0.192

ln 10
= 0.084 per day

(adjusted to the natural logarithm),b = 5.85 per day,
d = 0.00873 per mm2 per day, G = 0.15 kg per mg
of dose per day, and for illustrative purposes we chose
a small positive value forµ, µ = 0.02 per day. For
the control limits we have takena = 75 andA = 300.
Fig. 1 shows the plot for the singular control defined
by (24) also indicating the valuesx∗

` and x∗

u where
the control saturates atusin(x) = 0 andusin(x) = a.
Fig. 2 shows the graph of the singular curve given by
formula (22). In all our figures we plotp vertically
and q horizontally since this easier visualizes tumor
reductions. Saturation of the singular control atx∗

`

andx∗

u restricts the admissible part of this petal-like
curve to the portion lying between the linesp = x∗

l q
andp = x∗

uq. This portion is marked with a solid line
in Fig. 2. The qualitative structures shown in theses
figures are generally valid for arbitrary parameter val-
ues, both for the control and the singular curve. Only
with decreasing values for the upper control limita
the admissible portion shrinks until it disappears for
a = 0.

The admissible singular arc becomes the essen-
tial piece for the synthesis of optimal solutions that
is depicted in Fig. 3. The important curves for the
synthesis are the admissible portions of the singular
curve (solid blue curve), portions of trajectories corre-
sponding to the constant controlsu = 0 (dash-dotted
green curves) andu = a (solid green curves), and
the linep = q (dotted black line) where the trajec-
tories achieve the maximum tumor reduction. These
diagrams represent the optimal trajectories as a whole
and each of the different curves gives a different op-
timal trajectory depending on the actual initial con-
dition. The thick lines in the graphs mark one spe-
cific such trajectory. In each case the initial valuep0

for the tumor volume andq0 for the endothelial sup-
port are high and require to immediately start with
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the treatment. The optimal trajectory therefore ini-
tially follows the curve corresponding to the control
u = a. Note that, although inhibitors are given at full
dose along this curve, this shows very little effect on
the number of the cancer cells in a sense of decrease.
Once the trajectory corresponding to the full dose hits
the singular arcS, it is no longer optimal to give full
dose and the optimal controls here switch to the singu-
lar control and the optimal trajectory follows the sin-
gular arc until all inhibitors are exhausted according
to the condition thaty(T ) = A. When the inhibitors
have been exhausted, therapy is over, but due to after
effects the maximum tumor reduction is only realized
as the trajectory for the controlu = 0 crosses the diag-
onalp = q. The corresponding timeT then is the limit
of the horizon considered in the problem formulation
[OC]. We only remark that the scenario described here
assumes that no saturation occurs along the singular
arc. If that were the case, then optimal controls no
longer follow the singular control until saturation, but
in fact optimal trajectories leave the singular with the
control u = a prior to the saturation point. Simply
continuing the control withu = a is not optimal [29].

Figs. 4 and 5 give an example of the optimal con-
trol and its corresponding trajectory for the initial con-
ditions (p0, q0) = (12, 000 mm3; 15, 000 mm3). For
this example the concatenation sequence isas0: first
the optimal control is given at full dosageu = a = 75
until the singular curveS is reached at timet1 = 0.09
days. Then administration follows the time-varying
singular control until inhibitors are exhausted at time
t2 = 6.56 days. Due to after effects the maximum
tumor reduction is realized along a trajectory for con-
trol u = 0 at the optimal terminal timeT = 6.73 days
when the trajectory reaches the diagonalp = q.
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Figure 4: Optimal control for (p0, q0) =
(12, 000 mm3; 15, 000 mm3)
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Figure 5: Optimal trajectory for(p0, q0) =
(12, 000 mm3; 15, 000 mm3)

5 Optimal Solution for the caseθ < 1

In the caseθ < 1 many qualitative features of the so-
lution for the caseθ = 1 are retained. Clearly, all the
vector fields defining the dynamics are unchanged and
thus all the calculations of singular arcs and singular
controls from [29] remain valid and as before the sin-
gular arcS defined in (22) is the center piece of the
synthesis. However, the change in the objective en-
ters into the terminal conditions for the multipliersλ1

andλ2 and this effects the terminal portion of optimal
trajectories.

As before, let

Jθ,u(t) = θp(t) + (1 − θ)q(t) (25)

and for the moment assume that the optimal control
ends withu = 0. In this case the necessary condition
H = 0 implies that

dJθ,u

dt
(T ) = −θξp ln

(

p

q

)

+ (1 − θ)
(

bp −
(

µ + dp
2

3

)

q
)

= 0

andthus the optimal timeTθ is determined by the fact
that the corresponding trajectory reaches the curveTθ

given in the variablesp andx = p
q

by

µ + dp
2

3 = bx −
θ

1 − θ
ξx lnx. (26)

Note that this curve is identical with the singular arc
S for

θ∗ =
b

b + ξ
(27)

(see (22)).Fig. 6 shows the geometry of the curves
Tθ for various values ofθ and the parameter values
specified earlier.

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Urszula Ledzewicz, Heinz Schattler

ISSN: 1109-9518 29 Issue 2, Volume 5, February 2008



−0.5 0 0.5 1 1.5 2 2.5

x 10
4

−0.5

0

0.5

1

1.5

2

2.5
x 10

4

endothelial support

tu
m

or
 v

ol
um

e T
1

T
.995

T
.990

T
.975

T
.980

T
.990

Figure 6: Terminal curvesTθ

For θ > θ∗ the curveTθ lies in the region between
the singular curveS and the diagonalp = q and in this
case the optimal synthesis is virtually identical to the
one for the caseθ = 1. Optimal trajectories end with
a piece along the controlu = 0 and the minimum of
the objective is realized when this trajectory reaches
the curveTθ. Note that the curveT1 precisely is the
diagonalp = q, the terminal curve for the caseθ = 1.

A special case arises forθ = θ∗. In this case the
terminal curveTθ∗ agrees with the singular arc and the
terminal time is given by the time when inhibitors run
out along the singular arc. (Recall that we are assum-
ing that no saturation occurs prior to this time.) Hence
optimal controls are of the typebs. For the numerical
values given earlier this value isθ∗ = 0.9858, very
close to1.

For θ < θ∗ the concatenation sequence of opti-
mal trajectories changes at the end. In this case the
curveTθ lies above the singular curveS in Fig. 6 (that
is, in the region whereµ + dp

2

3 > bx(1 − ln x)) and
this curve no longer is reachable from the singular arc
by means of the constant controlu = 0. Hence the
conditionH = 0 of the Maximum principle together
with the requirement that all inhibitors need to be ex-
hausted, now forces optimal controls to leave the sin-
gular arc before this happens. All the other arguments
in [29] regarding the concatenation structure of opti-
mal trajectories remain valid. It is still possible that
optimal controls are concatenations of the typebsa0,
but in this sequence the last leg foru = 0 is only
present if the second trajectory foru = a is able to
steer the system above the terminal curveTθ. In this
case a last piece foru = 0 is added when all inhibitors
run out to again come down to the curveTθ. More
typically, now the optimal timeTθ simply is the time
when all inhibitors become exhausted along theu = a
trajectory. When this happens before the curveTθ is

reached, then it is no longer optimal to add another
leg foru = 0 and the minimum is realized at the time
when all inhibitors are exhausted, that is, the optimal
concatenation sequence is of the formbsa. This holds
for all our numerical illustrations below.

Knowing the concatenation sequence of opti-
mal controls a priori (based on our theoretical anal-
ysis) allows to set up a straightforward numerical
1-dimensional minimization procedure by using the
timeτ when the system leaves the singular arc as a pa-
rameter and minimizing over the corresponding value
of the objective. The diagrams below give the numer-
ical solutions for the initial conditions

(p0, q0) = (12, 000 mm3; 15, 000 mm3),

the same one as used above forθ = 1, and for the
parameter valuesθ = 0.95 ,0.85 and0.75. The time
it takes for the optimal trajectory to reach the singular
arc is the same for each computation and is given by
t1 = 0.0905 (days). Thenτ denotes the time spent
along the singular arc starting with0 and this is the
parameter in the one-dimensional minimization. Thus
with τ̂ denoting the optimal parameter value, the over-
all time when the trajectory leaves the singular arc is
given byt∗sin = t1 + τ̂ .
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Figure 7: ObjectiveJ0.95(τ)

Fig. 7 gives the graph of the objective as a func-
tion of the minimization parameterτ for θ = 0.95.
In this case the optimal parameter is given byτ̂0.95 =
6.1775 and thus the optimal time to leave the singular
arc ist∗

0.95 = 6.2680; the overall optimal timeT0.95 is
T0.95 = 6.4794 and the minimum value of the objec-
tive is given byJ0.95 = 8324.4. The corresponding
controls and trajectories are shown in Fig. 10.

As the value ofθ is decreased, the optimal timeτ
to leave the singular arc becomes shorter and the time
along the lastu = a leg increases. Forθ = 0.85 we
haveτ̂0.85 = 6.0375 and the optimal time to leave the
singular arc is given byt∗

0.85 = 6.1280; the minimum
value isJ0.85 = 7805.9. Forθ = 0.75 these values are

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Urszula Ledzewicz, Heinz Schattler

ISSN: 1109-9518 30 Issue 2, Volume 5, February 2008



given byτ̂0.75 = 5.9775, t∗
0.75 = 6.0680 andJ0.85 =

7286.1. Figs. 8 and 9 show the objective for the values
θ = 0.85 andθ = 0.75.
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Figure 8: ObjectiveJ0.85(τ)
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Figure 9: ObjectiveJ0.75(τ)

The changes in the optimal times are very small
and the corresponding optimal controls and trajecto-
ries which are given in Figs. 10 - 12 are very close
to each other. As these diagrams show, the signifi-
cant change in the structure of optimal controls and
their corresponding trajectories occurs as the parame-
ter θ in the objective crosses the bifurcation valueθ∗,
but asθ is decreased further the changes are quantita-
tively small and do not lead to substantial changes in
the optimal protocols.

6 Conclusion
In this paper we showed how the structure of opti-
mal solutions changes for a problem for tumor anti-
angiogenesis when the level of endothelial support is
included in the objective at the terminal time. While
optimal controls always end with a segment along the
control u = 0 if θ > θ∗ when a high weight is as-
signed to the tumor volume, forθ < θ∗ optimal con-
trols end with a segment along the full dose control
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Figure 10: Optimal control and corresponding trajec-
tory for θ = 0.95

u = a as all inhibitors are exhausted. Modulo the bi-
furcation in the optimal controls and trajectories for
the parameter valueθ∗ the structure of the synthesis
is fully robust and stable under variations of other pa-
rameters in the system.
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for a system modelling tumor anti-angiogenesis,
ICGST-ACSE Journal,6, (2006), pp. 33-39

[27] U. Ledzewicz and H. Scḧattler, Application of
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