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Abstract: The aim of this paper is to introduce an extension to a force estimation technique based on activity index and 
to compare it to two other muscle force estimation techniques that also use the motor control information on the same 
set of surface EMG signals. Our new method is called motor unit twitch force technique and the compared methods 
include motor unit action potential rate and activity index. The main difference of the three compared methods lies in 
the extraction of the motor control information from multi-channel surface EMG. Motor unit action potential rate and 
activity index measure global muscle activity as they represent the summation of innervation pulse trains of all active 
motor units, while twitch force technique decomposes the surface EMG and obtains the activity of all active individual 
motor units separately. This means a great improvement over activity index and motor unit action potential rate 
methods as both force regulation principles, i.e. motor unit recruitment and firing rate modulation can be observed. 
Surface EMG signals used in the experiment were recorded from biceps brachii muscle during elbow flexion on five 
subjects. Two-dimensional matrix of surface electrodes (13 rows by 5 columns) was applied. Isometric constant force 
contractions at three different force levels were performed, i.e. at 5, 10 and 30 % of maximal voluntary contraction. 
Torque produced at the elbow joint was measured simultaneously with surface EMG. The force estimation error of the 
methods was measured by root mean square error between the recorded and estimated force. Our new motor unit twitch 
force technique reduced the muscle force estimation error significantly, for 13% when compared to the motor unit 
action potential rate, and for 2% when compared to the activity index method. 
 
 
Key-Words: surface electromyography, muscle force estimation, EMG force relationship, MUAP rate, activity index, 
twitch force 
 
1   Introduction 
Surface electromyography (sEMG) is an important tool 
in various research fields, including biomechanics and 
kinesiology, where it is used to understand how joints 
are loaded, passive tissues are stressed and muscles are 
activated under different working conditions [1]. 
Recently the use of sEMG has been studied also in man-
machine interaction for an intelligent machine control 
[2]. 
     SEMG has been used for over fifty years as a non-
invasive method for measuring muscle activity during 
voluntary contractions. It is a measure of the 
depolarization of muscle fibres, and when the sEMG 
signal is treated properly, it can be used as an indirect 
measure of muscle activity or force [1].   

Muscle force estimated from sEMG is an indicator 
of dynamic changes in muscle activity and can be used 
for the control of limb prostheses [27], in the diagnosis 
of neuromuscular diseases, in the studies of the motor 
control system and in fundamental studies of muscle 
mechanics [17]. Advanced force estimation techniques 
can also be used in the forward-dynamics biomechanical 
models that estimate muscle forces, joint torques and 
ligament forces from sEMG [18]. Models for various 
joints have been already presented, for the ankle [16], 
the knee [19], etc. 

Force production in a muscle is regulated by the 
central nervous system, which controls two main 
mechanisms, i.e. the recruitment and derecruitment of 
motor units (MUs) and the modulation of their discharge 
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rates [12]. The greater the number of MUs recruited and 
their discharge frequencies, the greater the force that will 
be exerted by the muscle. The same two mechanisms 
determine also the electrical activity in a muscle. Thus, a 
direct relationship between the sEMG and exerted 
muscle force might be expected [3]. 

Various force estimation techniques were introduced 
in the literature: force estimation using artificial neural 
networks (ANN) [13], sEMG amplitude processing [14], 
motor unit action potential (MUAP) rate [9], [10] and 
the activity index [6].  

Liu et al. [13] used an ANN to study sEMG-force 
relationship. At first the sEMG-force relationship was 
determined from the recorded sEMG signals and muscle 
forces. This relationship was then used to predict muscle 
forces of the subjects whose sEMG and force data were 
not used for the relationship derivation. The reported 
root mean square error (RMSE) of their estimation is 
less than 15 %, so the ANN can be used for sEMG based 
muscle force prediction. 

Amplitude processing techniques are still the most 
widely used; they consist of signal rectification followed 
by low-pass filtering of the rectified signal, such as 
average rectified or root mean square values [15].  

Milner-Brown et al. [14] introduced a sEMG 
amplitude processing technique for force estimation. In 
their experiments sEMG signals of the first dorsal 
interosseus muscle were recorded and rectified. The 
contribution of the two force generation mechanisms 
was studied as well. They found that the largest 
contribution of MU recruitment occurs at low force 
levels, while the contribution due to increased firing rate 
is dominant at higher force levels. 

Advanced sEMG amplitude processing techniques 
were also developed using multi-channel sEMG [4], 
high-pass filtering [5] and multi-channel signal 
whitening [15]. Staudenmann et al. [4] improved 
standard amplitude processing technique by using multi-
channel sEMG signals, or high-density sEMG. Instead of 
using bipolar signals only they used a 2D matrix of 
electrodes and studied the importance of the number of 
electrodes for optimizing muscle force estimation. They 
reported that the multi-channel technique improved 
muscle force estimation by about 30 % when compared 
to a single bipolar electrode pair. 

Another improvement of the classical amplitude 
processing technique was proposed by Potvin and Brown 
[5]. They used a standard bipolar electrode pair, but 
instead of using a high-pass filter with cut-off frequency 
between 10 and 30 Hz, they used much higher cut-off 
frequencies up to 440 Hz, They reported that filtering 
out 99 % of the raw sEMG signal power significantly 
improved muscle force estimation. 

Clancy et al. [14] introduced a new concept of signal 
whitening in the field of sEMG based muscle force 

estimation. They successfully combined the multi-
channel approach with signal whitening and compared 
their results to force estimation techniques based on 
amplitude processing.  

The common weak point of all the methods 
overviewed so far is, that the sEMG amplitude is 
influenced not only by motor control aspects, but also by 
peripheral properties of the muscle, such as MU size, 
position (deep or superficial) and recording setup 
parameters (placement of the surface electrodes). All 
these issues aggravate the force estimation process [9]. 
Therefore methods based on motor control information 
were introduced, such as MUAP rate [9] and activity 
index [6] that are described in Section 2.  

Muscle activity [6, 28] and exerted muscle force are 
two closely related phenomena; however muscle activity 
identification is a basic task, while only global muscle 
activity is observed. In contrast, muscle force estimation 
is more advanced, as an exact increase or decrease of the 
generated force is obtained. Panjkota et al. [28] 
introduced a muscle activity measure, similar to the 
activity index [6]. They carried out a study of muscle 
activity during ergometer rowing, where EMG signals 
were recorded simultaneously with kinematics data. 
EMG signals were denoised using wavelets and 
rectified. Finally the muscle activity was defined by 
applying a threshold to the rectified EMG signals. 

A theoretical background and a mathematical model 
for muscle force generation by individual MUs was 
introduced by Fuglevand et al. [12]. A common problem 
to all force estimation techniques is that forces are 
estimated indirectly because direct non-invasive 
measurements of individual muscle forces are generally 
neither  possible nor practical [1]. 

The rest of our paper is organized as follows. 
Section 2 presents methods used including experimental 
protocol and three force estimation techniques based on 
motor control information. We present our new force 
estimation approach using MU twitch force technique 
and compare results to two other methods of MUAP rate 
and activity index. Section 3 gives the experimental 
results and shows the differences among the compared 
methods. Section 4 discusses the approaches and results, 
while the last section concludes the paper. 

 
 

2 Methods 
 
2.1 Experimental protocol 
Five young healthy male subjects participated in the 
experiment. SEMG signals were recorded using a matrix 
of 61 electrodes arranged in 5 columns and 13 rows (Fig. 
1). Inter-electrode distance was set to 5 mm. The 
electrode pins (diameter 1.27 mm; RS 261-5070, Milan, 
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Italy) were spring loaded telescopic to adapt to the skin 
surface (Fig. 1).  
 

 
Fig. 1: Two-dimensional matrix (13 rows and 5 
columns) of surface electrodes used for sEMG 
acquisition. 
 
Recordings were performed in a single differential 
configuration during isometric, constant-force 
contractions of the dominant biceps brachii muscle. The 
matrix was connected to four 16-channel EMG 
amplifiers (LISiN; Prima Biomedical & Sport, Treviso, 
Italy). The sEMG signals were amplified, band-pass 
filtered (3 dB bandwidth, 10-500 Hz), sampled at 2500 
Hz, and converted to digital form by a 12-bit A/D 
converter. The four acquisition cards acquiring the 
signals from the matrix were driven by the same clock 
signal. 

The experimental protocol consisted of the following 
steps: first, the dominant arm of the subject was placed 
into the isometric brace which was set to the angle of 
120° (see Fig. 2). Three five-second contractions at 
maximum voluntary contraction (MVC) force were 
performed each separated by 2 minutes of rest. Using the 
torque sensors, the maximum contraction force was 
measured and averaged over all three measurements. 
Afterwards, a 5 minute rest was given to the subject. The 
skin was slightly abraded with abrasive paste and 
moistened to improve the electrode-skin contact. The 
location of the innervation zone in the dominant biceps 
brachii of the subject was determined from the travelling 
action potentials detected during voluntary low-force 
muscle contraction by a linear array of 16 electrodes of 
size 10×1 mm and the inter-electrode distance of 10 mm. 
Afterwards, the linear array of electrodes was removed 
and the skin remoistened. The matrix of 61 electrodes 
was placed over the distal half of dominant biceps 
brachii with its third electrode row centred over the 

estimated innervation zone and columns aligned with the 
muscle fibres (see recorded signals in Fig. 3). 

 

 
Fig. 2: The isometric brace used to keep the elbow 
angle constant at 120° during the isometric acquisition 
of sEMG signals. Torque sensors are located at the joint 
of the rigidly connected parts of isometric brace.  
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Fig. 3: SEMG signals recorded from the central (3rd) 
column of 2D electrode matrix are depicted. X-axis 
represents time, left-hand y-axis signal amplitude and 
right-hand y-axis the electrode row numbers. MUAP 
propagation among adjacent rows is easily spotted, 
while rows are placed longitudinally to the muscle 
fibres, 3rd row being the innervation zone. 

 
     The sEMG signals were recorded during 30 seconds 
long contractions at 3 different constant force levels, i.e. 
5, 10, and 30 % MVC. The excerpt of the recording is 
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depicted in Fig. 3 for a 5 % MVC contraction. After 
each contraction 10 minute rest was given to the 
subject. The noise and the movement artefacts were 
visually controlled and reduced by applying water to the 
skin surface. The contraction force was measured by the 
torque sensor and displayed on the oscilloscope to 
provide the visual feedback to the subjects. 

 
 

2.2 MUAP rate technique 
MUAP rate was introduced as a measure of the central 
nervous system input to the muscle [9]. The relationship 
between input to the muscle and exerted force was 
studied in [23]. Authors reported that corticospinal 
output does not parallel force increments across the 
whole contraction range. MUAP rate is obtained as the 
number of MUAPs per second, and equals the sum of 
firing rates of all active MUs in a chosen time epoch. It 
reflects both parameters that the central nervous system 
uses for motor control, i.e. the number of active MUs 
and their firing rate. 
 In this approach MUAPs are extracted from the 
sEMG by using the continuous wavelet transform; the 
details of the approach can be found in [11]. Although 
their algorithm uses multi-channel information for 
MUAP extraction, only channels from the electrodes 
placed longitudinally to the muscle fibres are useful, 
because the propagation delay of MUAPs is searched 
between adjacent channels. Since our measurements 
were recorded using 2D arrays of electrodes, only the 
signals from the central (3rd) electrode column were used 
(as depicted in Fig. 3). 
 The MUAP extraction approach needs some 
specific parameters to be set. We used the same values 
as those reported in [9]. The algorithm started by 
calculating the continuous wavelet transform of the first 
channel. When the scalogram reached a maximum that 
was higher than a user predefined threshold (set to 0.1), 
a candidate MUAP was indicated. The algorithm then 
searched for candidate MUAPs located in the 
surrounding channels within a time delay corresponding 
to conduction velocities between 2 and 8 m/s, as 
suggested in [11]. When the same shape was found at 
least in 3 adjacent channels, the candidate was 
considered a MUAP. Then, the wavelet transform was 
calculated for the next channel. The algorithm cycled 
through all the channels in this way. Outputs of the 
algorithm were the firing moments of all detected 
MUAPs (see Fig. 4). The number of detected firings in 
one-second epochs was calculated and this number 
stands for the MUAP rate estimation. 
 
 

 
Fig. 4: Rows from 2-13 depict sEMG channels, inputted 
into the algorithm, while row 1 below shows the firing 
moments of detected MUAPs (the method output). 
 
 
2.3 Activity index 
The activity index is a measure of muscle activation 
level. It was first introduced as the first stage of the 
correlation-based sEMG decomposition algorithm, 
known as convolution kernel compensation [8, 25]. It 
ranges between 0 and 1, 0 being produced with no MUs 
active in the observed muscle, and 1 stands for the 
maximum activity of all MUs. Compared to the sEMG 
amplitude the activity index is smoother, which serves 
as a good basis for force estimation. 
 To understand the principle of activity index, the 
considered sEMG model is presented briefly. The most 
feasible model for multi-channel sEMG recordings is the 
discrete, shift-invariant multiple-input and multiple-
output (MIMO) model [8]. Each input in such a MIMO 
system is considered a MU innervation pulse train (IPT) 
triggering the muscle, while the system responses 
correspond to the MUAPs as captured by the pick-up 
electrodes. The individual sEMG measurements 
represent the model outputs (see Fig. 5). 
 Referring to the model in Fig. 5, the i-th sEMG 
measurement can be written as: 
 

 
1

,
N

i ij j
j

x h s
=

= ∗∑  (1) 

 
where xi is the i-th sEMG measurement, sj the 
innervation pulse train of the j-th MU, and hij the MUAP 
of the j-th MU, detected by the i-th electrode. The 
symbol * stands for convolution. 
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Fig. 5: Proposed multi-channel sEMG model. Left side depicts N system inputs (IPTs), N x M MUAPs stand in the  
middle, and on the right-hand side there are M outputs (sEMG measurements). 

The system represented by Eq. (1) can be written in 
matrix form as: 
 
 ( ) ( ),n n=x Hs  (2) 

 
where x(n) is the vector of sEMG measurements, H 
stands for the MUAP matrix and ( )ns  is the extended 
vector of sources. 
 Let N be the number of inputs (active MUs in our 
case) and M the number of measurements (number of 
recorded signals from pick-up electrodes over the 
muscle). Suppose the number of inputs N is smaller than 
the number of measurements M; then a positive integer 
K can be found, that satisfies the inequality KM > 
N(L+K-1), where M is the number of measurements, N 
the number of inputs, L the length of MUAPs, and K an 
extension factor. The vector of measurements x(n) can 
be extended by K-1 delayed repetitions of each 
measurement. The correlation matrix of the extended 
measurements ( )nx  is then calculated as: 
 
 .T= ⋅C x x  (3) 
 
Multiplying the extended measurements ( )nx  by the 
Moore-Penrose pseudo-inverse of the correlation matrix 
(Eq. (3)), we define the activity index ( AI ) as: 
 
 #( ) ( ) ( ),T

AI n n n= x C x  (4) 
 

where symbol # denotes the Moore-Penrose pseudo-
inverse of the correlation matrix and T the transpose of 
the vector of extended measurement. 

 If the system represented by Eq. (2) is 
overdetermined, complete compensation is achieved and 
the activity index has a rectangular shape (see Fig. 6). 
Each rectangle represents the activation of an individual 
MUAP. The rectangle width equals the MUAP width 
increased by the extension factor, while the rectangle 
height is inversely proportional to the number of MU 
firings within the signal segment under observation (Fig. 
6). 
 

L+K-1 1
number of firings

L+K-1 1
number of firings  

Fig. 6: The ideal activity index, when the system (2) is 
overdetermined.  
  
 However, when calculating the activity index of the 
real sEMG signals, total compensation is hardly ever 
achieved because of the great number of active motor 
units and excessive noise. In such cases, the activity 
index has the shape as depicted in Fig. 7. A detailed 
explanation of the activity index can be found in [7] and 
[8].    
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Fig. 7: Time plots of a single sEMG recording and its 
activity index (IA) above show that the activity index 
follows the changes in sEMG, but it is much smoother. 
 

 
 
2.4 MU twitch force technique 
The MU twitch force technique is an extension of the 
activity index approach. Instead of calculating the global 
muscle activity as when using the activity index, the 
activity of each individual MU is obtained separately. 
This gives better insight into muscle properties. To make 
this possible, the sEMG must first be decomposed into 
the motor unit innervation pulse trains. Then the method 
combines MU twitches with MU innervation pulse trains 
that are extracted by the decomposition technique. The 
MU twitches are aligned to the IPTs and summed up to 
obtain the total muscle force (see Fig. 8). 
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Fig. 8: Force estimation using MU twitch force technique. SEMG signals are first decomposed into the  
innervation pulse trains of the individual MUs. MU twitches are then aligned to IPTs, producing forces  
of each MU. MU forces are summed up at the end to obtain total force produced by the muscle. 
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 This technique uses the muscle force generation 
model proposed by Fuglevand et al. [12]. They tested 
the MU pool consisting of 120 MUs. The distribution of 
twitch forces for the MUs was represented as an 
exponential function [12]. A large number of MUs 
produced small forces, while relatively few MUs 
generated large forces. Twitch force ( )if t of i-th MU 
was modelled as the impulse response of a critically 
damped, second order system [12]: 
 

 1 ( / )( ) ,it Ti
i

i

P tf t e
T

−⋅
= ⋅  (5) 

 
where Ti is contraction time to peak force of the twitch 
and Pi is its peak amplitude of the i-th MU. Twitch 
amplitudes were assigned according to their rank in the 
recruitment order, and twitch contraction times were 
inversely related to twitch amplitudes [12]. The 
relationship between twitch force peak amplitude (Pi) 
and contraction time (Ti) was approximated as: 
 

 

1
1 .

c

i L
i

T T
P

⎛ ⎞
= ⋅ ⎜ ⎟

⎝ ⎠
 (6) 

 
The parameter LT  represents the longest twitch duration 
time desired for the pool, and the coefficient c is 
calculated as logRTc RP= , where RP is the range of 
MU peak forces and RT the range of contraction times.   
 The relationship between MU size, firing rate and 
force is studied in [21]. Henneman et al. [22] reported 
that MU recruitment follows an orderly sequence 
according to size, such that smaller slow twitch MUs are 
activated before larger fast twitch MUs. As more MUs 
are progressively recruited within a muscle, the muscle 
force increases. Conversely, the muscle force is reduced 
by deactivating motor units, which usually happens in 
the reverse order of their recruitment. 
 The range of twitch forces used in the model was 
100-fold. One unit of force was equivalent to the twitch 
force of the first unit recruited, and the last unit recruited 
had a twitch force of 100 units. The range of twitch 
contraction times was 3-fold, the twitch of the first 
recruited unit having the time to peak duration of 90 ms, 
and for the last recruited unit of 30 ms (see Fig. 9). 
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Fig. 9: MU twitches assigned to the MUs recognized by 
the decomposition technique. 

 
 All MUs followed the widely reported sigmoidal 
relationship between MU force and firing rate. If MU is 
driven by IPT containing k discharges, the force 
produced in that MU ( ( )iF t ) is equivalent to the sum of 
the individual twitch forces: 
 

  , ,
1

( ) ( ),       0.
k

i i i j i j
j

F t f t t t t
=

= − − ≥∑  (7) 

 
The value of ,( )i i jf t t− represents the twitch response to 
the MU discharge j. The total force of the muscle was 
determined as a linear summation of all the individual 
MU forces: 

 

 
1

( ) ( )
n

M i
i

F t F t
=

= ∑  (8) 

  
 In our experiment, the method recognized 22 ± 5 
MUs per subject (mean ± std. dev.). This number is 
substantially smaller than the 120 MUs proposed in [12], 
hence, the twitch force and twitch contraction time 
ranges reported in [12] had to be modified. Firstly, with 
recorded contractions ranging from 0 to 30 % MVC, we 
assumed only low-threshold units are recruited. To 
correlate MUs with twitch forces correctly, the 
recognized MU innervation pulse trains were sorted 
according to the recruitment order. The first recruited 
MU was assigned twitch force of 1 unit with contraction 
time of 90 ms, while the last recruited MU had a twitch 
force of 1.6 units with contraction time of 80 ms. Such 
values are assigned to the first twenty units of all 120 
MUs in the model proposed in [12] (see Fig. 9). 
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3 Experimental results 
The method performances were measured by the root 
mean square error (RMSE) between the real (recorded) 
and the estimated force in percents as 
 

 
( )

( )
RMS

(%) 100,
RMS

RMSE
−

= ⋅real est

real

F F
F

 (9) 

 
where Freal is the recorded force, Fest is the estimated 
force and RMS stands for the root mean square. The 
RMS of an n-dimensional vector 

( (1), (2), , ( ))F F F n=F K  is calculated as: 
 

 2

1

1RMS( ) ( )
n

i

F i
n =

= ∑F  (10) 

 
 Prior to the calculation of RMSE, the estimated and 
real force were smoothed by a 1st order Butterworth 
low-pass filter with cut-off frequency at 10 Hz. The 
smoothed signals were then normalized with respect to 
the maximum value of each signal.  
 The average estimation errors of all three methods 
are presented in Table 1. The twitch force technique 
proved to be the best muscle force estimator among the 
compared methods, producing lower estimation errors 
than both the MUAP rate and activity index methods. 
Fig. 10 depicts distributions of estimation errors for each 
method.  

 
 

Table 1: Comparison of average force estimation errors 
for MUAP rate, activity index and MU twitch force 
technique. 

 
 RMSE (%) 
Method mean std 
MUAP rate 26.25 6.36 
Activity index 13.75 8.43 
MU twitch force 11.46 5.89 

 
 
      Beside average estimation errors and error 
distributions, estimation errors for each individual trial 
for all subjects are also depicted for activity index (Fig. 
11), MUAP rate (Fig. 12) and twitch force (Fig. 13) 
methods. Five different symbols (square, triangle, star, 
circle and diamond) represent five subjects and they 
show the estimation error. 

 

 
 
Fig. 10: Comparison of the force estimation error of all 
three methods on all trials and all subjects. The plot 
depicts median (middle line), upper and lower quartiles, 
whereas whiskers represent outliers. 

 

 
 

Fig. 11: The figure shows RMSE versus contraction 
levels for each individual trial of each subject obtained 
by the activity index method: the different shapes stand 
for different subjects.   
 

 
Fig. 12: The figure shows RMSE versus contraction 
levels for each individual trial of each subject obtained 
by the MUAP rate method. 
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Fig. 13: The figure shows RMSE versus contraction 
levels for each individual trial of each subject obtained 
by the twitch force technique. 

 
      Along with the experiments, the execution times of 
all methods were compared on a PC computer with Intel 
P4 processor and 2 GB of RAM. The fastest method was 
activity index, followed by twitch force technique and 
MUAP rate (see Table 2). The execution times reported 
in the Table 2 represent the time spent for force 
estimation of one 30-second trial, at any level of MVC. 
Average times were calculated by averaging the 
execution times over all trials and all subjects. 
 
Table 2: Comparison of execution times for all three 
methods. 

 Time (s) 
Method mean std 
MUAP rate 52.29 2.77 
Activity index 10.06 0.60 
MU twitch force 33.18 1.18 

 
 
4 Discussion  
Force estimation task is not as straightforward as it 
might seem. Forces or torques are usually measured 
externally about the joint, although they are in fact the 
resultant output of internal forces generated by muscles 
acting about the joints that they cross, as well as internal 
forces produced by stretching of ligaments and other 
passive tissues associated with the same joints [1]. As a 
consequence, the force of a single muscle is hardly 
measured and usually several muscles contribute to the 
detected forces [24]. Moreover, when the electrical 
response of muscles is measured by sEMG, only a part 
of the muscle and active motor units (MUs) can be 
detected, while measured force is actually produced by 
more MUs. 

 All three methods compared in this study are based 
on the principle of motor control, i.e. the number of 
active MUs and their firing rates, but the way the motor 
control information is extracted from sEMG differs for 
each of them. The MUAP rate extracts the number of 
MUAPs using the wavelet transform of multi-channel 
sEMG signals, while the activity index and twitch force 
technique use correlation-based approach instead. The 
MUAP rate has some drawbacks in comparison to the 
activity index and twitch force technique, i.e. it operates 
only on linear array of electrodes that must be placed 
longitudinally to the muscle fibres. On the contrary, 
activity index and twitch force technique can be 
calculated using the 2D matrix electrodes and, thus, 
considers more spatial information, which improves the 
muscle activity estimation. 
 A drawback of both methods, MUAP rate and 
activity index, is that only the global muscle activity 
(activity of all detected MUs) is observed, so the 
important information about which firing belongs to 
which MU is missing. From the point of the presented 
two methods, an activation of a new MU or an increase 
of the firing rate of an already active MU cause the same 
effect. But most widely accepted force models suppose 
each individual MU has a different force contribution 
[12]. From this aspect, the global muscle activity itself is 
not enough for quality force estimation. Therefore the 
MU twitch force technique was introduced as an 
advanced technique. It performs an automatic sEMG 
decomposition to obtain all active MUs and their firing 
moments, enabling us to differentiate between MU 
recruitment principle and firing rate modulation 
principle. Forces of all active MUs can be estimated 
separately, as each MU has assigned its own MU twitch. 
 Another important feature of MU twitch force 
technique is that estimation error does not increase with 
an increased contraction level, as it is the case with 
activity index. This can be explained by the fact that the 
compensation of activity index decreases when the force 
increases. At higher contraction levels, the number of 
active MUs is increased and the system from Eq. (2) 
becomes underdetermined, thus producing low-quality 
activity index. On the contrary, the decomposition 
results are always IPTs, only the number of decomposed 
MUs varies at different contraction levels. 
 Our results show that force estimation using 
activity index is the fastest, being five times faster than 
MUAP rate and three times faster than twitch force 
technique, on average. The most of the time at twitch 
force technique is spent for the decomposition process, 
while other steps are completed in less than a second. 
However, none of the compared methods is able to 
estimate force in real time, the closest is the activity 
index, so it should be used where the speed is of the 
prime importance. 
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 SEMG-based muscle force estimation has 
unlimited potentials in various applications since surface 
electrodes are non-invasive, easy to set up and medical 
supervision is not needed. One of the possible 
applications is in EMG-driven limb prosthesis control, 
where sEMG is already used to control the movement of 
the prosthesis. If muscle force estimation is added, the 
limb prosthesis could also produce the right force, for 
example proper grasp force of hand prosthesis. 
 Other fields that could benefit from the sEMG-
based force estimation are rehabilitation and sports. In 
rehabilitation the progress of subjects can easily be 
observed using muscle force estimation, as force of an 
individual muscle is increasing during the rehabilitation 
process. When sufficient muscle force output is reached, 
the rehabilitation process should change or stop, 
depending on the severity of the injury. Moreover, the 
complete rehabilitation process can be pre-programmed 
and all what subjects have to do is to follow the force 
pattern on the screen. The aspect of muscle force 
estimation in rehabilitation is very important, as it 
provides the return information to the patient and the 
therapist.  
 In sports training at the right intensity is essential to 
develop some task-dependent skills. Muscle force 
estimation can provide an insight into the training 
intensity and therefore act as prevention to overtraining 
or training at the wrong intensity, and the consequences 
are quicker progress and fewer injuries of the athletes. 
 
 
5 Conclusion 

In this paper a novel technique for muscle force 
estimation, called MU twitch force technique, was 
introduced and compared to the MUAP rate and activity 
index methods. All three methods are based on motor 
control information rather than amplitude processing 
approach, but the way how this information is extracted 
from sEMG differs significantly. The MUAP rate and 
activity index methods are indicators of global muscle 
activity which is correlated to exerted muscle force, but 
MU twitch force technique goes one step further, as it 
estimates the activity of each individual MU. This way, a 
better insight into muscle activity is given and, therefore, 
a better force estimation is obtained. 

To achieve the lowest force estimation error, the 
execution speed has to be sacrificed. MU twitch force 
technique performs three times slower than activity 
index, on average, because a rather complex 
decomposition of sEMG is included in the method. 
Nevertheless, it is two times faster than the MUAP rate 
method.  

This work shows the importance of motor control 
information extraction from sEMG, as this step 
determines the method performance, so in our future 

work we will try to estimate the motor control 
information even better. As it was already mentioned in 
discussion, our method cannot perform in real-time, so 
another issue for future research is speed optimization. 
As sEMG decomposition is the most time consuming 
part of our method, we will try to eliminate it from our 
method and to substitute it with another approach that 
will be able to identify discharge moments of each 
individual MU without the signal decomposition. 

All force estimation techniques used nowadays are 
performed during isometric muscle contractions. This is 
the main limitation for practical use of our force 
estimation method; therefore we will continue to 
investigate the possibility of muscle force estimation 
during dynamic muscle contractions. 
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