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Abstract: In this paper, a new control method to man machine systems with BMI (brain machine interface) is
discussed. The man machine systems to support the paralyzed patients is especially targeted. Then, the following
assumptions are put on the man-machine systems. In norml circumstances, the system is controlled automatically
and the BMI is not worked. The BMI signals are only used for the emergency situation. It works as a trigger of
the switch of control law. Since human’s brain waves resulting from cerebral activity are considered to be effective
triger signal of emergency situations in the man-machine systems. Under these assumptions, the new control
method is proposed. The method based on the RHC (receding horizon control) and the adaptive DA converter
is considered to effective for the system to which the switch of control law is indispensable. Some numerical
examples are included to demonstrate the effectiveness of the proposed method.

Key–Words: Man-machine systems, EEG (Electrocorticogram), BMI (Brain machine interface), RHC (Receding
horizon control), DA converter

1. Introduction
Recently, the various researches on man machine sys-
tems are actively done. Especially, the advanced man
machine systems to support paralyzed patients, for ex-
amples, automatic wheel chair, car crusing system and
so on, are studied aiming at practical use. In such sys-
tems, an important point is to combine man’s judg-
ment, recognition, and the automatic control of the
machine well. In this point, one of the key method
is BMI (Brain Machine Interface). The brain waves
resulting from cerebral a ctivity are used to support
communication and control for patients whose com-
munication abilities or movements are impaired be-
cause of paralysis but whose brain activity is oth-
erwise normal. For examples, the case of patients
with terminal amyotrophic lateral sclerosis (ALS) or
spinal cord injury[1, 2] and so on. By interpreting
the brain waves, output commands can be sent to the
external world. Although reading commands from
brain signals is difficult because of their sheer com-
plexity, BMIs are now becoming a reality because
of recent developments in physiological knowledge
and information processing techniques. For example,
EEG (electrocorticogram) based BMIs, which mea-
sure brain signals invasively through electrodes em-
bedded inside the cranium, have been reported to have
reached practical use[3]. Recent advances of technol-
ogy about the BMI, there is possibility to be able to
assist the automatic control of man-machine systems.

In this research, therefore, the EEG signals of

brain waves are considered to use as the urgent eva-
sion signals for man-machine systems. Generally, the
EEG signals include redundant information that is un-
necessary for decoding the commands and may also
weaken the generalization performance of the clas-
sifier. To cope with this issue, Lal et al. [4] pro-
posed a search method of better combinations of EEG
channels by using a feature selection technique called
Recursive Feature Elimination (RFE). Millan et al.
[5] applied feature selection using decision trees to
EEG data. In this paper, a backward stepwise feature
selection method based on the k-SVM(kernel sup-
port vector machines) [6] is used. This method has
been already developed by our group [7]. It can re-
move unnecessary or redundant features of EEG sig-
nals and keep only effective features for the classifica-
tion task as a way of improving accuracy and quick-
ness. Hence, by using the proposed method for man-
machine systems, the signals for the quick and effec-
tive response in the emergent situation is expected to
be generated.

On the other hand, in normal circumstances, the
man-machine systems are controlled automatically. In
consideration of the easiness of the switching of con-
trol laws between the emergent situaion and the nor-
mal situation in the man-machine systems, the Re-
ceding Horizon Control (RHC) method [8, 9, 10] is
most suitable. The RHC can flexibly correspond to the
change of the situation of systems. However, the man-
machine systems are usually modeled as the sampled-
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data control systems, since the systems are consisted
of the discrete-time controller, namely computer, and
continuous-time objects, like the car cruising system.
In such systems, analog-to-digital(AD) and digital-to-
analog(DA) conversion of signals are indispensable.
In the DA conversion, the information about future
sampling points is need. But, it’s impossible to ob-
tain them strictly. Then, the zero-order hold has been
used for the DA conversion on the assumption that the
analog signals in each sampling interval are consid-
ered as constant values [11]. But, to improve the per-
formance of sampled-data control systems, it’s very
important to take account of the behavior of systems
in the sampling intervals. This point is especially im-
portant for the system where the switch of the control
laws is caused. On this issue, some notable methods
to design the discrete-time controller for continuous-
time objects with AD/DA conversion have been pro-
posed [11, 12]. But, these methods are little complex
and the aspect of improving the performance by ad-
justing the DA conversion is lacked. In this research,
therefore, the method of the RHC with the adaptive
DA converter which switches the sampling functions
according to the system status is proposed. By us-
ing this method, we don’t need to be forced to toler-
ate the long time-delay during the DA conversion to
wait for getting the needable information. Therefore,
the method is considered as suitable for man-machine
systems to which switch of control laws is indispens-
able.

Hence, on the assumption of using the EEG based
BMI, to realize the man machine systems for para-
lyzed patients, the RHC with the adaptive DA con-
verter is developed in this paper. Some numerical ex-
amples are included to demonstrate the effectiveness
of the proposed method.

2. Problem Formulation

RHC 

Controller

Adaptive 

DA Converter

 Control

 Object
-+

Reference signal

(normal situation)

Reference signal

(emergency situaion)

BMI

EEG signal

from human

State values
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Fig. 1. The construction of targeted system

The targeted system is constructed with the RHC,
the adaptive DA converter and the BMI as shown in
fig. 1. The realization problem of this system is com-
posed of two parts roughly separately. First one is how
to generate the reference signal with the high accuracy
in the emergency situation by the EEG based BMI. As
mentioned above, The already developed method [7]
is employed to solve this question. The outline of this
method will taken up concisely in Chapter 3.

The other one is how to construct the high perfo-
mance controlled system in the presence of switching
control laws between normal situation and the emer-
gent situation. The proposed method of the RHC con-
troller with the adaptive DA converter for this issue
will be presented in Chapter 4.

3. Outline of the EEG based BMI
Since the EEG signals include both useful and unnec-
essary (or redundant) features, it is necessary to search
for a combination of features that could improve the
generalization performance of the classifier.

The method used in this research is combined the
backward stepwise selection with k-SVM [6]. It’s the
nonlinear SVM by applying the ‘kernel trick’. By
selecting an appropriate kernel function, suitable k-
SVMs can be constructed for a given task. The back-
ward stepwise selection [13] is used to find the best
possible combinations of features. For each combi-
nation of features, the parameters of k-SVMs were
trained and the generalization performance of the con-
structed classifier [14] was evaluated by 5-fold cross
validation. The whole algorithm is as follows:

Step A Evaluate the generalization performance of
the classifier using all features by 5-fold cross
validation.

Step B Eliminate one feature from the set of features
and evaluate the generalization performance of
the classifier using N − 1 features by 5-fold
cross validation. Since there are N possibilities
to eliminate a feature from N features, repeat
the evaluation N times for each possible feature
combination.

Step C Select the feature combination with the best
performance obtained from step [Step B], and re-
peat the elimination process [Step B].
In the event of a tie, select one combination ran-
domly.

Step D Repeat [Step C] until all features are elimi-
nated.

The combination of features that gives the largest
evaluation value is considered the best (sub-optimal)
combination of features.

Since the urgent evasion signals are relevant to ar-
eas of the central part of the cerebrum cortex such as
premotor cortex, motor cortex and sensorimotor cor-
tex [1], EEG signals were recorded from 13 electrodes
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Fig. 2. Location of the EEG electrodes

(Fz, FCz, FC1, FC2, Cz, C1, C2, C3, C4, CPz, CP1,
CP2, Pz) as shown in fig. 3 (Fz, FCz, Cz, CPz and Pz
are on the longitudinal fissure. Cz, C1, C2, C3, C4 are
on the central sulcus). Physiological studies showed
that both μ rhythms and β rhythms are related to the
movements of the fingers [1].

Since μ rhythms are in the 8-13 Hz frequency
band and β rhythms are in the 14-30 Hz frequency
band, a 8-30Hz bandpass filter was applied to each
electrode [5]. The power spectrum densities for each
electrode was estimated using the Welch periodogram
[5] and was divided into 12 components with a 2Hz
resolution. The resulting 156 features (13channels
times 12 components) were used as the initial set of
features for the classifier as shown in fig.2. The com-
plete data set consisted of 700 samples acquired over
14 consecutive sessions (50 trials each) separated by a
rest of a few minutes. For cross-validation purposes,
the samples were randomly divided into a training
data set with 500 samples, and a testing data set with
200 samples.

By the current research results by our group[7],
we can say that the proposed feature selection method
is effective in improving the generalization perfor-
mance of EEG based BMI. Moreover, the prospect of
practical use of the EEG based BMIs as the urgent
evasion signals for man-machine systems seems to be
good enough.

4. RHC with adaptive DA converter

4.1 RHC (receding horizon control)

Let’s consider a discrete-time model for man-machine
systems in normal circumstances as follows,

x(k + 1) = Ax(k) +Bu(k) (1)
y(k) = Cx(k) (2)

where u(k) ∈ R1, x(k) ∈ Rn and y(k) ∈ R1 mean
control input, state values and observed output at step
k respectively, and A ∈ Rn×n, B ∈ Rn×1 and C ∈
R1×n are coefficient matrices.

RHC is an online powerful control method which
solves a finite horizon open-loop optimal problem
with respect to each sampling frequency [8, 9, 10].

Let’s consider the finite-time constrained optimal
control problem with the state space model as follows,

min
{u(k|k),···,u(k+N−1|k)}

J(k) = ||x(k +N |k)||2P

+
N−1∑
i=0

{
||x(k + i|k)||2Q + ||u(k + i|k)||2R

}
(3)

subject to:

u(k) ∈ U , x(k) ∈ X (4)

where P , Q and R are positive definite matrices, and
N is the length of prediction horizon. U and X are
constraints sets for inputs and states. Eq.(4) means
constraint conditions for the control input and the state
values. In practice, since this problem is equivalent to
the quadratic programming problem, the optimal so-
lution {û(k|k), · · · , û(k+N − 1|k)} is easily solved.
Then, only the first solution û(k|k) is used as a control
input for control object at step k, and then, the cur-
rent step goes on to next step. Several kinds of RHC
method have been also proposed until now [15, 16].

In RHC, the optimal control inputs {û(k|k),
û(k+1|k), · · · , û(k+N−1|k)} are calculated in each
step, and only the first control input û(k|k) is used as
a real control input. Therefore, we can use the other
optimal control inputs {û(k + 1|k), û(k + 2|k), · · ·}
as virtual future sampling points. Actually, it is only
necessary to use the optimal control inputs which are
needed for interpolation according to the sampling
function.

Fig. 3 shows interpolation ways using the 2nd or-
der spline function. Only û(k + 1|k) is used as a vir-
tual future sampling point in this case. By using the
predictive control inputs for interpolation, it becomes
possible to reduce the time-delay in the DA conver-
sion, and the total time-delay to be needed is just only
computation time of optimization in current step.
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Fig. 3. Interpolation using predictive control inputs

It needs to take account that there is a difference
between virtual future sampling points and real sam-
pling points like û(k+1|k) �= u(k+1) in future step.
However, It’s considered that this point is not a critical
problem because the influence on interpolated wave-
form due to prediction error is not so big compared to
the scale of prediction error. Although the differen-
tiability of each sampling function is lost at sampling
points, this also does not become a critical problem
compared to the zero-order hold, and it is possible to
keep a certain level of smoothness.

4.2 Adaptive DA converter

The spline functions provide various sampling func-
tions with all kinfs of orders. Therefore, switching
the spline functions optimally according to the system
status in the adaptive DA converter is proposed. In this
paper, the spline functions with the order m = 0, 1, 2
are used as sampling functions. Namely, in the case
of m = 0, the sampling function is equivalent to the
staircase function. In the case of m = 1, it’s the 1st
order piecewise polynomial function, and in m = 2,
2nd order one as shown in fig. 4.

Appropiate selecting the values ofm according to
the object, enables to deal with DA conversion flexibly
and precisely in the interpolation operation. Although
the interpolation is more precisely in the case of using
the spline function with m = 3 or more, it’s diffi-
cult to apply to fast-moving dynamic systems due to
the bigger amount of calculation. Therefore the spline
functions with the order m = 0, 1, 2 are only used.

The interpolated signals in the closed-open inter-
val [kτ, (k + 1)τ) using these sampling functions are
obtained as follows,

u(t) =
k+1∑
l=k

{
u(l) · 1,2ψ(t− lτ)

}
, (m = 0, 1)

u(t) =
k+2∑

l=k−1

{
u(l) · 3

[c]ψ(t− lτ)
}
, (m = 2)

m Sampling function Interpolated signal

0

1

2

time(t)2/τ0

1
)(1 tψ

2/τ−

0

1
)(2 tψ

ττ−

)(3
][ tc ψ1

0 τ τ2τ−τ2−

time(t)

time(t) time(t)

time(t) time(t)

Fig. 4. Sampling functions and their interpolations
(m = 0, 1, 2), (τ : sampling interval)

(5)

where u(t) and u(l) are analog signal and digital sig-
nal respectively, and τ is sampling interval.

The interval to be interpolated is also divided to
d sections, and the dividing points um(j; k), (j =
1, 2, · · · , d − 1) on interpolated waveforms are used
for the selection of parameter m, that indicates the de-
gree of spline sampling functions.

Fig. 5 shows the difference of the interpolation
and dividing points according to the sampling func-
tion with m = 0, 1, 2 and d = 5. From several test
simulation results, it’s obtained the fact that the most
appropriate divided number of interval is d = 5 due
to the trade-off of computation time and precision. If
d = 5, the calculation amount in the adaptive DA con-
verter is also vanishingly small compared to the cal-
culation in RHC controller keeping a certain level of
accuracy.

The calculation of the dividing points um(j; k) as
follows,

um(j; k) =
k+α−1∑
l=k−α

{
u(l) · mψ

(
(k − 1)τ +

τ

d
· j − lτ

)}

(j = 1, 2, · · · , d− 1) (6)

where α is the number of samples which the sampling
function needs for interpolation, and it is adjusted ac-
cording to the sampling function.

Then, the algorithm to switch the spline sampling
functions for the adaptive DA converter is summer-
ized as follows,
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(step1) Set step k = 0.
(step2) The dividing points um(j; k) are calculated.
(step3) The predicted state values xm(j+1; k) in this

interval are calculated using internal model of
DA converter and the dividing points um(j; k).

(step4) If the interpolation wave exceeds the con-
strained conditions of control input due to the
overshoot or undershoot, this m is excluded.

(step5) The evaluation values using evaluation func-
tion Jm(k) are calculated using some optimiza-
tion method in each m.

(step6) The parameter m whose evaluation value is
the smallest is selected as an interpolation way
in this interval, and then k = k + 1 and go back
to (step1).

In this paper, the evaluation function in (step 5) is used
as follows,

Jm(k) =
d−1∑
j=1

{
||xm(j + 1; k)||2Q1

+ ||um(j; k)||2R1

}
(7)

where Q1 and R1 are positive definite matrices.
Finally, the proposed RHC control parts of whole

system is shown as fig. 6.

5. Numerical examples

In this section, to verify realizability of man machine
systyems with EEG based BMI, two numerical exam-
ples are given to demonstrate the effectiveness of the
proposed control method.

In examples, the following two methods are com-
pared through a simulation.

1. LQ with zero-order hold (conventional).
2. Proposed method.

Simulation environments in following two exam-
ples are shown as table 1.

Table 1. Experimental environment.

CPU Mobile Intel(R)Pentium(R)3 1.20GHz
Memory 512MB RAM

OS Windows XP Home Edition
Software MATLAB 7.0.1
Toolbox Control System Toolbox 6.1

Symbolic Math Toolbox 3.1.1

5.1 Example 1

As first example, let’s consider a control problem of
the inverted pendulum. It’s considered as a simple ex-
ample of an automatic wheel-chaired system.

As fig.7 shows, inverted pendulum control prob-
lem is to control the wheel truck position without tak-
ing down the bar with weight.

The parameter M , mg, and l in fig.7 mean the
wheel truck mass, the weight mass, and the length of
the bar respectively, and when theO−XY coordinate
system is defined like fig.5, the center of gravity point
and the wheel truck position is defined as (xG, yG)
and xp. Moreover, the mass of the bar and the frictions
are very tiny vanishingly.
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Fig. 7. Inverted pendulum model

Then, when the state values are taken as

x1 = θ, x2 = θ̇, x3 = xp, x4 = ẋp (8)

the state space model is expressed as follows,

d

dt

⎡
⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1 0 0
M+mg

Ml g 0 0 0
0 0 0 1

−mg

M g 0 0 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
− 1

Ml
0
1
M

⎤
⎥⎥⎥⎦u (9)

y =
[

0 0 1 0
]
⎡
⎢⎢⎢⎣
x1

x2

x3

x4

⎤
⎥⎥⎥⎦ (10)

5.1.1 Simulation results

Each parameter in the simulation is set as follows ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

wheel truck mass :M = 2
weight mass :mg = 0.1
length of the bar : l = 0.5
gravity acceleration : g = 9.81
division number : d = 5
sampling interval of controller : τ = 0.05s
prediction horizon :N = 70
Q,R,P,Q1,R1 are identity matrices.
weight form : w1 = w2 = w3 = 1.0

In proposed method, a discrete-time model is
used for the RHC controller derived by a discretiza-
tion assuming the interpolation of m = 1 sam-
pling function. In addition, a discrete-time model
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Fig. 8. Output responses
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Fig. 9. Control input responses

of the adaptive DA converter is derived by a gen-
eral discretization of the continuous-time model with
the sampling interval τ/d = 0.01s. In contrast, a
discrete-time model of LQ controller in conventional
one is derived by a general discretization with the
sampling interval τ = 0.05s.

In this simulation, instead of a continuous-time
model as a control object, a discrete-time model with
the sampling interval 0.0005s is used, and the DA
conversion means 100 times up-sampling. Moreover,
it’s assumed that the control input is constrained as
−0.28 ≤ u(t) ≤ 0.28. Besides, 0.02s time-delay is
appended to the proposed method as waiting time for
optimized calculation.

Now, figs.8 and 9 show simulation results from
the initial system state [0.01 0 0 0]T . Fig.8 shows
the output responses of closed-loop systems and fig.9
shows the control input responses. As these figures
show, it appears that the convergence to the equilib-
rium position in proposed method is faster than con-
ventional one.

Next, let’s check the influence that the change of
reference input signal by EEG based BMI gives. Sim-
ulations start when the initial system state is set in
equilibrium position [0 0 0 0]T . Then, the disturbance
signal as virtual reference from BMI is added.

Fig.10 shows the added disturbance, and figs.11
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and 12 show the output responses of closed-loop sys-
tems change and control input responses respectively.
As these figures show, the control performance of the
proposed method is also better than conventional one.
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From the comparison between the conventional
method (LQ with zero-order hold) and the proposed
one, there is no doubt about the effectiveness of the
proposed. Moreover, please take notice that the tiny
difference of control input causes a big influence for
control performance in the case of the systems with
relatively fast-moving dynamics like the inverted pen-

dulum. Especially, in the case of the system for the
physically handicapped person, it’s critical point in
safty.

5.2 Example 2

As another example, let’s consider the simplified
cmodel of car cruise control system for physically
handicapped person as shown in fig. 13.

Ml
vm

f

v0 v

Leading vehicle Tracking vehicle

Ml
vm

f

v0 v

Leading vehicle Tracking vehicle

Ml
vm

f

v0 v

Ml
vmvm

f
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Fig. 13. Car cruising system

The state space model is expressed as follows,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d
dt

[
x1

x2

]
=

[
− μ

M 0
−1 0

] [
x1

x2

]
+

[
1
M
0

]
f

y =
[

0 1
] [

x1

x2

]
(= l)

(11)

5.2.1 Simulation results

Each parameter in the simulation is set as follows;

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

weightoftrackingcar :M = 500
visocityconstant : μ = −5.0
division number : d = 5
sampling interval of controller : τ = 0.05s
prediction horizon :N = 70
Q,R,P,Q1,R1 are identity matrices.

Switch of signals means that the BMI signals is gen-
erated from human as the urgent evasion signals and
the normal automatic control is switched to emargent
one at time 100 and 300.

In the simulations, instead of a continuous-time
model as a control object, a discrete-time model with
the sampling interval 0.0005s is used, and the DA
conversion means 100 times up-sampling. Further-
more, it’s assumed the situation where control input
is constrained as −0.28 ≤ u(t) ≤ 0.28. Besides,
0.02s time-delay is appended to the proposed method
as waiting time for optimized calculation.

Figs. 14 and 15 show the simulation results. From
these, it can be easily see that the convergence to the
equilibrium position in proposed method is faster than
conventional one. So, we can say that the proposed
method has good performance than the conventional
one against the switching of control input.
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Fig.16 shows the change of the parameter m.
From this fig., the spline function with m = 0 (stair-
case function) is likely to be selected when the control
input stays flat, and the function with m = 1 (piece-
wise linear function) is selected when the control in-
put changes rapidly. The function with m = 2 (piece-
wise quadratic function) is also likely to be selected
when the control input changes smoothly.

By selecting the appropriate parameter m accord-
ing to the system status, proposed method makes bet-
ter control performance. If the sampling interval of
the controller becomes longer, this tendency becomes
much clearer. Therefore, it’s considered the proposed
method very efficient for the man-machine systems
with switing signals.

6. Conclusion

In this paper, a new RHC method with adaptive DA
converter for EEG based BMI man-machine systems
has been proposed. It can be said that it will become
the first step to achievement of man-machine systems
with EEG based BMI to support the physically hand-
icapped person.

Some numerical examples have been given to
demonstrate the effectiveness of the proposed method.
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Fig. 16. Switching of the interpolation ways

By selecting the appropriate parameterm of the adap-
tive DA converter according to the system status,
proposed method makes better control performance.
If the sampling interval of the controller becomes
longer, this tendency becomes much clearer. There-
fore, it’s considered the proposed method very effi-
cient for the man-machine systems with switing sig-
nals.

As future works, it’s need to develop the selec-
tion method of the best sampling function according
to the control objects and BMI signals. In addition, to
make sure the effectiveness of the proposed method in
various other man-machine systems is need.
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