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Abstract: - The well known fuzzy partition clustering algorithms are most based on Euclidean distance function, 
which can only be used to detect spherical structural clusters. Gustafson-Kessel (GK) clustering algorithm and 
Gath-Geva (GG) clustering algorithm, were developed to detect non-spherical structural clusters, but both of 
them based on semi-supervised Mahalanobis distance needed additional prior information. An improved Fuzzy 
C-Mean algorithm based on unsupervised Mahalanobis distance, FCM-M, was proposed by our previous work, 
but it didn’t consider the relationships between cluster centers in the objective function. In this paper, we 
proposed an improved Fuzzy C-Mean algorithm, FPCM-MS, which is not only based on unsupervised 
Mahalanobis distance, but also considering the relationships between cluster centers, and the relationships 
between the center of all points and the cluster centers in the objective function,  the singular and the initial 
values problems were also solved. A real data set was applied to prove that the performance of the FPCM-MS 
algorithm gave more accurate clustering results than the FCM and FCM-M methods, and the ratio method which 
is proposed by us is the better of the two methods for selecting the initial values. 
 
Key-Words: - FPCM-MS; FPCM-M, FCM-M; GK algorithms; GG algorithms; Mahalanobis distance 
 
1   Introduction 
Fuzzy partition clustering is a branch in cluster 
analysis, it is widely used in pattern recognition field. 
The well known ones, such as, C. Bezdek’s “Fuzzy 
C-Mean (FCM)” [1], are all based on Euclidean 

distance function, which can only be used to detect 
the data classes with same super spherical shapes. 
     Extending Euclidean distance to Mahalanobis 
distance, the well known fuzzy partition clustering 
algorithms, Gustafson-Kessel (GK) clustering 
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algorithm [2] and Gath-Geva (GG) clustering 
algorithm [3] were developed to detect non- spherical 
structural clusters, but these two algorithms fail to 
consider the relationships between cluster centers in 
the objective function, GK algorithm must have prior 
information of shape volume in each data class, 
otherwise, it can only be considered to detect the data 
classes with same volume. GG algorithm must have 
prior probabilities of the clusters. An improved   
algorithm, based on Mahalanobis distance, “Fuzzy 
Possibility C-Mean Based on Mahalanobis Distance 
and Separable Criterion (FPCM-MS)” is proposed by 
our previous work [4, 5, 6, 7, 8]. 
     Yin et al. [9] described an extended objective 
function consisting of a fuzzy within-cluster scatter 
matrix and a new between-cluster centers scattering  
matrix. The corresponding fuzzy clustering algorithm 
assures the compactness between data points and 
cluster centers and also strengthens the separation 
between cluster centers based on the separation 
criterion. Then clustering algorithm solved the 
relationships between cluster centers question, but 
they did not consider the distance between the center 
of all points and the center of each cluster. This 
problem was also solved and presented in this paper. 
Moreover, In this paper, an improved fuzzy 
clustering algorithm, denoted FPCM-MS, was 
developed based on FCM-M to obtain better quality 
clustering results with new separable criterion and 
better initial value. The improved equations for the 
membership and the cluster center were derived from 
the alternating optimization algorithm. The distance 
between the center of all points and the center of each 
cluster was considered by the authors of this paper, 
the singular problem was also solved. A real data set 
was applied to prove that the performance of the 
FPCM-MS algorithm gave more accurate clustering 
results than the FCM-M and FCM methods, and the 
ratio method which is proposed by us is the better of 
the two methods for selecting the initial values. 
 
 
2   Some Exist Algorithms 
 
2.1 Fuzzy c-Mean Algorithm 
Fuzzy C-Mean Algorithm (FCM) is the most popular 
objective function based fuzzy clustering algorithm, 
it is first developed by Dunn [10] and improved by 
Bezdek [1].The objective function used in FCM is 
given by Equation (1). 

 
(1) 

 

[ ]0,1ijμ ∈  is the membership degree of data object 

jx in cluster , and it satisfies the following 
constraint given by Equation (2). 

iC
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ij
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     C is the number of clusters, m is the fuzzifier, 
m>1,which controls the fuzziness of the method. 
They are both parameters and need to be specified 
before running the algorithm. 22

ij j id x a= − is the 

square Euclidean distance between data object jx to 
center ia . 
     Minimizing objective function (1) with constraint 
(2) is a non-trivial constraint nonlinear optimization 
problem with continuous parameters 

ia  and descrete 
parameters ijμ . So there is no obvious analytical 
solution. Therefore an alternating optimization 
scheme, alternatively optimizing one set of 
parameters while the other set of parameters are 
considered as fixed, is used here. Then the updating 
function for ia  and ijμ  is obtained as Eq. (3) to Eq. 
(5). 
     Step 1: Determining the number of cluster; c and 
m-value (let m=2), given converging error, 0ε > (such 
as 0.001ε = ), randomly choose the initial membership 
matrix, such that the memberships are not all equal; 
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      Step 3: Increment k; until                                     .. 
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2.2 FCM-M Algorithm 
For improving the above two problems, our previous 
work [4, 5, 6, 7, 8] proposed the improved algorithm 
FCM-M which added a regulating factor of 

covariance matrix, 1ln i
−− Σ+ , to each class in 

objective function, and deleted the constraint of the 
determinant of covariance matrices, i iM ρ= , in 
GK Algorithm as the objective function (6). 
     Using the Lagrange multiplier method, to 
minimize the objective function (6) with constraint 
(7)  respect to parameters 

ia  , ijμ ,  , we can obtain 
the solutions as (10), (11), and (13). 

iΣ

     To avoid the singular problem and to select the 
better initial membership matrix , the updating 
functions for 

ia  , ijμ , and  are obtained as Eq. (8) to 
(13). 

iΣ

     Note that: 
      (1).Both of FCM and FCM-M can not exploit all 
of   the memberships with the same value. 
      (2).FCM is a special case of FCM-M, when 
covariance matrices equal to identity matrices. 

 
 

(6) 
 
 

Constraints: membership, 
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Where { }1 2, ,..., cΣ = Σ Σ Σ  is the set of covariance of 
cluster. 
     Step 1: Determining the number of cluster; c and 
m-value (let m=2), given converging error,  (such as 
), randomly choose the initial membership matrix, 
such that the memberships are not all equal;Step 1: 
Determining the number of cluster; c and m-value 
(let m=2), given converging error, 0ε > (such as  

0.001ε = ). 
     Method 1: choose the result membership matrix of 
FCM algorithm as the initial one. 
     Method 2: let   be the result 
centers of k-mean algorithm, 
and                          be distances between data object 

jx to center
( )0
ia . 
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     Step 3:  Increment k; until                                 .  . 
 
 
3   New Algorithm - FPCM-MS 
The clustering optimization was based on objective 
functions. The choice of an appropriate objective 
function is the point to the success of the cluster 
analysis. In FCM-M algorithm, it didn’t consider the 
relationships between cluster centers in the objective 
function, now, we proposed an improved Fuzzy 
C-Mean algorithm, FPCM-MS, which is not only 
based on unsupervised Mahalanobis distance, but 
also considering the relationships between cluster 
centers, and the relationships between the center of 
all points and the cluster centers in the objective 
function,  the singular and the initial values problems 
were also solved.  Let {x1, x2, x3, …, xn} be a set of n 
data points represented by p-dimensional feature 
vectors p

j 1j 2j pjx =(x , x , ..., x ) R′∈ . The p×n data matrix 
Z has the cluster center matrix A=[a1, …, ac] , 1<c<n 
and the membership matrix , where [ ]ij cxnU μ= ijμ  is 
the membership value of xj belonging to ai. 

[ ]ik cxcV v=  express the weighting matrix, and  is 
the weighting value between v

ikv

i and vk. The fuzzy 
exponent m is greater than 1 [11]. Thus, we can 
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obtained the objective function of Fuzzy Possibility 
c-Mean based on Mahalanobis distance (FPCM-M) 
as following 
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     The new fuzzy clustering algorithm can be 
summarized in the following steps: 
     Step 1: Determining the number of cluster; c and 
m-value (let m=2), given converging error, 

0ε > (such as 0.001ε = ). 
     Method 1: choose the result membership matrix of 
FCM algorithm as the initial one. 
     Method 2: let ( )0 , 1,2,...,ia i c=  be the result centers of 
k-mean algorithm, and         be distances between data 
object jx to center ( )0

ia . 

      
 

(16) 
 
 
 
 
 

(17) 
 
 
 

 
 

(18) 

 
 
 
 

(19) 
 

( )

( ) ( )( ) ( )( ) ( )

0

0 0 0 0 1

1 1

( )

i

n nm m

ij j i j i ij
j j

x a x aμ μ( )−
= =

Σ =

′⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦∑ ∑

 
( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0 0 0
11 12 1

0 0 0
21 22 2

0 0 0
1 2

0 0 0
1 1 1 2 1

0 0 0
2 1 2 2 2

0 0 0
1 2

...

...
... ... ...

...

...

...
... ... ...

...

n

n

c c cn

n

n

c c c n

U

x x x

x x x

x x x

μ μ μ

μ μ μ

μ μ μ

μ μ μ

μ μ μ

μ μ μ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

               (20) 

 
 

( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

0 0 0
11 12 1

0 0 0
21 22 2

0 0 0
1 2

0 0 0
1 1 1 2 1

0 0 0
2 1 2 2 2

0 0 0
1 2

...

...
... ... ...

...

...

...
... ... ...

...

n

n

c c cn

n

n

c c c n

T

t t t

t t t

t t t

t x t x t x

t x t x t x

t x t x t x

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

             (21) 

 
( ) ( ) ( ) ( )0 0 0 0

1 2 ... cA a a a⎡ ⎤= ⎣ ⎦            (22) 
 

( ) ( ) ( ) ( )0 0 0 0
1 2, , ... , c

⎡ ⎤Σ = Σ Σ Σ⎣ ⎦            (23) 
 

( ) ( ) ( ) ( )0 0 0 0
1 2, , ... , c

⎡ ⎤Σ = Σ Σ Σ⎣ ⎦            (24) 
 
     Step 2: Find 
 
 
 

  (25) 

( )
1 1

1 ,
1 1

1 ,1 ,

m i n
,

m a x m i n

k k
r si lk r s c

i l k k
r s r s

r s cr s c

w w
v

w w

− −

≤ ≤
− −

≤ ≤≤ ≤

−

=
−

( ) ( )2 2
1 11 k kkw a a a ar s r s

− −− = − + −

( )

[ ] ( )
0

2

1

1 ,11 ,1 1

,

~ 0,1 , 0,

1,2,..., ; 1,2,...,
1max , min ,

M ij
M m

M m
ij c

ij ij j M m
i

c

M ij m ij j iji c j ni c j n i

d d
if d d

d d
z

r U r r if d d

i c j n

d d d d r r
c

=

≤ ≤ ≤ ≤≤ ≤ ≤ ≤ =

−⎧
>⎪ −⎪= ⎨

⎪ − > =⎪⎩
= =

= = =

∑

∑

( )0

1

, 1, 2, ..., , 1, 2, ...,ij
ij c

sj
s

z
i c j

z
μ

=

= = =

∑
n

( )0

1

, 1, 2, ..., , 1, 2, ...,ij
ij n

is
s

z
t i c j

z
=

= = =

∑
n

( )
( 1 ) ( 1 )

1 ,
( 1 ) ( 1 )

1 ,1 ,

m i n
,

m a x m i n

k k
r si lk r s c

i l k k
r s r s

r s cr s c

w w

w w

− −

≤ ≤
− −

≤ ≤≤ ≤

−

=
−

 

v

 

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Hsiang-Chuan Liu, Der-Bang Wu,
Jeng-Ming Yih, Shin-Wu Liu,  

ISSN: 1109-9518
96

Issue 7, Volume 4, July 2007



 

 

where 
 
 
 

           (26) 
 

           (27) 
 
 
 
 

( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1
1

1 1

1 1

1

ln

ln1

m
k k k k

j i i j i i

k k k k
j s s j s s

k
ij

c x a x a

x a x as

μ

−
− −

′

− −
′

−

⎡ ⎤− Σ − − Σ⎢ ⎥⎣ ⎦
⎡ ⎤− Σ − − Σ⎢ ⎥= ⎣ ⎦

⎡ ⎤
⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎣ ⎦

∑  (28) 

 
( )

( )( ) ( ) ( )( ) ( )

( )( ) ( ) ( )( ) ( )

1
1

1 1

1 1

1

ln

ln1

k k k k
j i i j i i

k k k k
s i i s i i

k
ij

n x a x a

x a x as

t

δ−
− −

′

− −
′

−

⎡ ⎤− Σ − − Σ⎢ ⎥⎣ ⎦
⎡ ⎤− Σ − − Σ⎢ ⎥= ⎣ ⎦

⎡ ⎤
⎡ ⎤⎢ ⎥

= ⎢ ⎥⎢ ⎥
⎣ ⎦⎢ ⎥

⎣ ⎦

∑      (21) 

 
where 

( )

( ) ( )( ) ( )( ) ( )( )
( ) ( )( )

1

1

1, 2, ...,

n mk k k k
ij ij j i j i

k j
i n mk k

ij ij
j

t x a x a

t

i c

δ

δ

μ

μ

=

=

′⎡ ⎤ ⎡ ⎤+ − −⎣ ⎦ ⎣ ⎦
Σ =

⎡ ⎤ ⎡ ⎤+⎣ ⎦ ⎣ ⎦

=

∑

∑
 

 
( ) ( ) ( ) ( )( )

( )
( ) ( )

( )

( ) ( ) ( ) ( ) ( )( )
( ) ( )

( )

1

1

1

1 1

1

1 1

1 , 0

,

0

0 0

k
s i

p
k k k k

i s i s i s i
s

k k
k s i s i

s i
k

s i

p kk k
i s i s i

s

k k
i s i

s p

i f

i f

λ

λ

λ λ
λ

λ

λ

λ

=

−

−

− −

=

− −

≤ ≤ >

′Σ = Γ Γ

⎧ ⎡ ⎤ >⎪ ⎣ ⎦⎡ ⎤ = ⎨⎣ ⎦
⎪ =⎩

′⎡ ⎤ ⎡ ⎤Σ = Γ Γ⎣ ⎦ ⎣ ⎦

⎡ ⎤Σ = ⎣ ⎦

∑

∑

∏

k
s i
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4   Experiment 
A real data set of students with sample size 493  from 
elementary schools was selected. These data included 
the independent variables, test scores of four 
mathematics concepts (division, ordering, 
multiplication, and place value) and 10 questions. 

     At first, the main factors of the data were 
using factor analysis. Next, according 

to the main factors, the samples were assigned to 4 
 the clustering analysis using the 
 of SPSS for Windows 10.0. The 

results were shown in Table 1. 
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sample
size 

mathematics 
concepts 

average distance 
of  the points 
from center of 
cluster 

1 100 division 1.2879 
2 82 ordering 1.7861 
3 173 multiplication 1.1402 
4 138 place value 1.2890 
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     Each 15 sample points were randomly drawn from 
Cluster 1, cluster 2, and cluster 3, respectively, and 5 
from cluster 4. 
     How to select the better initial value to improve 
the cluster accuracy is an important issue. In order to 
test the FCM-M algorithm, developed by the authors 
of this paper, the four .25 were selected as initial 
value. After calculating, the results were found that 
the memberships were all equal to .25 too. This 
evidence displayed that the FCM-M algorithm was 
work correctly. 
     There were 2 methods (Ratio, Random) to 
calculate the Normalized initial number which 
satisfied the Equation (2). 
     The steps of Ratio Method were as follows.   
     Step 1: The distance between observing value and 
every cluster center of every Point, say d. Compute 
the Average Distance of Clustering Result Marking 
Group. 

( )0 1

1

,   Re      
in

i j i i
j

cd d n n number of sult Marking Group i−

=

=∑
 

     Step 2: Compute the Difference of d and the 
Average Distance of Clustering Result Marking 
Group 

c  1,2,..., ,  1,2,...,ij j i il d cd j n i= − = =

     Step 3: Find the values of maximum and 
minimum  
 { }M
 
                                . { }

max  1,2,..., ,  1,2,..., ,

min  1,2,..., ,  1,2,...,
ij i

ij i

l j n i c

j n i c

= = =

= = =

     Step 4: Compute the initial membership 
Difference of every Point                                   . 
 
     The steps of Random Method were as follows. 
Choose any 4 random numbers, r1, r2, r3, and r4. 
     Step 1: Choose any 4 random numbers, r1, r2, r3, 
and r4, such that 0<ri<1, i=1, 2, 3, 4.  

1( )( )ij ijM l M mμ

m l

−= − −
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     Step2: Let S= r1 + r2 + r3 + r4, then r1/S, r2/S, r3/S, 
r4/S were calculated as one set of initial value. 
     The classification accuracies of testing samples 
were shown in Table 2. 
 
Table 2: Classification Accuracies of Testing 
Samples 
choosing the 
initial 
membership 

computing 
distance 

Classification 
Accuracies (%) 

FCM 30 
PCM 32 
FPCM 36 
FPCM-M 44 

Ratio 

FPCM-MS 56 
FCM 12 
PCM 14 
FPCM 30 
FPCM-M 44 

Random 

FPCM-MS 54 
 
     From the data of Table 2, we found that the 
FPCM-MS algorithms of Ratio Method could obtain 
the best results, up to 56%. Next, the FPCM-MS 
algorithms of Random Method could obtain the 
second better results, up to 54%. 
 
 
5   Conclusion 
An improved new fuzzy clustering algorithm, 
FPCM-MS, is developed to obtain better quality of 
fuzzy clustering results. The objective function 
includes a fuzzy within-cluster scatter matrix, a new 
between-prototypes scatter matrix, the regulating 
terms about the covariance matrices, and the 
regulating terms about the relationships between 
cluster centers, the relationships between the center 
of all points and the cluster centers. The update 
equations for the memberships and the cluster centers 
and the covariance matrices are directly derived from 
the Lagrange’s method, which is different from the 
GK and GG algorithms. The singular problem and 
the selecting initial values problem are improved by 
the Eigenvalue method and the Ratio method. 
Finally, a numerical example shows that the new 
fuzzy clustering algorithm FPCM-MS gives more 
accurate clustering results than the FCM and FCM-M 
algorithms for a real data set, the ratio method which 
is proposed by us is the better of the two methods for 
selecting the initial values. 
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