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Abstract: - The measuring of the surface altitude of a body with shadow moiré results in an image of contour 
lines. These contour lines are usually thick and can be broken at a number of places. A one-pixel wide skeleton 
of the image can be extracted by thresholding and thinning, which is a traditional approach in previous research. 
This study proposes a novel method based on wavelet transformation with multi-resolutions and object point 
detection. In particular, this method solves the problem of uneven lighting on the surface of the object and 
generates a clear binary image of unbroken contour lines of single-pixel width.  
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1 Introduction 

Moiré, an image of contour lines, is generated 
by overlapping two grating with similar periods. 
These grating must be placed with transparent and 
opulent contours with equi-distance spacing [1]. 
Moiré images are common in daily life, e.g., textile 
and silk with grid patterns [2]. If parallel light rays 
through reference grating are projected on an object, 
a group of transformed shadows will be formed on 
the object’s surface, based on the heights of various 
locations on the surface. These shadows overlap to 
form an image of non-overlapped lines called 
shadow moiré. With the computation according to a 
formula, each pair of neighboring non-overlapped 
lines differ by a constant height [3]. In other words, 
the lines form a contour map. Using the technology 
of optical moiré, one can measure the altitude 
contours of the surface of an object. In the last 
decade, the maturation of this technology has 
resulted in many industrial and scientific 
applications. This technology can detect the tiny 
change, which is difficult to detect visually, of the 
altitude of the surface of an object and magnify the 
tiny change to a visible scale. This is done without 
focusing on any local area so that the change of the 
entire surface can be viewed globally at the same 
time [4, 5]. 

In the 1970’s, shadow moiré was first applied to 
detecting the tiny change in the altitude of the 
surface of a human body. The contour lines can 
show the change of the curvature of a patient’s 

vertebrate [6]. Another application is the 
measurement of the change of the undulating 
surface above a muscle of interest [7]. Moiré 
shadow can also be used to record the tiny change of 
the surface radius artery of the right hand of a 
patient [8]. When a shadow moiré is formed on the 
surface of an object, a researcher often needs to 
detect whether a pattern of interest is found in the 
image of shadow moiré. This task can be automated 
if the image, which in its raw form usually consists 
of thick and sometimes overlapping or broken 
contours, can be simplified to just the skeleton, 
which should be sufficiently thin, of the image. An 
ideal skeleton image is a binary image with a black 
skeleton on a white background. In short, it is 
important to compute at skeleton from a raw contour 
map. 

One common method of deriving a binary 
image from a gray-level image is called bilevel 
thresholding, which uses the statistical method of a 
gray-level histogram. Otsu [9], Kittler and 
Illingworth [10] use such a method but there are a 
few problems. One problem is its computational 
time complexity. Moreover the method does not 
work well for images where the light intensities are 
not evenly distributed. This problem originates from 
the way the image is produced. Usually, the image 
is obtained with a light source projected on the 
object at an angle. Some locations of the object get 
more light and others get less, resulting in an uneven 
distribution of the gray level in the light parts as 
well as in the dark parts of the image. One solution 
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to this problem is to partition the image into various 
locations based on the gray level of the locations 
and then use multilevel thresholding instead of 
bilevel thresholding. Otsu [11] extends bilevel 
thresholding to multilevel thresholding, resulting in 
more efficient algorithms [12]. Other researchers 
propose algorithms based on the entropy theorem 
[13-15]. Methods based on other mathematical 
models are also proposed [16-21]. 
 A binary moiré image whose contours are one-
pixel wide can show the skeletal pattern of the 
image clearly, allowing accurate measurement of 
the surface altitude. Thinning algorithms are 
commonly used for this task, as the geometric 
features of the skeleton are preserved after thinning 
[22]. Various thinning algorithms are presented in 
[23] and the importance of the time complexities of 
these algorithms for image processing applications 
are discussed in [24]. Applications include the 
recognition of language symbols, geometric shapes, 
or finger prints [25-28]. Skeleton extraction can also 
be done with a pulse coupled neural network [29]. 
 
2 Novel method of skeleton extraction 

  
 
Fig. 1. A novel method of skeleton extraction with DWT 

 
Previous research often applies two stages of 

thresholding and then thinning to extract a thin 
skeleton of a moiré image. We propose a novel 
method to solve the same problem. Our method 
addresses the problem of uneven distribution of gray 
level in the image and produces a skeleton of single-
pixel width. The method is summarized in Figure 1. 
First, the 2D wavelet decomposition of the source 
moiré image produces an approximation LL1 image 
with half of the original size for each dimension. 
Then the same process is applied to the LL1 image, 
producing an LL2 image with a quarter of the 
original size for each dimension. In the LL2 image, 
the object points of the skeleton are detected, 
resulting in one-pixel wide contour lines that form 
the skeleton of the dark parts of the image. Finally, 

the skeleton image is expanded back to the size of 
the original image. Each of the steps will be 
explained as figure 1. 

 
2.1 Discrete wavelet transform in two dimensions 
 

Discrete wavelet transform (DWT) can provide 
relative resolution depending on the frequency 
spectrum of a given signal. In Eq. (1), With good 
choices of a mother wavelet function and 
a scale function, the DWT of 
function  is defined relative to 
wavelet 
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The application of DWT to an image can 
extent form one-dimension to two-dimension. A 
two-dimensional scaling function ),( yxϕ  and three 
two-dimensional wavelets, ),( yxHψ , ),( yxVψ , 

and ),( yxVψ , are required in two dimensions. 
Each is the product of a one-dimensional scaling ϕ  
function and corresponding wavelet ψ , produce 
four products of separable scaling function (show in 
Eq (4)) and separable directionally sensitive wavelet 
[ show in Eq (5~7) ]. These wavelets measure 
functional variations in intensity or gray-level 
variation for image, along different directions. 

Hψ measure variations along columns (for example, 
horizontal edges), Vψ responds to variations along 
rows (for example, vertical edges), and 
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Dψ corresponds to variations along diagonals. We 
normally let = 0,  and 

. Wavelet transform of function 

 of size M  is then given by Eq. (8). 
The  coefficients define an 

approximation of  at scale . The 
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The two-dimensional DWT can be implemented 
using digital filters and downsamplers. The image 

 is used as the  input. The sing-
scale filter bank of Figure 2 can be iterated by tying 
the approximation output to the input of another 
filter bank. Convolving its rows with  and 

 and downsampling its columns, we get two 
subimages whose horizontal resolutions are reduced 
by a factor of 2. The highpass or detail compont 
characterizes the image’s high-frequency 
information with vertical; the lowpass, 
approximation component contains its low-
frequency, vertical information. Both subimages are 
then filtered columnwise and downsampled to yield 
four quarter-size output subimages: , , 

 and [30]. 
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Fig. 2. The analysis filter bank 

 

 
 

Fig. 3. Hierarchical system of 2D DWT 
 

2.2 Detection of object points with multi-
resolution 
 

DWT, as a hierarchical system, has the 
property of multiple analytical resolutions (Figure 3). 
The application of a multi-level two-dimensional 
wavelet transform to an M*N image at level l results 
in four sub-images, each of M/2*N/2, at level l+1. 
LL1 is a coarse approximation of the original image, 
while LH1, HL1, and HH1 show finer details 
(Figure 3). Similarly, LL1 at level l+1 can be 
partitioned into four sub-images, each of M/4*N/4, 
at level l+2 [31]. Another study applies this method 
to the edge detection of a given image [32]. The 
application uses a sliding window searching and 
tracking for object points that are discontinuous 
(Figure 4). It makes uses of the association of points 
between two levels. 

 

 
Fig. 4. Relation between the levels of point to point 

 

 
Fig. 5 Multi-resolution DWT decomposition of image 
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This study proposes to apply a similar idea to 
derive a binary image from a moiré image. We use 
Haar as the mother wavelet with parameters -0.7071 
and 0.7077. The visual meanings of the resulting 
DWT hierarchical images is shown in Figure 5. The 
method makes use of the original image, the LL1 
image and the LL2 image at three different levels. 
Each image at a lower level is obtained by shrinking 
the image at an upper level by a factor of two for 
each dimension while preserving the characteristics 
of the original image. Given a gray level image of 
M*N resolution, our method detects object points in 
the image and derive a number of LL2 images at 
level l+2 with resolution M/4*N/4. Let (x,y) be the 
coordinates of a pixels in an LL2 image. Then a, b, c, 
d, e, f, g and h are the neighbor points of s in a 
window of 3*3, where s is the center of the window 
(Figure 6). Let V(p) be the gray level of point p. 
Consider the four conditions from (9) to (12): 

( ) ( )()(&)()( sVeVsVaV >> )

)

)

)

    (9) 

( ) ( )()(&)()( sVgVsVcV >>    (10) 

( ) ( )()(&)()( sVfVsVbV >>    (11) 

( ) ( )()(&)()( sVdVsVhV >>    (12) 

 
If any two of the four conditions are satisfied, 

then s is an object point. 

 
Fig. 6. Neighbor points of pixels 

 
Table. 1 Neighbors of corner points 

2.3 Expansion of the skeleton image of LL2 back 
to the original size 

The skeleton image of the LL2 image is only a 
quarter of the size of the original image for each 
dimension (Figure 1e). Therefore, it is necessary to 
expand the skeleton image back to its original size. 
Consider an object point s in the image at level l+2, 
its eight neighbor points include a, b, c, d, e, f, g and 
h. Whether they are also object points at level l+2 
will affect the sixteen points associated with s at 
level l. If the top neighbor b of s is also an object 
point, then the top two pixels of the third column are 
both object points at level l (Figure 7a). If the right 
neighbor d of s is also an object point, then the two 
rightmost pixels of the second row are both object 
points at level l (Figure 7b). If the bottom neighbor 
of s is also an object point, then the bottom two 
points of the third column are also object points at 
level l (Figure 7c). If the left neighbor h of s is also 
an object point, then the two leftmost points of the 
second row are object points at level l (Figure 7d). 
The union of the object points obtained with these 
four rules results in a set S1. 

Next consider the four corner neighbors of s. If 
the top left neighbor a of s is also an object point, 
then the top left half of the diagonal are also object 
points at level l (Figure 8a). For the other three 
corner neighbors c, e, and g, the rules work similarly 
(b, c, d of Figure 8). The application of the above 
eight rules to the LL2 image at level l+2 will result 
in an image of M*N at level l. The object points of 
this image are assigned the gray level of 0 while the 
remaining, non-object points are assigned the gray 
level of 255. The result is a binary image of the 
original size, with thin lines of single-pixel width 
and is a rough skeleton of the original image. 

The number of object point of the sub-image 
LL2 at level l+2 is 1/16 of that of the original image 
at level l. Using the above criteria for picking out 
the object points, the method obtains a new binary 
image with size 44 NM × . Each point of LL2 
corresponds to four points at level l+1 and to sixteen 
points at level l+2. LL2 can be considered a rough 
representation of the original image shrunk to a 
quarter of its size on each dimension. Therefore, the 
image at LL2 should be expanded back to its 
original size of M*N. A straightforward expansion 
will result in two conditions for the contours. First, 
the curvatures of the resulted contours are not 
smooth. Second, many contour lines are often more 
than one pixel wide. In order to solve these two 
problems, we use several simple expansion rules. 

 

Corner point Neighbor 
on row 

Neighbor 
on column

a b H 

c b D 

e f D 

g f H 
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Fig. 7. Rules for adding object points at level l depending on the 
pattern out level l+2           (a) Top neighbor b is also an 
object point     (b) Right neighbor d is also an object point   
(c) Bottom neighbor f is also an object point  (d) Left 
neighbor h is also an object point 

 

 
Fig. 8. Rules for adding object points at level l depending on the 
pattern out level l+2                     (a) Top left neighbor a is also 
an object point          (b) Top right neighbor c is also an object 
point       (c) Bottom right neighbor g is also an object point   (d) 
Bottom left neighbor e is also an object point 
 
3 Implementation and discussion 

This study makes use of the method of shadow 
moiré (Figure 9) [8]. Shadow moiré is projected on 
the surface of the test object. In order to increase the 
contrast  of the shadow moiré, a special material is 
painted on the object. A Sony Digital Video camera 
captures the image of the shadow moiré. Above the 
test object and closer to the light source than the 
camera is a reference grating, which is Ronchi 
ruling grating of period P. Parallel light rays pass 
through the reference grating and project on the 
object with angle α (Figure 10). A grating shadow is 
produced on the surface of the object. Overlapping 
the reference grating and the transformed shadow 
will produce a number of alternating shadow stripes. 
Different contour patterns will result depending on 
the heights of various locations on the surface of the 
object. The camera will capture the image of the 
contours at angle β. Neighbor stripes differ by a 
constant height. Consider the Nth contour line. The 
difference between the height of this line and the 
reference grating is h [3]: 

βα tantan +
=

NPh     (13) 

When we capture the image with a CCD, the 
altitude of the grating, its horizontality, the focus 
distance of the CCD affect the evenness of the 
distribution of the background light projected on the 
object. Shadow moiré is a light pattern produced by 
overlapping the reference grating and the 
transformed shadow. What a researcher wants to get 
is the shadow pattern of the transformed surface of 
the test object. The shadow pattern of the grating is 
not desirable. This unwanted shadow can be 
decreased by moving the grating relative to the test 
object. Ideally, this can reduce the intensity of the 
unwanted shadow and the background light. But in 
practice, the image captured in experiment contains 
visible traces of the grating pattern. 
 

 
Fig. 9. Projection moiré on a wrist 

Our test object is part of the wrist covering the 
main artery. A sample shadow moiré image of size 
512*384 is shown in Figure 11a. The image is a bit 
twisted, with expanding, alternating stripes. Each 
stripe is a contour line of constant height. The 
surface can be a hill with increasing height at the 
center or a valley with decreasing height at the 
center. Figure 11a is obtained with Otsu’s method of 
bilevel thresholding [9]. Figure 11b is obtained by 
maximizing the between-class variance of gray-
level histogram and then by thresholding. Using 
bilevel threshold value cannot show the entire 
pattern clearly and evenly. In our experiments, we 
discover that the shadows at the bottom and close to 
the camera are overlapping, while the shadows at 
the top and close to the light source are thin and can 
disappear altogether. In short, there is an uneven 
distribution of gray level in the image and the 
method of bilevel thresholding will often produce a 
skeleton of low quality. 

In order to address this problem, we use the 
method of multilevel thresholding. By dividing the 
gray-level image into different regions, we can solve 
the problem of uneven distribution of the 
background light intensity for the object image. 
Figure 11c shows the result of applying our method 
to the original shadow moiré image of Figure 11a. 
The result image, which is a big improvement in 
comparison to the image of Figure 11b, shows a 
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single-pixel wide skeleton of the original image 
with a few broken contours. In order to show the 
quality of the skeleton, we overlap the images of 
Figure 11a and 11c to produce Figure 11d. 

 
Fig. 10. Schematic diagram of shadow moiré pattern 

production 
 

 

(a) 

   

(b) 

   

(c) 

 

(d) 

Fig. 11. (a) source moiré image  (b) The binary 
image using Otsu’s method  (c) The binary 
image using our method  (d) The image by 
overlapping (a) and (c). 

 
4  Conclusion 

In this study, we apply the technology of shadow 
moiré to capture the contour lines of the surface of 
the artery area of the wrist. The captured image of 
gray-level contains thick contours that are difficult 
to be recognized. Therefore, there is a need to 
extract the skeleton of the contours that is ideally 
single-pixel wide and the image should be binary 
rather than gray-level. A common method of 
skeleton extraction is bilevel thresholding which 
includes the stages of thinning and thresholding. 
This method suffers from the uneven distribution of 
background light on the object. In order to address 
this problem, we propose a novel method of 
applying wavelet transform to extract a skeleton of 
the image, resulting in a shrunken image of one 
quarter of the original size. Then the shrunken 
skeleton is expanded back to its original size with a 
few simple logic rules. The result is a much better 
binary skeleton that is single-pixel wide for each of 
the contour lines. The skeleton can be used to 
produce a much better estimate of the altitudes of 
various locations on the surface of the test object. 
With a number of contour maps taken continuously, 
a 3-D motion model of the surface can be generated. 
This is a future work we have in mind. 
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