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Abstract: - The appearance of microarray technology led to the development of algorithms to infer the structure 
underlying the dynamics of gene regulatory networks (GRNs) from gene expression data. Yet, this technique is 
currently highly noisy, leading to the question of how inferable are GRNs from this data. To answer this 
question, we use realistic models of GRNs [1, 2, 3] and artificially introduce realistic measurement noise [4] to 
the resulting time series. We analyze the inference efficiency of IADGRN [5], an inference algorithm of 
structure and logic, from this data. Since microarrays are attained from multiple identical cell measurements 
and the effects of averaging their expression levels is still poorly understood, we investigate these effects on the 
mutual information between pairs of genes (pI) [6, 7] averaged over the time series of multiple identical cells, 
which are assumed to be initially synchronized. We test noise level effects using two noise models (Rocke and 
hierarchical error model, Hem). It is found that the Hem model more strongly disrupts correlations for low 
noise levels. We show that although time series binarization causes information loss, it makes inference more 
robust to low levels of noise. Also, while indirect interactions are not inferable even for low levels of noise, 
above a certain relatively small noise ratio even strongly correlated genes lose any significant correlation for 
both noise models. This shows how inaccurate current inference algorithms are when inferring from data with 
realistic characteristics. 
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1 Introduction 
One fundamental problem to solve in Systems 
Biology is to unravel structure and logic of GRNs 
among thousands of genes and their RNA and 
protein products [8]. Eventual medical implications 
include stem cells and regenerative medicine [9] and 
novel approaches to cancer “differentiation” therapy 
[10]. To guide such procedures it is essential to 
understand the GRN, analyze its structure, logic, 
and dynamics, using a dynamical systems 
framework [11]. Microarray techniques provide data 
to solve the inverse problem [12]: given the genes’ 
expression profiles over tissues, conditions or time, 
infer the structure and logic of the GRN that gives 
rise to such activity patterns. Recently, several 
approaches for the reverse engineering of networks 
from gene expression data have been proposed [12, 
13, 14]. 
   One problem with microarray technology is its 
high noise level [15]. Here, we focus on the effect 
that such noise has in inference efficiency. We use 
artificial networks from which temporal series of the 

dynamics is extracted, without external noise 
sources, and the effects of microarray noise 
measurement are artificially added. This allows 
exact control on how much noise is introduced and 
how much inference is affected. Since in real 
experiments the ground truth (i.e. the true 
underlying structure and logic of the GRN) is not 
known, only using artificial networks and noise 
simulation can the effects of noise be correctly 
characterized. 
   For this purpose, so far the models of artificial 
GRNs used are Boolean networks and coupled 
differential equations [11, 16]. Yet, recent 
measurements on gene expression and small 
synthetic GRNs provided evidence of the 
phenotypic variability due to the stochastic nature of 
gene expression (for a review see [17]). 
   When the system has many molecules, its 
chemical dynamics (i.e. the variations in the 
concentrations of the chemical species present) can 
be computed approximately using continuous 
differential equations. However, in real GRNs, 
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genes exist only in very small quantities (usually 
only one or two copies of the same gene); therefore 
a “mean field” approach is not accurate [2, 17, 18]. 
For this reason, GRN dynamics should be based on 
the stochastic simulation algorithm (SSA) [19]. 
   Additionally, while non-delayed reactions 
correctly model equilibrium states of simple 
synthetic GRNs, the dynamics of real GRNs are so 
complex (e.g., due to many feedback loops [20]) 
that time delays, namely for transcription and 
translation, should be included [20, 21]. 
   We model GRNs using a general set of reactions 
[1, 2, 3], where genes interact via their products of 
expression, and where transcription and translation 
are modeled as time-delayed events [22]. The 
dynamics are driven by a generalized delay 
algorithm that handles multiple distinct delayed 
output events for each input event [21]. 
   Using this model to generate time series of gene 
expression from GRN dynamics, we study how 
microarray noise, artificially generated [5, 23], 
affects inference by IADGRN [5] (an inference 
algorithm from time series of gene expression). 
   Usually, an inference algorithm’s efficiency is 
tested using artificial gene network models to 
generate gene expression profiles or time series (see 
e.g., [12, 13, 14]). A few works have considered and 
modeled artificial array noise [4, 24, 25, 26]. The 
gene networks models are usually deterministic, 
namely, either Boolean networks [27] or ODE 
models [4, 28]. 
   Here we present the first attempt to test the ability 
of an inference algorithm, using time series of gene 
expression created by an artificial delayed stochastic 
model of gene networks that correctly accounts for 
the internal noise and time delays in the underlying 
dynamics, to which realistic array noise [4] is added 
to the time series as well. 
   We begin by introducing the GRN model. Next, 
the method for introducing realistic array noise is 
presented, followed by the inference algorithm. 
Finally, we present the results and conclusions. 
 
 
2 Methods 
The model of GRN consists of reactions modeling 
gene transcription and translation, binding of 
transcription factors (proteins) to gene operator 
sites, decay of proteins, dimmer formations, and so 
on (for a detailed description see [1, 2, 3]). 
   In general, GRNs are here generated from the 
following reactions: for gene i=1,..,N, basal 
transcription of promoter Proi by RNA Polymerase 
(RNAp) (Equation 1), activated transcription where 
operators sites j of gene i, Proi,j, are occupied by one 

or more activators (Equation 2), translation of RNA 
by ribosomes (Rib) into proteins (pi) (Equation 3), 
repression/unrepression of a gene at operator site j 
(Equations 4,5, and 6), decay of ribosome binding 
sites (RBS) and proteins (pi's) (Equation 7), and 
proteins polymerization (here limited to dimmers for 
simplicity) (Equations 8 and 9), that can act as 
indirect repression or activation. Unless time-delays 
(τ 's) are explicitly represented in the products, all 
events, reactant depletions, and product 
appearances, occur instantaneously at t: 
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   Protein and RBS degradation are assumed to occur 
at a constant rate and are modeled as unimolecular 
reactions. Since genes have multiple operator sites, 
a promoter “state” is defined by the combined states 
of its operator sites, i.e., if they have their respective 
transcription factor bound to it or not. We adopted 
the following notation: an array is used as the index 
of a promoter, e.g, Proi,op(i) where op(i) = (0,pw,0). In 
this case, only pw is bound to operator site 2 of gene 
i, while the other operator sites are free [18]. 
   SGNSim [18], here used, generates random 
networks from these reactions. Multiple identical 
GRNs’ time series can be averaged to obtain the 
effect of measuring the states of multiple cells.  
   To the resulting averaged time series, we add 
synthetic noise with realistic characteristics, by 
emulating the properties of the measurement system 
[5, 23]. This method has been successfully applied, 
e.g., when studying the performances of microarray 
segmentation algorithms [23]. For this study, we 
selected two different error models implemented in 
the simulator: the hierarchical error model (Hem) 
[24] and the Rocke error model (Rocke) [25]. First, 
the Hem model is defined as: 

i j ij ijky x g c r b ε= + + + + +                           (10) 
where y is the expression measurement in Log scale 
from the microarray, x the noise-free expression 
level, cj the gene-specific noise, rij the gene and chip 
specific noise, bijk the gene, chip and biological 
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sample noise, and ε is an independent random noise 
component. Rocke model is defined as:   

ny x eα ε= + +                                       (11) 
where α is the background noise, n the 
multiplicative noise term, and ε is an independent 
random noise component. A more detailed 
description of the error models can be found in [4]. 
   Since we are interested in the effect of noise in 
inference efficiency, we increased the noise level 
gradually starting from a noise-free signal. Instead 
of only modifying the parameters, we made repeated 
noise simulations until we achieved a desired noise 
to signal ratio (NSR). It is far more informative to 
control the actual noise level, than just modifying 
parameters without knowing the true effect on the 
underlying signal. The NSR is defined as a ratio 
between the power of noise and the power of signal:    

2

2

( )
( )

noise

signal

P nNSR
P

t
s t

∑
= =

∑
                                   (12) 

where n(t) is the simulated noise and s(t) the noise 
free signal. First, we initialized the error models in 
such a way that both models produce noise with 0.1 
noise ratio level. Thereafter, we generated synthetic 
microarray experiments using both models. We 
repeated the process by increasing the noise ratio in 
steps of 0.1. In the Hem model, we increased the 
noise by modifying the standard deviation of the 
experimental error term, whereas in the Rocke 
model we controlled the noise with the standard 
deviation of the multiplicative noise component. 
Fig. 2 illustrates the effect of both error models on a 
noise free signal. Next, both the noise perturbed and 
initial signal’s time series are binarized. 
   Given the original time series and those affected 
with experimental noise, we cluster the time series 
of the number of proteins of each gene into binary 
clusters, representing “on” and “off'” states [11], for 
the purpose of inferring the topology and logic of 
interactions between genes. The k-means clustering 
algorithm [29] detects these variations by separating 
the observed quantities in time in two partitions, 
“high” and “low”. Since we want to correlate 
variations in the protein quantities of inputs with 
variations of protein quantities of outputs, and 
because depending on the interaction strength, large 
variations of inputs can be associated with small 
variation of outputs (and vice versa), we opted to 
apply k-means to the time series of each gene 
independently. One problem when using k-means 
occurs when a few large outliers exist. For example, 
in Fig. 2, one large outlier is observed due to 
experimental noise introduction. On first inspection, 
one would expect that such an outlier would shift 
the binarization process towards having more null 

values than the original time series. Indeed, the 
binarized time series, after the Rocke noise model 
was applied, had less 1's than the original one (the 
original time series binarized has fourteen 1's out of 
41 data points while the time series affect by the 
Rocke model has only eleven 1's). Less expected 
was the fact that the time series affected by the Hem 
noise model has only four 1's. Here, the application 
of the Hem noise model caused a few outliers (Fig. 
2), but also some cases where the resulting value 
was smaller than the original one. This compensated 
for the outliers and led to the “threshold” between 
the “on” and “off” classification being lower than in 
the Rocke case. This only occurred in our examples 
for large values of NSR (> 0.7). If the reason for 
information loss due to clustering is only the 
existence of outliers, it might prove better to use 
clustering algorithms more robust to outliers than k-
means (e.g. k-medoids). In the cases analyzed here, 
such large outliers were not commonly observed 
and, as seen, not the main cause of information loss. 
Thus, we used k-means.  
   From the binarized time series IADGRN infers the 
network. The result is compared to the real 
topology, and efficiency of inference is measured. 
   As said, to infer from time series of gene 
expression we used IADGRN [5]. This algorithm is 
based on ARACNe [14], but is applicable to time 
series. IADGRN infers the network topology and 
logic from state transitions of gene expression. 
These can either be independent state transitions, 
state transitions from perturbed states of an initial 
state, or single consecutive time series. Here, only 
the last case is used. From the time series, the pI is 
calculated between all pairs of genes (Equation 13), 
relating the states of a possible input at moment t 
with the state at t+1 of a possible output: 
 
I(At, Bt+1)=H(At) + H(Bt+1)  - H(At,Bt+1)       (13) 
 
where H(x) is the entropy of the binary sequence x. 
If each value of x has a probability p0 of being equal 
to 0, and p1 of being equal to 1, H(x) is given by: 
H(x) = -p0log(p0) – p1log(p1). The calculated pI must 
then be compared to a threshold to decide if the 
correlation is high enough to accept that a directed 
connection between the two genes exists. 
   One advantage of using mutual information [14] 
to infer is that it is a procedure that is far less 
computationally complex than others because the 
number of necessary calculations is optimal. 
Furthermore, algorithms based on mutual 
information ranking have been shown to be resilient 
to estimation errors [14].  
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Here, because we infer from a “continuous” time 
series and not independent states transitions, and 
therefore correlations build up in the network, a 
correct estimation of the spurious correlations is not 
known. Thus, we assign a threshold value that 
maximizes inference. The threshold is set at the 
minimum value necessary for removing all false 
correlations, leaving only true connections such that 
these are all inferred. When this is not possible, the 
threshold is set such that a few false positives are 
accepted, in order to detect the largest possible 
number of true connections. This value can vary 
significantly from network to network, due to 
sampling time, the system stochasticity and gene 
correlations due to the topology. Thereafter, 
IADGRN applies a time dependent data processing 
inequality test (DPI) [14] to remove indirect 
correlations. If connections from A to B, B to C, and 
A to C are inferred, it compares (according to (14)) 
the pI of each of the three connections and removes 
the connection from A to C if its pI is lower then 
either of the other two. A small tolerance τ  = 0.05 
is introduced to prevent close pI values from being 
pruned [14]. 
 
I(At,Ct+1)≤ min[I(At, Ct+1), I(At, Ct+1)].(1-τ) (14)     
 
Notice that (14) assumes one has access to the real 
states of A, B and C. Instead, here we observe states 
affected by external noise. This can cause some 
errors. Another problem is that DPI assumes that no 
other path of influences exist between A and C, than 
the one passing via B. This might not be true in a 
network. Regardless, in all numerical simulations 
the DPI exhibited high efficiency and very few 
errors (< 3% error rate). Inference accuracy is 
measured by Recall (15), the fraction of all existing 
connections that are inferred, and Precision (16), the 
fraction of inferred connections that were correct. If 
TP is true positives (correctly inferred connections), 
TN is the number of true negatives (correctly 
assigned as non-existing connection), FP is the 
number of false positives (wrongly assigned 
connections), and FN is the number of false 
negatives (connections existing but not detected): 

TPRecall = 
TP+ FN

                                            (15) 

TPPrecision =
TP+ FP

                                         (16) 

Since inputs can act as activators or repressors, we 
use the Pearson correlation between input and 
output time series (not binarized) of identified 
connections to determine whether the input acts as 

an activator or repressor. Notice that this measure is 
not used to determine the existence of connections.  
 
 
3 Results  
We begin by analyzing the influence of noise in the 
simplest cases possible, namely, direct and indirect 
repression of one gene by another, and direct and 
indirect activation of one gene by another. This is 
done to “tune” the sampling times to maximize 
inference capability and to study the effect of 
microarray noise on cases where, without external 
noise, inference is complete and without errors. 
   The protein that acts as a direct input binds to the 
promoter region of the output gene. The effect is 
either inhibiting or activating transcription. If the 
interaction is indirect, the protein of the input gene 
either binds to a repressor molecule stopping its 
effect (indirect activation) or it degrades the protein 
of the output gene (indirect repression). 
   To create a signal with non-null entropy, the input 
gene’s protein concentration must be externally 
driven to vary in time. This variation causes a 
correlated variation in the output gene’s protein 
concentration, allowing inference of the connection.  
   In Table 1, we present the results of the 
measurements of pI between pairs of genes from the 
time series of their protein concentrations. The 
results are an average of 1,000 independent 
experiments of the four different cases.  
   The effect of noise from both noise models is 
similar. In both, the correlation between input and 
output genes decreases as noise increases. However, 
for low NSR values, the Hem model causes a higher 
decrease in correlations.  
   Also visible from Table 1 is the effect of 
introducing array noise in the time series on 
inference efficiency. Beyond 0.5 NSR no inference 
is possible, due to the disruption of the correlation 
between input and output genes’ protein time series.  
   Interestingly, no self-inputs were identified as FPs 
for any NSR values in both noise models.  
   In general, even for low NSR values, indirect 
interactions are harder to detect than direct ones, 
since its pI is only slightly above the noise level. 
Any noise introduced, either using the Hem or 
Rocke noise models, was enough to destroy the 
correlation, and no connection was inferred. 
   The Pearson correlation detected, with 90% 
accuracy, if inferred connections are activating or 
repressing. Between genes indirectly connected this 
measure is small. Given no noise, it is equal to 0.3 
(in absolute value) while for direct connections is 
0.8. This measurement, in absolute value, is the 
same whether or not it is an activation or repression. 
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Fig. 1. A GRN. A circle with a cross inside 
represents genes without basic expression, as 
opposite to those with. An arrow represents 
activation, and lines ending with a perpendicular 
line represent repression. A square in the middle of 
a line indicates an indirect interaction. 
 

Hem Noise Model 
NSR pI of TP pI of FP Recall Precision

0.0 0.450 0.175 1.000 1.000 
0.1 0.341 0.175 0.720 0.734 
0.2 0.286 0.216 0.700 0.638 
0.3 0.271 0.210 0.600 0.525 
0.4 0.175 0.203 0.025 0.013 
0.5 0.142 0.167 0 0 
0.6 0.118 0.132 0 0 
0.7 0.097 0.112 0 0 
0.8 0.063 0.119 0 0 
0.9 0.081 0.098 0 0 
1.0 0.054 0.064 0 0 

Rocke Noise Model 
NSR pI of TP pI of FP Recall Precision

0.0 0.450 0.175 1.000 1.000 
0.1 0.373 0.192 0.950 0.900 
0.2 0.286 0.201 0.700 0.600 
0.3 0.192 0.186 0.250 0.125 
0.4 0.178 0.178 0.200 0.063 
0.5 0.204 0.181 0.071 0.063 
0.6 0.186 0.172 0 0 
0.7 0.153 0.146 0 0 
0.8 0.121 0.133 0 0 
0.9 0.089 0.098 0 0 
1.0 0.073 0.055 0 0 

Table 1. pI between input and output gene (TP) and 
between output and input gene (FP). Threshold set 
at 0.2. For each NSR value and type of interaction, 
1,000 experiments were conducted. The efficiency 
of inference is measured by Recall and Precision. 
 
   Next, we simulate GRNs of 10 genes with various 
interaction strength values between the genes (rate 
constants of reactions (4) and (8) were varied from 
0.1 to 1, in steps of 0.1). Connectivity was also 

varied from 1 to 3 (in steps of 0.2). The GRNs’ 
topology is random in all cases. For each data point, 
100 networks were generated and the results 
averaged.  
   An example of such a randomly generated 
networks is shown in Fig. 1. From the topology, 
SGNSim [18] defines the corresponding set of 
chemical reactions from which the dynamics are 
simulated. 
   The system state (quantity of proteins at a given t) 
was sampled each 5,000 s for 100,000 s. Array noise 
is introduced using the Hem and Rocke noise 
models. An example of the effects of artificial noise 
in a time series is shown in Fig. 2. Correlations are 
more disrupted at high protein concentrations. 
   The average pI for a given NSR of the networks 
generated as described is shown in Fig. 3. The 
effects of noise are very similar to those previously 
described for 2 gene interactions. 
 

Gene expression profile before 
and after noise is simulated

0

40

80

120

160

200

0 2500 5000 7500 10000 Time (s)

No. 
Proteins p1 - 0 noise

p1 - 0.7 Hem noise
p1 - 0.7 Rocke noise

Fig. 2. Time series of an original protein level 
signal, as well as the same signal affected by both 
Hem and Rocke noise models, for the case of direct 
activation.  
   
   However, the decrease in pI is now caused not 
only by the array noise, but also by the indirect 
correlations between all genes’ time series that build 
up as the network’s dynamics evolve. Thus, as 
expected, inference becomes more difficult as the 
network size increases (values of pI for these 
networks is far smaller than those in Table 1). Even 
for small NSR, inference is not possible. Beyond 0.3 
array noise, the average pI is below 0.1 (the 
threshold value for accepting a connection) making 
Recall and Precision null.  
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Avg. pairwise mutual information 
using Hem and Rocke models

0

0,04

0,08

0,12

0,16

0,2

0 0,2 0,4 0,6 0,8 1
Array 
Noise

pI
Hem Model

Rocke Model

 
Fig. 3. Network pI, average of 100 independent 
experiments starting from the same initial state, as 
the array noise varies, for Hem and Rocke noise 
models.  
 
   The results in Fig. 3 show why due to high 
correlations between all genes’ protein levels in the 
network, a high threshold must be used, otherwise 
too many non-existing connections would be 
incorrectly inferred. We found the best threshold to 
be 0.36, leading with no noise, to a Recall of 0.2 and 
Precision of 0.3. When noise was introduced, using 
either the Hem or Rocke noise models, not a single 
connection was inferred (above 0.2 NSR). 
Importantly, no false positives appeared. 
   It is visible that the pI between genes drops in the 
Hem model, faster for small values of noise, than in 
the Rocke model. However, importantly, for more 
than 40% noise ratio, both noise models caused the 
signals to become completely uncorrelated. 
   A higher sampling rate did not improve the 
inference capability (data not shown), since most of 
the connected genes are as highly correlated as the 
non-connected ones, after a very short transient. 
Removing FPs due to higher sampling frequency 
also resulted in not inferring TPs. 
 
 
4 Conclusion  
The combined use of a realistic model of GRNs and 
microarray noise allows efficient evaluation of 
inference algorithms and provides clues towards 
developing inference and noise reduction methods, 
otherwise not possible, since in real experiments 
noise free signals are so far unattainable and the 
underlying network structure is unknown. This work 
is a first look at the ability of a known inference 

method to infer realistic models of GRNs, affected 
by noise with realistic characteristics.  
   Inference of the GRN structure from the dynamics 
observed in microarrays, might be crucial, for 
example in the development differentiation therapy 
to the treatment of cancer, as understanding what 
changes as the cell progresses from normal to 
cancerous is essential to provide clues on how to 
intervene. This has been attempted using other 
models of GRNs, but have not been successful yet, 
perhaps because these models are far from the real 
system dynamics. The use of more realistic models 
not only demonstrates the necessity of further study, 
but also may allow for the development of new 
inference methods using previously unaccounted 
features of GRN dynamics, such as asynchrony and 
gene expression level quantization.  
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