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Abstract - The processes of growth play an important role in different fields of science, such as biology, 
medicine, forestry, ecology, economics. Usually, in applied sciences the averaged trend kinetics is represented 
by means of logistic laws (Verhulst, Gompertz, Mitscherlich, von Bertalanffy, Richards etc.). We used a 
generalized stochastic logistic model for predicting the tree diameter distribution of forestry stands. The 
purpose of this paper was to develop a diameter probability density function for even-aged and uneven-aged 
stands using the stochastic logistic law of diameter’s growth. The parameters of stochastic logistic growth law 
were estimated by the maximum likelihood procedure using a large dataset on permanent sample plots provided 
by Lithuanian National Forest Inventory. Subsequently, we numerically simulated the probability density 
function of diameter distribution for the Verhulst, Gompertz, Mitscherlich, von Bertalanffy, Richards stochastic 
growth laws. The exact solution (transition probability density function of diameter size) of the Fokker-Planck 
equation (the partial differential equation for evolving distribution of diameter size) was derived exclusively for 
the Gompertz stochastic growth law. The comparison of the goodness of fit among probability density 
functions was made by the normal probability plot and the p-value of the Kolmogorov-Smirnov and Cramer - 
von Mises tests. To model the diameter distribution, as an illustrative experience, is used a real data set from 
repeated measurements on permanent sample plots of pine stands in Dubrava district. The results are 
implemented in the symbolic computational language MAPLE. 
 
Key-Words: - Diameter distribution, Stochastic differential equation, Density function, Fokker-Plank equation, 
Numerical solution. 
 
 
1 Introduction 
The processes of growth play an important role in 
various applied areas, such as biology, medicine, 
biochemical industry. The environment of any real 
system is in general not constant but shows random 
fluctuations. Despite this, the growth model 
historically has crystallized as the deterministic 
process [12], [22], [59], [60], [61].
 Over the last few decades interest in the effects 
of noise in dynamical systems have significantly 
increased. Previous studies demonstrate different 
ways to incorporate stochastic structure into 
deterministic models [6], [47]. Though Gaussian 
white noise is very irregular, it is useful to model the 
randomness phenomenon. Regularly, Gaussian white 
noise is used to determine the stochastic influence 
into growth kinetics.  Naturally true white noise does 
not occur in nature. When a deterministic system is 
affected by Gaussian white noise, it is often modeled 

by a stochastic differential equation. Stochastic 
models with Gaussian white noise find numerous 
applications in a variety of branches of science and 
technology. Evolution equations, driven by the white 
noise, play an important role in biology [33], 
medicine [6], [24], [32], [45], forestry [16], [49], 
economics [43], [66], [68]. The time-delayed 
stochastic differential equations demonstrate more 
complicated dynamics than ordinary differential 
equations [14], [50].  
 In general, stochastic processes can be 
characterized by means of transition probability 
density. Unfortunately, stochastic differential 
equations for which analytical results are known are 
very scarce. The main part of this paper is concerned 
with applications of the stochastic differential 
equations to the modeling of diameter growth and 
distribution of forest stands.    
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 The kinetics of the stands under investigation 
plays an important role observing the processes in 
forestry.  The processes of growth of forestry stands 
are usually described by means of an ordinary 
differential equation [11], [18], [19], [28], [37], [51], 
[70]. Conventionally, the mean trend kinetics is 
expressible by means of one of the types of logistic 
forms e.i. Verhulst, Gompertz, Mitscherlich,  von 
Bertalanffy, Richards or their mixture [21], [46], 
[63], [64]. 
 Diameter dynamics is affected by many 
processes and varies among stands [5], [53], [58]. 
Stochastic growth models allow us to reduce the 
unexplained variability of simulated growth variable 
and to implement the randomness phenomenon, 
which makes a stochastic influence on any process 
in practical applications. There are two types of 
approaches for this purpose [34]. The first approach 
is based on ‘environment’ stochasticity, introducing 
a diffusion term in the ordinary differential equation 
[9], [16]-[18], [49], [66]. The second approach is 
based on ‘demographic’ stochasticity in which the 
population size X  is a random variable [2], [4], 
[13] [34]. In this paper we follow the first approach. 
If the diffusion coefficient is independent of state 
variable, the noise is called additive, otherwise it is 
multiplicative. The first studies within stochastic 
logistic growth model, where the fluctuations of 
growth dynamics is modeled by the additive (noise 
amplitude) random perturbations have been paper 
by Garcia [16] and both additive and multiplicative 
(state dependent) random perturbations by 
Willassen [66].  
 In the last 20 years the studies of forest 
management have relied on the discrete and 
continuous time stochastic growth models [1], [8]-
[9], [43], [66], [68], [71]-[72]. Studies have 
predominantly focused on the impact of stochastic 
forest stand value and prices on the rotation age. 
 The main purpose of our study is to develop the 
age or the height dependent probability density 
function on diameter size using measurements of 
tree variables such as age, height, diameter. This 
paper not only provides useful stochastic models for 
the diameter growth modeling, but shows that it is 
possible to relate the diameter growth models and 
the diameter distribution models. The distributions 
of diameter size in stands describe forest structure 
and can be used for the assessment of stand volume 
and biomass [7], forest biodiversity and density 
management [39]. 

 In even-aged stands various distribution 
functions, such as negative exponential, Pearson, 
gamma, lognormal, beta, Weibull, Johnson, Gram-

Charlier, have been used in describing the diameter 
distributions [7], [23], [31], [35], [38], [40]-[42], 
[56], [65]. In uneven-aged stands have been used 
bivariate distributions and density mixtures [3], 
[27], [29]-[30], [49], [55], [62], [69], [73]. Our 
method combines the parameter prediction and 
parameter recovery approaches [35], [39].  

 In practical applications it has the advantage that 
the same family of distribution functions can be used 
throughout the whole life of stands’ development 
and the parameters of growth model are related to 
stand-level characteristics such as dominant height, 
basal area, site index, stand density. In this paper the 
diameter distribution is analyzed as a mixture of 
distributions of trees belonging to various stages of 
stand development. 

 This article is designed to give readers a 
comprehensive and practical method to the 
numerical simulation of transition probability 
density functions, mean and variance trajectories of 
five stochastic logistic growth laws with a minimum 
of technical detail.  Next, we have discussed the 
connection between stochastic logistic growth laws 
and certain time-dependent partial differential 
equations (Fokker-Planck equations).  

 

 

2 Materials and Methods 
 

 

2.1 Data  
The diameter analysis is biased on experiments in 
Pine stands at Dubrava district in Lithuania. The 
data were provided by the Lithuanian National 
Forest Inventory, which consisted of a systematic 
sample plots distributed on a square grid of 5 km, 
with a 5 year remeasurement interval. The sample 
method used circular plots of fixed radius with the 
area 500m2 [26].  The data analyzed were collected 
during 1976. During this time these stands have 
been remeasured 5 times on stand variables: age, 
number of trees per hectare, breast height diameter, 
trees position co-ordinates, age and height. The 
measurements have been conducted in 34 
permanent treatment plots and the initial planting 
densities are unknown. The age of stands ranges 
from 12 to 103 years. The mean of diameter at 
breast height varies from 2.2 to 51.5 cm. 
Approximately 30% of sample trees in all plots are 
randomly selected for the height measurement. The 
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observed data of study plots are presented in Figure 
1. 

 

 

2.2 Methods 
In the present paper we study the dynamic behavior 
of tree diameter (diameter at breast height) and its 
relationship with diameter distribution law. The 
deterministic logistic model of tree diameter growth 
expressing the trajectory  of the process 
depending on time  (or other variable, 

( )tx
t ν , such as 

the height in meters) in its general form can be 
expressed by means of the ordinary differential 
equation [61] 

( ) ( )( ) ( )
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tdx 1 , (1) 

( ) 00 xtx = , , [ ]Ttt ,0∈
where r , K , α , β  are real numbers. The 
instantaneous diameter x  grows, in the absence of 
any restraints, exponentially fast in time t   with 
growth rate per individual equal to r . The actual 
evolution of the diameter is cut back by the 

saturation including term
( )

⎟
⎟
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⎜
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K  is called the carrying capacity of the 
environment and commonly represents the 
maximum diameter that can be supported by the 
resources of the environment. It is obvious that 
when the time approaches infinity, the trajectory 

 satisfying equation (1) approaches the carrying 
capacity (saturation level) 
( )tx

K , that is, ( ) Ktx
t

=
∞→

lim . 

The equilibrium solution  can be obtained by 
setting . Hence, the single positive root is 

. Some cases of the generalized logistic 

growth model (1) and their corresponding 
trajectories are presented in Table 1. The 
trajectories 

*x
0=′x

Kx =*

( )tx  of these laws depend exclusively 
on time  and parameters t r , K , β . It should be 
noted, that the deterministic growth laws expressed 
by (1) cause high variation which cannot be 
explained by the model itself. 
 In this paper a generalized stochastic logistic 
diameter growth model is represented by an 
ordinary stochastic differential equation with both 
the additive and multiplicative noises in the 
following form 
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1)( 0 σ
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[ ]Ttt ,0∈ ,  
where ( )tX  is the tree breast height diameter at the 
age t (or other variable, ν , such as the height in 
meters), σ  represents the effect of the noise on the 
dynamics of diameter, is a scalar Brownian 
motion, which is a random process whose 
increments are independent and normally 
distributed with zero mean and with variance equal 
to the length of the time interval over which the 
increment take place, x

( )tW

0 is not random. 
 Here we have assumed the Ito interpretation of 
stochastic differential equation which does not 
conserve the ordinary rule of calculus. 
 The exact dynamics of the diffusion growth 
process (2) are governed by its transition 
probability density. 

 

 
a) 
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b) 

Fig. 1. Plot of the diameter including data from pine forests in Lithuania: a) the age dependent, b) the height 
dependent. 
 
Table1. Trajectories of deterministic logistic growth laws. 

Parameters 
Law 
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Trajectory 
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Unfortunately, in all except a Gompertz case the 
transition probability density are not analytically 
available. 
 The application of the stochastic model (2) 
requires to estimate the parameters r , K , β ,σ  

of the drift term ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
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β
α

K
vXvrX )(1)(  and the 

diffusion term ( ))(vXσ  ( ( ) σσ =)(vX  for the 
additive noise, ( ) )()( vXvX σσ =  for the  
 

 
multiplicative noise). In order to obtain the 
evaluation of the above-mentioned parameters of 
the stochastic differential equation (2) using an 
observed data set it is possible to apply the 
maximum likelihood or  norm procedures [48], 
[54]. An excellent review of inference for discretely 
observed diffusion processes is given in [57]. The 
approach that is used in this paper follows the 
maximum likelihood procedure, which exploits a 
local linearization methodology for diffusion 
processes. If parameters are estimated, we can 
further obtain the probability density function 

1L

( )vxp ,  of diameter distribution, which depends on 
the stand-level characteristics,ν , such as age, 
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height, basal area, stand density, site index of stands. 
Suppose, that 
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where v  can be the age t  or the height  of tree or 
other predictor variable (basal area, stand density, 
site index). The probability density function 

h

( )vxp ,  
satisfies the Fokker-Plank partial differential 
equation (also known as the Chapman-Kolmogorov 
equation) [20] 
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This equation models the evolution of physical an 
biological systems, where a main process is 
complicated by noise in the system. 
 The exact steady-state solutions  of equation 
(3) with multiplicative noise are represented in Table 
2. These steady-state probability density functions 
have explicit parameters denominating the diameter 
intrinsic growth, the diameter carrying capacity and 
the intensity of noise. A simple approximation of the 
steady-state density function for the Verhulst type 
stochastic population growth model was discussed by 
Matis [34]. 

( )xp

 The practical application of the stochastic 
diameter growth models (2) needs to derive the first 
two moments, namely, the mean  and the variance 

 of diameter size. Ordinary differential equations 

for the first two moments (
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Plank equation (3) or directly from the stochastic 
differential equation (2). Thus multiplying equation 
(3) with x  and integrating it with respect to x , we  
get the evolution of mean ))(( νν XEm = . 
Likewise, multiplying equation (3) with  and 
integrating it with respect to 
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equations describe the behavior over predictor 
variable, ν , the mean and variance of diameter size 
and, for the multiplicative noise, take the following 
form 
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for the stochastic Verhulst growth law, 
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for the stochastic Gompertz growth law, 

 
Table 2.  Steady-state solutions of the Fokker-Plank equation (3). 
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for the stochastic Mitscherlich growth law, 
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for the stochastic von Bertalanffy growth law and 
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for the stochastic Richards growth law.  
 In the case of Gompertz law, the exact solution of 
the Fokker-Plank equation (3) has the following form 
[49] 
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This probability density function of tree diameter size 
depends on the predictor variable ν . The predictor 
variable ν  can be any stand-level characteristics such as 
age, height, basal area, stand density, site index. 
For all the above-mentioned stochastic logistic growth 
forms (2) many numerical methods for the solution of 
equation (3) can be used [44]. The numerical solution to 
the initial-boundary value problem (3) is computed 
using the Crank-Nicolson finite difference scheme, 
whose discretization error is of second order in both 
space and time. This scheme ensures numerical stability 
of the results. The numerical approximation is defined 
by 
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for the multiplicative noise, and 
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for the additive noise

N
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The initial and boundary conditions are as follows 
( ) [ ]sup;0,0,0 vvvp ∈= , 
( ) [ ]supsup ;0,0, vvvxp ∈= , (11) 
( ) ( )00,0 δ=p , 
( )⋅δ  is a Dirac function,  are the numbers of steps. NM ,

 As was above-mentioned the objective of our study is 
to develop the diameter distribution at any point in the 
age - height - basal area - stand density - site index space. 
So, the probability density function of tree diameter can 
be described by means of the mixture  

    (12) ( ) ii

k

i
ik xpqxp νννν ,,...,,,

1
21 ∑

=

= ( )

1
1

=∑
=

k

j
jq , 

where k is the number of stand-level characteristics (age, 
height, basal area, stand density, site index), qi 

ki ,...,2,1= denote the weight of ith stand-level 
characteristic’s, ),( ii xp ν   is the ki ,...,2,1= iν - 
dependent transition probability density function of 
diameter. In the sequel we address to two stand level 
characteristics age and height. The stand-level 
characteristics age and height can be subdivided into the 
some age and height classes. So, the set of overlapping 
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components of diameter distribution can be compounded 
by the joint distribution of the following form 
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where  is the  number of groups according to the age 
classes,  is the  number of groups according to the 
height classes, 

1m

2m

jλ  is the part of the stand with j -age 
class trees,  is the part of the stand with jw j -height 
class trees. 
 For the evaluation of our derived mixtures (12), (13) 
three goodness of fit tests were computed as follows: 
1. The Shapiro and Francia statistic to quantify the 
straightness of a normal probability plot is defined by 
the squared sample correlation between the pairs of 
points ,  [52]. The pseudo-residuals, 

, corresponding to the observation  are 
defined in the following form  

( )ii qr , ni ,...,2,1=

ir ( iii htd ,, )
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where:  denotes the distribution function of the 
standard normal distribution, 

Φ
( )jjj htd ,,  is the j-th 

observation of diameter, age and height. The ordered 
pseudo-residuals, , are plotted against the 
plotting positions 

)(ir ni ,...,2,1=

⎟
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⎞

⎜
⎝
⎛

+
Φ= −

1
1

n
iqi ,  . ni ,...,2,1=

 The key assumptions are that the observations X1, 
X2, …, Xn are independent and have the distribution 
function Fi(x) (note, that Xi

 are not assumed to be 
identically distributed). 
2. The Kolmogorov-Smirnov supremum class statistic 
(KS) is defined by Kolmogorov [25] 
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where: 

  , ∫=
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jjj dxhtxpu
0

),,( , nj ,...,2,1=

)( ju  are ordered values. 
3. Cramer - von Mises quadratic class statistic (CM) is 
defined by Cramer [10] 
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. 

 The normal probability plot of pseudo-residuals 
enables us to evaluate visually the fit of diameter 
distribution to the observations. Small values of the test 
statistics KS, CM and large p-values indicate a better fit. 
 
 
3 Results 
We have demonstrated new theoretical results on the 
diameter distribution problem in the presence of both 
additive and multiplicative noises. We now illustrate 
these results by characterizing the underlying diameter 
dynamics as a stochastic process with the multiplicative 
noise. For model estimation were used observations of 
1581 pines. These observations are represented in Figure 
1. The estimations of the parameters r , K , β , σ  for 
the all used stochastic logistic growth laws were 
calculated using the maximum likelihood procedure 
[48]. These results are represented in Table 3. A 
comparative analysis for the performance of the 
stochastic logistic growth laws (2) for the diameter 
growth modeling was carried out on the basis of the 
coefficient of determination. A confidence interval for 
the coefficient of determination, R2, was calculated using 
a Monte Carlo method. In order to simulate the 
stochastic logistic growth laws (2) we used the Ito 
stochastic calculus and the second-order Milshtein 
difference scheme [36] defined in the following form 

( )( )Δ−Δ
∂
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where: Δ  is the time step size, 00 =W , 

jjj YWW +=Δ −1 , Lj ,...,2,1= ,  is an independent 

random variable of the form 
jY

( )1,0NΔ ,  is the number 
of steps. 

L

 This procedure was repeated 100 times to obtain a 
set of replicates of averaged numerical approximations 
(average of 1000 simulations of equation (2) with an 
integration step-size year or 1=Δ 2.0=Δ meters). 
Finally, the confidence interval is defined as percentiles 

of the simulated distribution function  of the 
coefficient of determination. A Monte Carlo estimation 

of the distribution function  of R

)(rF
∧

)(rF
∧

2 is defined by 

  ,100/)(#)( 2 rRrF i ≤=
∧

where: # means “the number of”. The %100γ  confidence 
interval for R2 is given by 
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The results of confidence intervals of the coefficient of 
determination are presented in Table 3. 

 On the other side, the mean trajectory of diameter 
growth and its standard deviation can be also calculated 
from the set of equations (4)-(8). The numerical 
solutions of the set of equations (4)-(8) are shown in 
Figure 2. The fit of the mean ( ))(( νν XEm = ) 
calculated by the set of equations (4)-(8) to data is 
presented in Table 4. As was expected, both methods 
the second-order Milshtein difference scheme and the 
set of equations (4)-(8) for the mean diameter growth 
modeling have about the same explanatory power, 
because the fitting measures are very close (see, Tables 
3, 4). In both cases the mean ))(( νν XEm =  and 

standard deviation ))(( νν XVs =  of diameter evolve 
to steady-state mean and standard deviation (see, Tables 
3, 4). The steady-state mean and standard deviation of 
diameter size were calculated using the steady-state 
probability density functions (see, Table 2). The values 
of steady-state mean and standard deviation are 
presented in Table 4. The steady-state densities (see, 
Table 2) of the above-mentioned stochastic logistic 
growth laws are also represented in Figure 3 (non-
continuous curve). All five stochastic logistic growth 
laws have similar types of steady-state probability 
density functions following bell-shaped and left-
truncated (Figure 3). The numerical approximations of 
probability density functions of diameter size were 
calculated by equations (10)-(11). For all five stochastic 
logistic diameter growth laws the numerical 
approximations of equation (3) are presented in Figure 
3. 

 
Table 3. Estimations of parameters. 

Parameters 
Coefficient of 

determination R2 95.0=γ   Law Case 
r K β  σ  2

lowerR  2
meanR  2

upperR  
Age 0.1133 32.8650  0.1354 0.6604 0.6887 0.7078 Verhulst Height 0.3637 33.8910  0.2230 0.7312 0.7613 0.7826 
Age 0.0647 33.6718  0.1350 0.6711 0.7045 0.7281 Gompertz Height 0.2087 30.9075  0.1790 0.7359 0.7602 0.7942 
Age 0.9313 42.4589  0.1350 0.6643 0.7272 0.7614 Mitscherlich Height 1.9178 70.3583  0.1468 0.7523 0.8046 0.8435 
Age 0.3866 40.2436  0.1339 0.7057 0.7482 0.7804 Bertalanffy Height 1.3937 32.2951  0.1580 0.7575 0.7834 0.8043 
Age 0.1033 32.9119 1.1966 0.1371 0.6720 0.6961 0.7313 Richards Height 1.0054 31.0288 0.2509 0.1908 0.7186 0.7499 0.7718 

 

Table 4. Steady-state mean, standard deviation and determination coefficient for the fit of the mean  
))(( νν XEm = . 

 Law Case Mean Standard 
deviation 

Coefficient of 
determination 

Age 30.2595 8.9520 0.6451 Verhulst Height 31.5740 8.5531 0.7368 
Age 33.6091 12.7155 0.7136 Gompertz Height 30.9072 8.6450 0.7574 
Age 35.0342 18.4557 0.7517 Mitscherlich Height 43.7879 20.0409 0.8170 
Age 35.6389 16.5739 0,7313 Bertalanffy Height 31.3891 9.3925 0.7874 
Age 30.1447 8.7247 0.6302 Richards Height 29.6503 8.1202 0.7406 
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Fig. 2. Numerical solutions of the set of equations (4)-(8): mean (continuous curve), mean  diameter’s 
standard deviation (non-continuous curve). 

±

 
 

  

  

WSEAS TRANSACTIONS on BIOLOGY and BIOMEDICINE Petras Rupsys

ISSN: 1109-9518
181

Issue 11, Volume 4, November 2007



 

  

 

   

Fig.  3. Numerical approximations of diameter’s probability density functions (on the left at the age 20, 40, 60, 
80 yr; on the right at the height of 5, 15, 25, 35 m) and steady-state solution (non-continuous curve). 
 

 These approximations have different shapes at 
various stages of stand-level development (age, 
height). For the modeling of the age-dependent 
probability density function  of diameter 
distribution, the von Bertalanffy stochastic growth 
law was found to be the most suitable predictor 
(Table 3). In the height-dependent probability density 
function  of diameter distribution, the 

Mitscherlich growth law was more suited predictor. 
These two probability density functions are 
presented in Figure 4. 

( txp ,1 )

)( hxp ,2
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Fig. 4. Numerical approximations of diameter 
probability density function.  
 
 To further data analysis 11 equal (10 years) age 
intervals and 9 (4 meters) height intervals were set. 
Consequently, we have 111 =m , . According 
to 1581 tree observation data the weight coefficients 

92 =m

11,...,2,1, =iiλ ,  were calculated and 
presented in Table 5. In this table fixed mean values 
of age and height classes, which are used for 
calculation of probability density functions, were 
presented as well. In Figure 5 density mixtures (13) 
depending on age and height are presented as well as 
joint mixture depending on both age and height (the 
age-dependent von Bertalanffy density and the 
height-dependent Mitscherlich density). It is worth 
mentioning that the difference between these 

diameter probability density function mixtures is 
very slight.  

9,...,2,1, =jwj

 The normal probability plots of the 
corresponding pseudo-residuals, using the estimates 
of parameter given in Table 3 and the density 
mixture (12), are shown in Figure 6. The plots in 
Figure 6 show that the density mixture (12) fits the 
fitting data set (see, Fig. 1) comparatively well for 
the all used diameter growth laws. The simulated 
1% confidence intervals (see, Fig. 6) and calculated 
the Shapiro-Francia statistics 0.9938 (for 
theVerhulst law), 0.9946 (for the Gompertz law), 
0.9929 (for the Mitscherlich law), 0.9855 (for the 
von Berlalanffy law), 0.9901 (for the Richards law) 
lead us to a conclusion that the data are compatible 
with the density mixture (12). It should be 
remembered that the fitting data set was sufficiently 
large, and may create also other problems, namely, 
a statistical test may failed due too large sample. 
 For evaluating density mixture (12) we used a 
validation data set, which consists of 61 
measurements. The normal probability plots for the 
validation data set, with the parameter estimates 
given in Table 3, are shown in Figure 7. The 
summaries of the Shapiro-Francia, Kolmogorov-
Smirnov and Cramer - von Mises goodness of fit 
statistics are presented in Table 6. Hence, all 
estimated density mixtures (12) of diameter 
distribution models (2) didn’t differ from the 
empirical distribution by the Shapiro-Francia 
statistic at 5% confidence level. The normal 
probability plots in Figure 7 show that the all 
estimated density mixtures (12) of diameter 
distribution fit the validation data set very well at 
5% confidence level. Next, the estimated density 
mixtures (12) of the Richards and Verhulst type’s 
were likely exemplars by the Kolmogorov-Smirnov 
test at 5% confidence level (Table 6). Ultimately, 
the Richards and Verhulst estimated density 
mixtures (12) fitted the validation data set by the 
Cramer - von Mises test at 1% confidence level.  
.

 
Table 5. Weights and mean values of the density mixture (13). 

Class Weight and 
mean value 1 2 3 4 5 6 7 8 9 10 

iλ  0..4358 0.0556 0.0859 0.0872 0.0960 0.1106 0.0720 0.0404 0.0114 0.0051 
it  16 26 34 44 54 64 74 84 94 102 

iw  0.0764 0.3619 0.0499 0.0948 0.1074 0.1276 0.1295 0.0474 0.0051  
ih  3 5 10 14 18 22 26 29 33  
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Fig. 5. Mixture (12) of the probability density functions. 
 

  Obviously, it is also possible to improve the fit 
of such age and height dependent estimated mixture 
(12) of probability density functions by using a 

mixture of three or more stand-level characteristics 
(basal-area, stand density, site index) instead of just 
two.
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Fig. 6. Normal probability plots of pseudo-residuals for all used diameter growth laws and fitting data set. 
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Fig. 7. Normal probability plots of pseudo-residuals for all used diameter growth laws and validation data set. 
 
Table 6. Goodness of fit statistics calculated to the validation data set. 

Statistics 

Law Shapiro-Francia 

(p-value) 

Kolmogorov-Smirnov 

(p-value) 

Cramer-von Mises 

(p-value) 

Verhulst 
0.9760 

(0.2351) 

0.1854 

(0.2451) 

0.6842 

(0.0140) 

Gompertz 
0.9801 

(0.339) 

0.3861 

(0.0002) 

3.0375 

(<0.0001) 

Mitscherlich 
0.9849 

(0.550) 

0.3343 

(0.0022) 

2.2084 

(<0.0001) 

Bertalanffy 
0.9892 

(0.788) 

0.4430 

(<0.0001) 

4.1419 

(<0.0001) 

Richards 
0.9730 

(0.157) 

0.1749 

(0.3083) 

0.5510 

(0.0297) 

 
 
4 Discussion 
Although our interest in this article was to 
introduce methodology rather than analysis models, 
we make same remarks on the distinction between 
the stochastic logistic growth model (2) and its 
deterministic counterpart, defined by (1). 
 As we can see from equations (4)-(8), the mean 
diameter size is extremely sensitive with respect to 
the form and size of the coefficient of volatility σ  
in the case of the Verhulst, Gompertz, von 
Bertalanffy and Richards ( 0>β ) laws. It is clear 
that the deterministic approximations of these four 
growth laws overestimate the true mean diameter 
size in the presence of stochastic perturbations.  
 For the Mitscherlich (linear) growth law, the 
volatility σ  does not affect the mean diameter size. 

The comparative dynamic analysis of equations (4)-
(8) shows that the mean of trajectory of diameter 
decreases when the intensity of noise σ  increases 
(Verhulst, Gompertz, von Bertalanffy and Richards 
laws), but the variance of diameter increases for the 
all used laws.  
 An analysis of Table 3 contrasts the performance 
of the height dependent stochastic logistic diameter 
growth laws against the age dependent stochastic 
logistic diameter growth laws (see, Table 3). The 
results convincingly support of the use of the 
diameter and height growth equations. This is 
consistent with the results obtained in [53], [58], [67]. 
From the results given in Table 3 it is evident that 
von Bertalanffy’s law is best applied when simulating 
the stand diameter reliance on age, and Mitscherlich’s 
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law is most suitable for simulating the stand 
diameter reliance on height. It should be noted that 
the coefficient of determination of the analyzed 
models (2) doesn’t fix essential differences in 
suitability. 
 Diameter-height-age growth equations provide 
an adequate description of stands growth. Note that 
the mean of diameter’s trajectory monotonically 
evolves toward the steady-state value for the all 
used stochastic logistic growth laws (see, Table 4 
and Figure 2). But the path by which the variance 
of diameter’s trajectory evolves to the steady-state 
value not always increasing for the Verhulst, 
Gompertz, von Bertalanffy and Richards laws. 
Depending on the initial conditions, the variance of 
diameter’s trajectory could quickly increase above 
its steady-state value, reach its maximum at a value 
of predictor variable when the rate of growth is 
near its maximum, and then decrease to the steady–
state. 
 Next we discuss the numerical approximations 
of the diameter probability density functions 

 (at the age 20, 40, 60, 80 years),  
(at the height of 5, 15, 25, 35 metres) and the 
steady-state probability density functions , 

. The probability density functions , 
 have different shapes at various stages of 

stand-level development (age, height). All five 
numerical approximations of diameter probability 
density functions  (at the age 20, 40, 60, 80 
years),  (at the height of 5, 15, 25, 35 
metres) and the steady-state probability density 
functions ,  have similar type 
following bell-shaped and left-truncated (Figure 3). 
The von Bertalanffy stochastic growth law was 
found to be the most suitable predictor for the 
modeling of age-dependent probability density 
function  (Table 3). The Mitscherlich 
growth law was more suited in the modeling of the 
height-dependent probability density function 

 of diameter distribution. As we can see 
from Figure 3 the multi-modality of diameter 
distribution could be revealed using the mixtures 
(12), (13) of probability density functions. 

),(1 txp ),(2 hxp

)(1 xp
)(2 xp ),(1 txp
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5 Conclusions 
In this paper an original probability density 
functions of tree diameter distribution are 
presented. The stochastic population model that we 
have considered is one of the several possible 
stochastic versions of the corresponding 

deterministic logistic population growth in a random 
fluctuating environment characterized by white noise. 
Obviously no model can accurately describe every 
biological phenomenon that foresters encounter in 
their practice and the same is true for our derived 
probability density functions of diameter size. It is an 
important problem to find correct criteria to decide is 
a good given stochastic model? Many probability 
density functions have been adjusted to deal with 
diameter distribution and new ones are continuously 
being proposed. 

 The purpose of this paper was to introduce a new 
method for the fitting of diameter distribution and 
show how this novelty can be implemented. For a 
realistic representation of diameter growth, we used 
linear and nonlinear drift functions and noise in the 
additive and multiplicative forms. The results 
obtained here have shown that it is possible to relate 
nonlinear stochastic diameter growth law and 
diameter distribution law. We investigated this 
relationship in the case of diameter growth dynamics 
expressed by the Verhulst, Gompertz, Mitscherlich, 
von Bertalanffy and Richards growth laws. The 
trajectory of diameter is under the influence of the 
shape of trend and the stochastic variation in the 
observed data set, as the parameters of diameter 
growth law were estimated by the method of 
maximum likelihood procedure. Two types of 
probability density functions of diameter size were 
obtained: steady-state and dependent on stand level 
characteristic. The steady-state probability density 
functions were presented in the exact form (Table 2) 
and age-dependent or height-dependent probability 
density functions were simulated numerically. The 
results of computer simulation showed that the age-
dependent, height-dependent probability density 
functions and their mixture can be realized easily.  
 Our derived entire stand-level dependent 
diameter distribution is naturally more precise and 
needful then diameter distribution based on mean 
value of stand-level characteristic. Particularly, the 
stand-level dependent diameter distribution comes in 
useful modeling the problems of forest management. 
As an instance of the competence of the diameter 
distribution at various stages of stand development is 
its utility in: (1) designing thinning operations, (2) 
estimating the number of trees in each discrete 
diameter class at any point during stand development, 
(3) evaluating the economical impact of alternative 
thinning regimes. The advantage of these probability 
density functions obtained theoretically from the 
stochastic logistic diameter growth laws can be 
validated comparing with commonly used diameter 
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distributions such as  Weibull, negative exponential 
an so on. 
 While the presented probability density 
functions of diameter distribution capture the 
essential random behavior of diameter growth and 
give results that correspond to the data, they suffer 
from the fact that they are computationally 
expensive. 
 A theoretical prerequisite of our presented 
approach was the stochastic logistic diameter 
growth law. Thus, the proposed method could be 
continued modifying the drift and diffusion 
functions of the stochastic logistic diameter growth 
process (2). In order to propose more precise 
stochastic growth laws the stochastic delay 
differential equations could be used too [14], [50].  
 Our proposed method provides to derive the 
probability density function of diameter 
distribution which depends on a select part of the 
stand-level characteristics. 
 Finally, it is interesting to consider an 
alternative information theoretic approach of 
modeling and assessing of dynamics of stands 
diameter. The information theoretical measures 
play a crucial theoretical role in physics of 
macroscopic equilibrium systems. The Shannon’s 
entropy and Fisher’s information represent 
promising tools to illustrate the behavior of 
multidimensional systems in biology, ecology. 
 Lastly, it is our hope that this modeling effort 
will be a spring-board to practical studies that 
further improve the prediction accuracy of the 
model. 
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