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The first part of our lecture will The first part of our lecture will 
focus on the application of Genetic focus on the application of Genetic 
Algorithms with NelderAlgorithms with Nelder--Mead Mead 
Optimization  for the Finite Optimization  for the Finite 
Elements Methods applied on NonElements Methods applied on Non--
linear Problems.linear Problems.

Some examples will be given Some examples will be given 
regarding problems in Fluid regarding problems in Fluid 
MechanicsMechanics



ABSTRACT: The “p” Laplacian operator, or the “p” ABSTRACT: The “p” Laplacian operator, or the “p” 

Laplace operator, is a quasilinear elliptic partial Laplace operator, is a quasilinear elliptic partial 

differential operator of second order. The “p” differential operator of second order. The “p” 

Laplacian equation is a generalization of the Partial Laplacian equation is a generalization of the Partial 

Differential Equation of Laplace Equation and in this Differential Equation of Laplace Equation and in this 
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lecture, we present a way of its solution using Finite lecture, we present a way of its solution using Finite 

Elements. Our method of Finite Elements leads to an Elements. Our method of Finite Elements leads to an 

Optimization Problem that can be solved  by an Optimization Problem that can be solved  by an 

appropriate combination of Genetic Algorithms and appropriate combination of Genetic Algorithms and 

NelderNelder--Mead . Our method is illustrated by a Mead . Our method is illustrated by a 

numerical example. Other methods for the solution of numerical example. Other methods for the solution of 

other equations that contain the “p” Laplacian other equations that contain the “p” Laplacian 

operator are also discussed.operator are also discussed.



Many nonlinear problems in physics and mechanics are Many nonlinear problems in physics and mechanics are 

formulated in equations that contain the “p” Laplacian, formulated in equations that contain the “p” Laplacian, 

where the pwhere the p--Laplacian operator is defined as follows. See Laplacian operator is defined as follows. See 

the next Equation:the next Equation:

In a recent paper, Bognar presented a very interesting numerical and In a recent paper, Bognar presented a very interesting numerical and 
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In a recent paper, Bognar presented a very interesting numerical and In a recent paper, Bognar presented a very interesting numerical and 

analytic investigation of problems of fluid mechanics that are analytic investigation of problems of fluid mechanics that are 

described with PDEs containing the pdescribed with PDEs containing the p--Laplacian operator. Previous Laplacian operator. Previous 

publications  include reactionpublications  include reaction--diffusion problems, nondiffusion problems, non--Newtonian Newtonian 

fluid flows , fluid flows through certain types of porous media , the fluid flows , fluid flows through certain types of porous media , the 

LaneLane--Emden equations for equilibrium configurations of spherically Emden equations for equilibrium configurations of spherically 

symmetric gaseous stellar objects, singular solutions for the Emdensymmetric gaseous stellar objects, singular solutions for the Emden--

Fowler equation  and the EinsteinFowler equation  and the Einstein--YangYang--Mills equation, the Mills equation, the 

existence and nonexistence of black hole solutions, nonlinear existence and nonexistence of black hole solutions, nonlinear 

elasticity, glaciology and petroleum extraction elasticity, glaciology and petroleum extraction 



It is clear that for It is clear that for 

we havewe have

The study of the “p”The study of the “p”-- Laplacian equation Laplacian equation 

started more than thirty years ago.  In recent started more than thirty years ago.  In recent 

years, rapid development has been achieved for years, rapid development has been achieved for 

2=p

.∆=∆ p

years, rapid development has been achieved for years, rapid development has been achieved for 

the study of equation involving operator Delta the study of equation involving operator Delta 

“P” and a vast literature has appeared on the “P” and a vast literature has appeared on the 

theory of quasilinear differential equations.). theory of quasilinear differential equations.). 

Recently Strikwerda summarized many Finite Recently Strikwerda summarized many Finite 

Difference Schemes for Partial Differential Difference Schemes for Partial Differential 

EquationsEquations



Also, Bognar had studied the equation of turbulent Also, Bognar had studied the equation of turbulent 

filtration in porous media with the following filtration in porous media with the following 

equationequation

(1)(1)

Where the constants satisfy these inequalitiesWhere the constants satisfy these inequalities
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If we scale out the constants in the previous If we scale out the constants in the previous 

equation, we derive the Equation (2)equation, we derive the Equation (2)
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Note that a particular case n=1 of  (2) is the nonNote that a particular case n=1 of  (2) is the non--

Newtonian filtration equationNewtonian filtration equation

(3)(3)

which is also called evolution pwhich is also called evolution p--Laplacian equation.Laplacian equation.
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The case that p > 1 + 1/n  is called the slow diffusion aThe case that p > 1 + 1/n  is called the slow diffusion a

and the case p < 1 + 1/n is called fast diffusion.and the case p < 1 + 1/n is called fast diffusion.



Also  Bognar studied the equationAlso  Bognar studied the equation

Where p>1,  q>0 and Where p>1,  q>0 and λλ is some constant in which the is some constant in which the 
nonlinear termnonlinear term

,div
2 qp

uuu
t

u
λ+





 ∇∇=

∂
∂ −

quλ
describes the nonlinear source in the diffusion process, describes the nonlinear source in the diffusion process, 
called "heat source" if called "heat source" if λλ > 0 > 0 while it is called and "cold while it is called and "cold 
source" ifsource" if λλ < 0< 0

Just as the Newtonian equation the appearance of Just as the Newtonian equation the appearance of 
nonlinear sources will exert a great influence to the nonlinear sources will exert a great influence to the 
properties of solutions and the influence of "heat source" properties of solutions and the influence of "heat source" 
and "cold source" is completely different.and "cold source" is completely different.



In another Study, an attempt is made by the author to In another Study, an attempt is made by the author to 
solve the equation (2), (1) and (4) using various numerical solve the equation (2), (1) and (4) using various numerical 
schemes. schemes. 

In this lecture, we will solve the boundary value problem In this lecture, we will solve the boundary value problem 

where  where  u  u  is known on the boundary of our domain is known on the boundary of our domain using using 
Variational Techniques of Finite elements.Variational Techniques of Finite elements.
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Variational Techniques of Finite elements.Variational Techniques of Finite elements.



�� The Problem is reduced to an Optimization problem that The Problem is reduced to an Optimization problem that 
can be solved by Genetic Algorithms with Neldercan be solved by Genetic Algorithms with Nelder--Mead. Mead. 

�� An early paper of the author with the title “An early paper of the author with the title “Solving Solving 
Differential Equations via Genetic Algorithms” was Differential Equations via Genetic Algorithms” was 
presented in a conference in 1996.presented in a conference in 1996.

�� Actually, the author presented in 1996 the solution of Actually, the author presented in 1996 the solution of 
ODE and PDE using Genetic Algorithms optimization, ODE and PDE using Genetic Algorithms optimization, ODE and PDE using Genetic Algorithms optimization, ODE and PDE using Genetic Algorithms optimization, 
while the author use the same method to solve various while the author use the same method to solve various 
problems in some other publicationsproblems in some other publications



�� Main Results:Main Results:

Our main results are as followsOur main results are as follows

We start solving the boundary value problemWe start solving the boundary value problem

of the following form of the following form 

(4)(4)

where where uu is a known function on the boundary of our is a known function on the boundary of our 
domain.domain.
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As one can see, the solution of this “p”As one can see, the solution of this “p”--Laplacian equation Laplacian equation 
with Dirichlet boundary conditions in a domain with Dirichlet boundary conditions in a domain ΩΩ is the is the 
minimiser of the energy functional of the following minimiser of the energy functional of the following 
equation equation 

(5)(5)( )
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We consider that u is written as a linear combination of our 
known basis’ functions with unknown coefficients. 

So, we have the following minimization problem 
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One can select a triangular mesh and appropriate 
functions 

that have non-zero value only in the “n-th” triangle 

� These our finite elements

min ( )n
n

f dv∇ ∑∫

n n n nf a x b y c= + +



So, in a triangular mesh, So, in a triangular mesh, 

we can have we can have 

Fig.1 A triangle in a 2Fig.1 A triangle in a 2--D meshD mesh

for the nfor the n--th triangle. To avoid to write continuity conditions th triangle. To avoid to write continuity conditions 

n n n nf a x b y c= + +

for the nfor the n--th triangle. To avoid to write continuity conditions th triangle. To avoid to write continuity conditions 
on the common vertices of the triangles of the mesh, one on the common vertices of the triangles of the mesh, one 
can find that in the ncan find that in the n--th triangle of the points “s”, “q” th triangle of the points “s”, “q” 
and “r”  (see Figure 1)and “r”  (see Figure 1)

�� (7.1)(7.1)

(7.2)(7.2)

(7.3)(7.3)

Actually the Figure 1 is a triangle in our 2Actually the Figure 1 is a triangle in our 2--D  meshD  mesh

s n s n s nu a x b y c= + +

q n q n q nu a x b y c= + +

r n r n r nu a x b y c= + +



And now we have the Equations (7.1), (7.2) and (7.3)And now we have the Equations (7.1), (7.2) and (7.3)

There three equations can be solved with respect to There three equations can be solved with respect to 

as followsas follows
, ,n n na b c
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These are the equation (8.1), (8.2) and (8.3)These are the equation (8.1), (8.2) and (8.3)
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These are the Equations (8.1), (8.2) and (8.3) where “D” is These are the Equations (8.1), (8.2) and (8.3) where “D” is 
given as followsgiven as follows

1

1

1

s s

q q

r r

x y

D x y

x y

=

Note that two times D  is the algebraic area of the triangle.Note that two times D  is the algebraic area of the triangle.



So, from the minimization problem that the following So, from the minimization problem that the following 
equation describesequation describes

we find the equivalent minimization problem of the we find the equivalent minimization problem of the 
following equation following equation 

(9)(9)
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which is minimization of Us, Uq, Urwhich is minimization of Us, Uq, Ur

Note that           is the function that we find after replacing Note that           is the function that we find after replacing 
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The Equation (9) can be solved now by a variety of The Equation (9) can be solved now by a variety of 
techniques. techniques. 

�� The author uses the Method of Genetic Algorithms with The author uses the Method of Genetic Algorithms with 
the sothe so--called method of Nelder and Meade for Noncalled method of Nelder and Meade for Non--linear linear 
Problems.Problems.Problems.Problems.

�� The same optimization scheme Genetic Algorithms with The same optimization scheme Genetic Algorithms with 
NelderNelder--Meade method has recently applied by the author Meade method has recently applied by the author 
with great successwith great success



Before proceeding in the solution of the problem, some Before proceeding in the solution of the problem, some 
background on “Gbackground on “G--A” i.e. Genetic Algorithms and A” i.e. Genetic Algorithms and 
NelderNelder--Mead is necessary. Mead is necessary. 

In many papers, we have proposed a hybrid method that In many papers, we have proposed a hybrid method that 
includes  includes  

�� a) Genetic Algorithm for finding rather the neiborhood   a) Genetic Algorithm for finding rather the neiborhood   �� a) Genetic Algorithm for finding rather the neiborhood   a) Genetic Algorithm for finding rather the neiborhood   
of the global  minimum than the global minimum itself of the global  minimum than the global minimum itself 
and  and  

�� b) Nelderb) Nelder--Mead algorithm to find the exact point of the Mead algorithm to find the exact point of the 
global minimum itself.global minimum itself.



So, with this Hybrid method of Genetic Algorithm + So, with this Hybrid method of Genetic Algorithm + 
NelderNelder--Mead we combine the advantages of both Mead we combine the advantages of both 
methods, that are methods, that are 

�� A) the convergence to the global minimum via the genetic A) the convergence to the global minimum via the genetic 
algorithmalgorithm

plus plus 

�� B) the high accuracy of the NelderB) the high accuracy of the Nelder--Mead method. Mead method. 



We emphasize here thatWe emphasize here that

�� If we use only a Genetic Algorithm then we have the If we use only a Genetic Algorithm then we have the 
problem of low accuracy.problem of low accuracy.

If we use only NelderIf we use only Nelder--Mead, then we have the problem of Mead, then we have the problem of �� If we use only NelderIf we use only Nelder--Mead, then we have the problem of Mead, then we have the problem of 
the possible convergence to a local (not to the global) the possible convergence to a local (not to the global) 
minimum. minimum. 



These disadvantages areThese disadvantages are removed in the case of our removed in the case of our 
Hybrid method that combines Genetic Algorithm with Hybrid method that combines Genetic Algorithm with 
NelderNelder--Mead method. Mead method. 

�� We recall the following definitions from the Genetic We recall the following definitions from the Genetic 
Algorithms literature:                                                                Algorithms literature:                                                                



�� FitnessFitness function is the objective function we want to function is the objective function we want to 
minimize.  minimize.  

�� Population sizePopulation size specifies how many individuals there are specifies how many individuals there are 
in each generation. We can use various Fitness Scaling in each generation. We can use various Fitness Scaling 
Options (rank, proportional, top, shift linear, etc), as well Options (rank, proportional, top, shift linear, etc), as well 
as various Selection Options (like Stochastic uniform, as various Selection Options (like Stochastic uniform, 
Remainder, Uniform, Roulette, Tournament). Remainder, Uniform, Roulette, Tournament). Remainder, Uniform, Roulette, Tournament). Remainder, Uniform, Roulette, Tournament). 

Fitness Scaling Options:Fitness Scaling Options: We can use scaling functions. A We can use scaling functions. A 
Scaling function specifies the function that performs the Scaling function specifies the function that performs the 
scaling. A scaling function converts raw fitness scores scaling. A scaling function converts raw fitness scores 
returned by the fitness function to values in a range that returned by the fitness function to values in a range that 
is suitable for the selection function.is suitable for the selection function.



We have the following options: We have the following options: 

�� Rank Scaling Option:Rank Scaling Option: scales the raw scores based on the scales the raw scores based on the 
rank of each individual, rather than its score. The rank of rank of each individual, rather than its score. The rank of 
an individual is its position in the sorted scores. The rank an individual is its position in the sorted scores. The rank 
of the fittest individual is 1, the next fittest is 2 and so on. of the fittest individual is 1, the next fittest is 2 and so on. 
Rank fitness scaling removes the effect of the spread of Rank fitness scaling removes the effect of the spread of Rank fitness scaling removes the effect of the spread of Rank fitness scaling removes the effect of the spread of 
the raw scores.                                                            the raw scores.                                                            



and the options: and the options: 

�� Proportional  Scaling Option:Proportional  Scaling Option: The Proportional Scaling The Proportional Scaling 
makes the expectation proportional to the raw fitness makes the expectation proportional to the raw fitness 
score. This strategy has weaknesses when raw scores are score. This strategy has weaknesses when raw scores are 
not in a "good" range. not in a "good" range. 

�� Top Scaling Option:Top Scaling Option: The Top Scaling scales the The Top Scaling scales the 
individuals with the highest fitness values equally.individuals with the highest fitness values equally.



and the options: and the options: 

�� ShiftShift linearlinear ScalingScaling OptionOption:: TheThe shiftshift linearlinear scalingscaling
optionoption scalesscales thethe rawraw scoresscores soso thatthat thethe expectationexpectation
ofof thethe fittestfittest individualindividual isis equalequal toto aa constant,constant, whichwhich
youyou cancan specifyspecify asas MaximumMaximum survivalsurvival rate,rate,
multipliedmultiplied byby thethe averageaverage scorescore..multipliedmultiplied byby thethe averageaverage scorescore..

WeWe cancan havehave alsoalso optionoption inin ourour ReproductionReproduction inin
orderorder toto determinedetermine howhow thethe geneticgenetic algorithmalgorithm
createscreates childrenchildren atat eacheach newnew generationgeneration..



For example, For example, 

�� Elite CounterElite Counter specifies the number of individuals specifies the number of individuals 
that are guaranteed to survive to the next that are guaranteed to survive to the next 
generation. generation. 

�� Crossover Crossover combines two individuals, or parents, to combines two individuals, or parents, to 
form a new individual, or child, for the next form a new individual, or child, for the next 
generation. generation. 

�� Crossover fractionCrossover fraction specifies the fraction of the next specifies the fraction of the next 
generation, other than elite individuals, that are generation, other than elite individuals, that are 
produced by crossover. produced by crossover. 



�� Scattered Crossover:Scattered Crossover: Scattered Crossover Scattered Crossover 
creates a random binary vector. It then selects creates a random binary vector. It then selects 
the genes where the vector is a 1 from the first the genes where the vector is a 1 from the first 
parent, and the genes where the vector is a 0 from parent, and the genes where the vector is a 0 from 
the second parent, and combines the genes to the second parent, and combines the genes to 
form the child. form the child. 



�� Mutation:Mutation: Mutation makes small random changes in Mutation makes small random changes in 
the individuals in the population, which provide the individuals in the population, which provide 
genetic diversity and enable the GA to search a genetic diversity and enable the GA to search a 
broader space. Gaussian Mutation: We call that the broader space. Gaussian Mutation: We call that the 
Mutation is Gaussian if the Mutation adds a random Mutation is Gaussian if the Mutation adds a random 
number to each vector entry of an individual. number to each vector entry of an individual. This This 
random number is taken from a Gaussian random number is taken from a Gaussian 
distribution centered on zero.distribution centered on zero. The variance of this The variance of this distribution centered on zero.distribution centered on zero. The variance of this The variance of this 
distribution can be controlled with two parameters. distribution can be controlled with two parameters. 
The The ScaleScale parameter determines the variance at the parameter determines the variance at the 
first generation. The first generation. The ShrinkShrink parameter controls how parameter controls how 
variance shrinks as generations go by. variance shrinks as generations go by. If the Shrink If the Shrink 
parameter is 0, the variance is constant. If the Shrink parameter is 0, the variance is constant. If the Shrink 
parameter is 1, the variance shrinks to 0 linearly as parameter is 1, the variance shrinks to 0 linearly as 
the last generation is reached.the last generation is reached.



�� MigrationMigration is the movement of individuals between is the movement of individuals between 
subpopulations (the best individuals from one subpopulations (the best individuals from one 
subpopulation replace the worst individuals in subpopulation replace the worst individuals in 
another subpopulation). We can control how another subpopulation). We can control how 
migration occurs by the following three parameters. migration occurs by the following three parameters. 



�� Direction of Migration:Direction of Migration: Migration can take place in Migration can take place in 
one direction or two. In the soone direction or two. In the so--called “Forward called “Forward 
migration” the nth subpopulation migrates into the migration” the nth subpopulation migrates into the 
(n+1)'th subpopulation. while in the so(n+1)'th subpopulation. while in the so--called “Both called “Both 
directions Migration”, the nth subpopulation directions Migration”, the nth subpopulation 
migrates into both the (nmigrates into both the (n--1)th and the (n+1)th 1)th and the (n+1)th 
subpopulation. subpopulation. 

�� Migration wraps at the ends of the subpopulations. Migration wraps at the ends of the subpopulations. 
That is, the last subpopulation migrates into the That is, the last subpopulation migrates into the 
first, and the first may migrate into the last. To first, and the first may migrate into the last. To 
prevent wrapping, specify a subpopulation of size prevent wrapping, specify a subpopulation of size 
zero. zero. 



�� Fraction of MigrationFraction of Migration is the number of the  is the number of the  
individuals that we move between the individuals that we move between the 
subpopulations. subpopulations. 

So, Fraction of Migration is the fraction of the So, Fraction of Migration is the fraction of the 
smaller of the two subpopulations that moves. smaller of the two subpopulations that moves. 

If individuals migrate from a subpopulation of 50 If individuals migrate from a subpopulation of 50 
individuals into a population of 100 individuals and individuals into a population of 100 individuals and individuals into a population of 100 individuals and individuals into a population of 100 individuals and 
Fraction is 0.1, 5 individuals (0.1 * 50) migrate. Fraction is 0.1, 5 individuals (0.1 * 50) migrate. 
Individuals that migrate from one subpopulation to Individuals that migrate from one subpopulation to 
another are copied. another are copied. 

They are not removed from the source They are not removed from the source 
subpopulation. subpopulation. Interval of Migration Interval of Migration counts how counts how 
many generations pass between migrations.many generations pass between migrations.



�� The The NelderNelder--MeadMead simplex algorithm appeared in simplex algorithm appeared in 
1965 and is now one of the most widely used 1965 and is now one of the most widely used 
methods for nonlinear unconstrained optimization.methods for nonlinear unconstrained optimization.

�� The The NelderNelder--MeadMead method attempts to minimize a method attempts to minimize a 
scalarscalar--valued nonlinear function of n real variables valued nonlinear function of n real variables 
using only function values, without any derivative using only function values, without any derivative 
information (explicit or implicit). information (explicit or implicit). information (explicit or implicit). information (explicit or implicit). 



�� The NelderThe Nelder--Mead method thus falls in the general Mead method thus falls in the general 
class of direct search methods. The method is class of direct search methods. The method is 
described as follows: described as follows: 

�� Let Let f(x)f(x) be the function for minimization where be the function for minimization where xx is is 
a vector in a vector in nn real variables. real variables. 

�� We select We select n+1n+1 initial points for initial points for xx and we follow the and we follow the 
steps:  steps:  



�� Step 1. Order:Step 1. Order:

Order the n+1 vertices to satisfy Order the n+1 vertices to satisfy 

f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), f(x1) ≤ f(x2) ≤ … ≤ f(xn+1), 

using the tieusing the tie--breaking rules given below.breaking rules given below.using the tieusing the tie--breaking rules given below.breaking rules given below.



�� Step 2. Reflect.Step 2. Reflect. Compute the reflection point xr from    Compute the reflection point xr from    

where where 

11 )1()( ++ −+=−+= nnr xxxxxx ρρρ

∑=
n

nxx /

is the centroid of the n best points (all vertices except is the centroid of the n best points (all vertices except 
for xn+1). Evaluate fr=f(xr). for xn+1). Evaluate fr=f(xr). 

If f1 ≤ fr < fn accept the reflected point xr and If f1 ≤ fr < fn accept the reflected point xr and 
terminate the iteration.      terminate the iteration.      

∑
=

=
i

i nxx
1

/



�� Step 3.Step 3. Expand. If fr < f1 , calculate the expansion Expand. If fr < f1 , calculate the expansion 
point xe, point xe, 

and evaluate fe=f(xe). If fe < fr, accept xe and and evaluate fe=f(xe). If fe < fr, accept xe and 
terminate the iteration; otherwise (if fe ≥ fr), accept terminate the iteration; otherwise (if fe ≥ fr), accept 

11 )1()()( ++ −+=−+=−+= nnre xxxxxxxxx ρχρχρχχ

terminate the iteration; otherwise (if fe ≥ fr), accept terminate the iteration; otherwise (if fe ≥ fr), accept 
xr and terminate the iteration.xr and terminate the iteration.



�� Step 4.Step 4. Contract.Contract. If fr ≥ fn, perform a contraction If fr ≥ fn, perform a contraction 
between  and the better of between  and the better of xn+1xn+1 and and xr. xr. 

and evaluate and evaluate fcc = f(xcc)fcc = f(xcc)

Outside. Outside. 

11 )1()( ++ +−=−−= nncc xxxxxx γγγ

If fn ≤ fr < fn+1 (i.e. xr is strictly better than xn+1), If fn ≤ fr < fn+1 (i.e. xr is strictly better than xn+1), 
perform an outside contraction: calculate    and perform an outside contraction: calculate    and 
evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate evaluate fc = f(xc). If fc ≤ fr, accept xc and terminate 
the iteration; otherwise, go to step 5 the iteration; otherwise, go to step 5 (perform a (perform a 
shrink).shrink).



Inside.Inside. If fr ≥ fn+1, perform an inside contraction: If fr ≥ fn+1, perform an inside contraction: 
calculate calculate 

and evaluate and evaluate fcc = f(xcc).fcc = f(xcc). If fcc < fn+1, accept xcc If fcc < fn+1, accept xcc 
and terminate the iteration; otherwise, go to step 5 and terminate the iteration; otherwise, go to step 5 

11 )1()( ++ +−=−−= nncc xxxxxx γγγ

and terminate the iteration; otherwise, go to step 5 and terminate the iteration; otherwise, go to step 5 
(perform a shrink).(perform a shrink).



Step 5.Step 5.

Perform a shrink step. Evaluate f at the n points Perform a shrink step. Evaluate f at the n points 

vi = x1 + vi = x1 + σσ (xi (xi –– x1), i = 2, … , n+1. x1), i = 2, … , n+1. 

The (unordered) vertices of the simplex at the next The (unordered) vertices of the simplex at the next 
iteration consist of x1, v2, … , vn+1. iteration consist of x1, v2, … , vn+1. 



After this preparation, we are ready to solve the After this preparation, we are ready to solve the 
minimization problem of our functional of the minimization problem of our functional of the 
Equation (9) as a minimization problem.Equation (9) as a minimization problem.

�� The minimization is achieved by using Genetic The minimization is achieved by using Genetic 
Algorithms (GA) and the method of NelderAlgorithms (GA) and the method of Nelder--Mead Mead Algorithms (GA) and the method of NelderAlgorithms (GA) and the method of Nelder--Mead Mead 
exactly as we described previously. exactly as we described previously. 

�� We can use the MATLAB software package We can use the MATLAB software package 



In the next numerical example our GENETIC In the next numerical example our GENETIC 
ALGORITHM has the following Parameters:ALGORITHM has the following Parameters:

�� Population type: Population type: 

Double Vector Population size: 30Double Vector Population size: 30

�� Creation function: UniformCreation function: Uniform

�� Fitness scaling: RankFitness scaling: Rank

�� Selection function: rouletteSelection function: roulette

�� Reproduction: 6 Reproduction: 6 –– Crossover fraction 0.8Crossover fraction 0.8

�� Mutation:  Gaussian Mutation:  Gaussian –– Scale 1.0, Scale 1.0, 

�� Shrink 1.0Shrink 1.0

�� Crossover: ScatteredCrossover: Scattered

�� Migration: Both Migration: Both –– fraction 0.2, interval: 20fraction 0.2, interval: 20

�� Stopping criteria: 50 generationsStopping criteria: 50 generations



We present now the        We present now the        
following Numerical Examplefollowing Numerical Example

First consider now the following First consider now the following 
problem of the Figure 2 in this problem of the Figure 2 in this 
Cartesian  domain with Cartesian  domain with uu equal equal 

( )2
div 0

p
u u

−
∇ ∇ =

Cartesian  domain with Cartesian  domain with uu equal equal 
to zero  in the external to zero  in the external 
boundary and boundary and uu equal to 1 in equal to 1 in 
the internal boundary.the internal boundary.

u=0u=0

u=1u=1

�������� Fig.2Fig.2

[0, 2] [0, 2] [0,1] [0,1]u∈ × − ×

2, 2 2x y= ± − ≤ ≤

2, 2 2y x= ± − ≤ ≤



1, 1 1x y= ± − ≤ ≤

1, 1 1y x= ± − ≤ ≤

See the figure 3
See the Figure 3 ����

See the figure 3
See the Figure 3 ����



Due to symmetry, we can split the domain in 8 same Due to symmetry, we can split the domain in 8 same 
trapezoids (trapezia). It is sufficient to  solve our trapezoids (trapezia). It is sufficient to  solve our 
problem in one of them with the boundary problem in one of them with the boundary 
conditions “u” equal to 0 in the external boundary conditions “u” equal to 0 in the external boundary 
and “u” equal to 1 in the internal boundary.and “u” equal to 1 in the internal boundary.



Taking one of these Taking one of these 
trapezoids and splitting it trapezoids and splitting it 
into 6 triangles like in into 6 triangles like in 
Figure 3, we have in some Figure 3, we have in some 
enlargement the following enlargement the following 
Figure, Figure, 

�������� This is the Figure 4This is the Figure 4



We consider as We consider as 

the value of the u at the pointsthe value of the u at the points

1 2 3 4 5 6 7, , , , , ,u u u u u u u

(0,0), (2,0), (2, 2), (2, 4), (1,3), (0, 2), (1,1)

1

2

(0,0),

(2,0),

u u

u u

=

=2

3

4

5

6

7

(2,0),

(2,2),

(2,4),

(1,3),

(0,2),

(1,1)

u u

u u

u u

u u

u u

u u

=

=

=

=

=

=



Then by consideringThen by considering
1

2

3

4

5

(0,0),

(2,0),

(2,2),

(2,4),

(1,3),

(0,2),

u u

u u

u u

u u

u u

u u

=

=

=

=

=

=

s n s n s nu a x b y c= + +

q n q n q nu a x b y c= + +

r n r n r nu a x b y c= + +

6

7

(0,2),

(1,1)

u u

u u

=

=



and now we have the Equations (7.1), (7.2) and (7.3)and now we have the Equations (7.1), (7.2) and (7.3)

In each triangle, the  three equations can be solved with In each triangle, the  three equations can be solved with 
respect to respect to 

as followsas follows

, ,n n na b c

1

1

1

s s

q q

u y

u y

u y
=

1r r

n

u y
a

D
=

1

1

1

s s

q q

r r

n

x u

x u

x u
b

D
=

s s s

q q q

r r r

n

x y u

x y u

x y u
c

D
=



We have,We have, considering also that  u1 and u6 are equal to 1considering also that  u1 and u6 are equal to 1

and u2, u3, u4 are equal to 0. So, after some algebraic and u2, u3, u4 are equal to 0. So, after some algebraic 
manipulation we find that we have to minimize the manipulation we find that we have to minimize the 
quantity quantity II with respect to u5 and u7with respect to u5 and u7

Where I is given as followsWhere I is given as follows

2 2 2 2

5 5 72 1 (1 2 ) 1 (1 2 )
p p

p
I u u u= + + − + + − +

With respect to With respect to 

5 5 72 1 (1 2 ) 1 (1 2 )I u u u= + + − + + − +

2 2

7 7 7(2 2 ) 1 (1 2 ) (2 )
p

p p
u u u+ − + + − +

5 7,u u



In order to find the global minimum of I we use GA In order to find the global minimum of I we use GA 

�� Population type: Double Vector Population Population type: Double Vector Population 

�� Population size: 30 Population size: 30 

�� Creation function: Uniform  Creation function: Uniform  

�� Fitness scaling: Rank  Fitness scaling: Rank  

�� Selection function: roulette Selection function: roulette 

�� Reproduction: 6 Reproduction: 6 

�� Crossover fraction 0.8 Crossover fraction 0.8 

�� Mutation:  Gaussian Mutation:  Gaussian –– Scale 1.0,  Shrink 1.0 Scale 1.0,  Shrink 1.0 

�� Crossover: Scattered  Crossover: Scattered  

�� Migration: Both Migration: Both –– fraction 0.2, interval: 20  fraction 0.2, interval: 20  

�� Stopping criteria: 50 generations)Stopping criteria: 50 generations)

and continue with Nelderand continue with Nelder--MeadMead

So we find the following results for different values of “p”So we find the following results for different values of “p”















With the Hybrid method of Genetic Algorithm

+ Nelder-Mead we have combined the advantages

of both methods, that are

a) the convergence to the global minimum (genetic

algorithm) plus

b) the high accuracy

of the Nelder-Mead method.

b) the high accuracy



Another problem that we will examine 
now  is the Numerical Solution of the 
Schrodinger-Maxwell equations (with a 
general nonlinear term) 
via Finite Elements and Genetic 
Algorithms with Nelder-Mead



Recently, the existence of a nontrivial solution to the

nonlinear Schrodinger-Maxwell equations in R^3,

assuming on the nonlinearity the general hypotheses

introduced by Berestycki & Lions has been proved. In

this lecture the Numerical Solution of the system of

Partial Differential Equations of Schrodinger-Maxwell

equations (with a general nonlinear term) via Finite

Elements and Genetic Algorithms with Nelder-Mead is

proposed. The method of Finite Elements and Geneticproposed. The method of Finite Elements and Genetic

Algorithms with Nelder-Mead that has been proposed by

the author recently is also used.





Recently, Azzollini, D’Avenia and Pomponio

proved that a solution of a boundary problem of

(1) and (2) yields the minimization of some

functional.

In this lecture, we solve the problem with theIn this lecture, we solve the problem with the

method of finite elements

In this lecture we will solve the boundary value

problem of (1) and (2) where g is known using

Variational Techniques (Finite elements).



First we will produce the appropriate functional

for minimization. After finding this functional,

the solution of (1) and (2) with the necessary

boundary conditions can be easily reduced to an

Optimization problem that can be solved by

Genetic Algorithms with Nelder-Mead.Genetic Algorithms with Nelder-Mead.



An early paper of the author with the 
title “Solving Differential Equations via 
Genetic Algorithms” was presented in 
1996

Now, we examine the   Variational Now, we examine the   Variational 
Formulation of (1) and (2) and Finite 
Elements Approach with GA











We consider that u is written as a linear combination of our 
known basis’ functions with unknown coefficients. 

So, we have the following minimization problem

Minimize I

n n

n

u fλ=∑ n

n

u f=∑

2 21 1
( ) ( )

2 4
V V

I u dv dvφ= ∇ − ∇ +∫∫∫ ∫∫∫

One can select a triangular mesh and appropriate 
functions 

that have non-zero value only in the “n-th” triangle 

� These our finite elements

n n n nf a x b y c= + +

2

2 4

1
( )

2

V V

V V

q u dv G u dvφ+ −

∫∫∫ ∫∫∫

∫∫∫ ∫∫∫



So, in a triangular mesh, So, in a triangular mesh, 

we can have we can have 

Fig.1 A triangle in a 2Fig.1 A triangle in a 2--D meshD mesh

for the nfor the n--th triangle. To avoid to write continuity conditions th triangle. To avoid to write continuity conditions 

n n n nf a x b y c= + +

for the nfor the n--th triangle. To avoid to write continuity conditions th triangle. To avoid to write continuity conditions 
on the common vertices of the triangles of the mesh, one on the common vertices of the triangles of the mesh, one 
can find that in the ncan find that in the n--th triangle of the points “s”, “q” th triangle of the points “s”, “q” 
and “r”  (see Figure 1)and “r”  (see Figure 1)

�� (7.1)(7.1)

(7.2)(7.2)

(7.3)(7.3)

Actually the Figure 1 is a triangle in our 2Actually the Figure 1 is a triangle in our 2--D  meshD  mesh

s n s n s nu a x b y c= + +

q n q n q nu a x b y c= + +

r n r n r nu a x b y c= + +



And now we have the Equations (7.1), (7.2) and (7.3)And now we have the Equations (7.1), (7.2) and (7.3)

There three equations can be solved with respect to There three equations can be solved with respect to 

as followsas follows
, ,n n na b c

1

1

s s

q q

u y

u y

1

1

s s

q q

x u

x u

These are the equation (8.1), (8.2) and (8.3)These are the equation (8.1), (8.2) and (8.3)

1

1

q q

r r

n

u y

u y
a

D
=

1

q q

r r

n

x u
b

D
=

s s s

q q q

r r r

n

x y u

x y u

x y u
c

D
=



These are the Equations (8.1), (8.2) and (8.3) where “D” is These are the Equations (8.1), (8.2) and (8.3) where “D” is 
given as followsgiven as follows

1

1

1

s s

q q

r r

x y

D x y

x y

=

Note that two times D  is the algebraic area of the triangle.Note that two times D  is the algebraic area of the triangle.



So, from the minimization problem that the following So, from the minimization problem that the following 
equation describesequation describes

we find the equivalent minimization problem of the we find the equivalent minimization problem of the 
following equation following equation 

(9)(9)

min ( )

p

n

n

f dv∇ ∑∫

min ( )
p

nu dvφ∫ (9)(9)

which is minimization of Us, which is minimization of Us, UqUq, Ur, Ur

Note that           is the function that we find after replacing Note that           is the function that we find after replacing 

min ( )nu dvφ∫
( )nuφ
1

1

1

s s

q q

r r

n

u y

u y

u y
a

D
=

1

1

1

s s

q q

r r

n

x u

x u

x u
b

D
=

s s s

q q q

r r r

n

x y u

x y u

x y u
c

D
=



The Equation (9) can be solved now by a variety of The Equation (9) can be solved now by a variety of 
techniques. techniques. 

�� The author uses the Method of Genetic Algorithms with The author uses the Method of Genetic Algorithms with 
the sothe so--called method of Nelder and Meade for Noncalled method of Nelder and Meade for Non--linear linear 
Problems.Problems.Problems.Problems.

�� The same optimization scheme Genetic Algorithms with The same optimization scheme Genetic Algorithms with 
NelderNelder--Meade method has recently applied by the author Meade method has recently applied by the author 
with great successwith great success



Before proceeding in the solution of the problem, some Before proceeding in the solution of the problem, some 
background on “Gbackground on “G--A” i.e. Genetic Algorithms and A” i.e. Genetic Algorithms and 
NelderNelder--Mead is necessary. Mead is necessary. 

In many papers, we have proposed a hybrid method that In many papers, we have proposed a hybrid method that 
includes  includes  

�� a) Genetic Algorithm for finding rather the neiborhood   a) Genetic Algorithm for finding rather the neiborhood   �� a) Genetic Algorithm for finding rather the neiborhood   a) Genetic Algorithm for finding rather the neiborhood   
of the global  minimum than the global minimum itself of the global  minimum than the global minimum itself 
and  and  

�� b) Nelderb) Nelder--Mead algorithm to find the exact point of the Mead algorithm to find the exact point of the 
global minimum itself.global minimum itself.



So, with this Hybrid method of Genetic Algorithm + So, with this Hybrid method of Genetic Algorithm + 
NelderNelder--Mead we combine the advantages of both Mead we combine the advantages of both 
methods, that are methods, that are 

�� A) the convergence to the global minimum via the genetic A) the convergence to the global minimum via the genetic 
algorithmalgorithm

plus plus 

�� B) the high accuracy of the NelderB) the high accuracy of the Nelder--Mead method. Mead method. 



In order to find the global minimum of I we use GA In order to find the global minimum of I we use GA 

�� Population type: Double Vector Population Population type: Double Vector Population 

�� Population size: 30 Population size: 30 

�� Creation function: Uniform  Creation function: Uniform  

�� Fitness scaling: Rank  Fitness scaling: Rank  

�� Selection function: roulette Selection function: roulette 

�� Reproduction: 6 Reproduction: 6 

�� Crossover fraction 0.8 Crossover fraction 0.8 

�� Mutation:  Gaussian Mutation:  Gaussian –– Scale 1.0,  Shrink 1.0 Scale 1.0,  Shrink 1.0 

�� Crossover: Scattered  Crossover: Scattered  

�� Migration: Both Migration: Both –– fraction 0.2, interval: 20  fraction 0.2, interval: 20  

�� Stopping criteria: 50 generations)Stopping criteria: 50 generations)

and continue with Nelderand continue with Nelder--MeadMead

So we find the following results for different values of “p”So we find the following results for different values of “p”



So, the problem can be solved now by a variety of techniques.

The author uses Genetic Algorithms with Nelder-Meade for

Non-linear Problems as in [2], [3], [4], [5], [6], [7], [8].

The same optimization scheme: Genetic Algorithms with

Nelder-Meade is also applied for (19).
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